Immune Cross-Reactivity in Celiac Disease: Anti-Gliadin Antibodies Bind to Neuronal Synapsin I

Armin Alaedini, Haruka Okamoto, Chiara Briani, Kurt Wollenberg, Holly A. Shill, Khalafalla O. Bushara, Howard W. Sander, Peter H. R. Green, Mark Hallett and Norman Latov

J Immunol 2007; 178:6590-6595; doi: 10.4049/jimmunol.178.10.6590

http://www.jimmunol.org/content/178/10/6590

References

This article cites 40 articles, 15 of which you can access for free at:
http://www.jimmunol.org/content/178/10/6590.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Celiac disease is an immune-mediated disorder triggered by ingestion of wheat gliadin and related proteins in genetically susceptible individuals. In addition to the characteristic enteropathy, celiac disease is associated with various extraintestinal manifestations, including neurologic complications such as neuropathy, ataxia, seizures, and neurobehavioral changes. The cause of the neurologic manifestations is unknown, but autoimmunity resulting from molecular mimicry between gliadin and nervous system proteins has been proposed to play a role. In this study, we sought to investigate the immune reactivity of the anti-gliadin Ab response toward neural proteins. We characterized the binding of affinity-purified anti-gliadin Abs from immunized animals to brain proteins by one- and two-dimensional gel electrophoresis, immunoblotting, and peptide mass mapping. The major immunoreactive protein was identified as synapsin I. Anti-gliadin Abs from patients with celiac disease also bound to the protein. Such cross-reactivity may provide clues into the pathogenic mechanism of the neurologic deficits that are associated with gluten sensitivity. The Journal of Immunology, 2007, 178: 6590–6595.

Materials and Methods

Rabbit and human sera

Animal anti-gliadin Abs were from pooled serum IgG fraction of multiple immunized rabbits (Sigma-Aldrich). Human serum samples were from nine patients with biopsy-proven celiac disease and elevated levels of IgG and/or IgA anti-gliadin Abs, nine patients with neurologic disease without anti-gliadin Abs, and four healthy subjects. Celiac disease patients included three who were also diagnosed with neurologic disease (two with peripheral neuropathy and one with cerebellar ataxia) and six patients without neurologic disease (two of whom also had dermatitis herpetiformis). The
neurologic disease control group consisted of patients without anti-gliadin Abs, including two with multifocal motor neuropathy, two with chronic inflammatory demyelinating polyneuropathy, two with sporadic cerebellar ataxia, and three with multiple sclerosis. Informed consent was obtained in accordance with protocols approved by the internal review boards of all involved institutions.

Affinity purification of anti-gliadin Abs

Pooled rabbit anti-gliadin Abs or sera from two patients with biopsy-proven celiac disease and high anti-gliadin Ab titer (CD 1 and CD 2) were sequentially purified by affinity chromatography, using a gliadin-coupled affinity column. The gliadin proteins used for constructing the affinity column were purified from a gliadin preparation (Sigma-Aldrich) by extraction with 70% ethanol. The protein extract was lyophilized and dissolved in 50% N,N-dimethylformamide at 20 mg/ml. An affinity chromatography column was prepared using the AminoLink-activated agarose gel bead support (Pierce). After packing the column with 4 ml of gel slurry, it was equilibrated with 50% N,N-dimethylformamide in PBS. This was followed by the addition of 2 ml of the purified gliadin solution and 200 μl of 1 M NaCNBH3 in 10 mM NaOH. The coupling reaction was allowed to continue while gently rotating the column (6 h, room temperature). Remaining reactive sites were blocked by incubation with 1 M Tris (pH 7.4) for 30 min. The gliadin-coupled affinity column was washed and equilibrated with PBS. Purification was initiated by the introduction of Ab solution or serum samples into the column and continuous flow for 1 h. The column was then thoroughly washed with PBS, followed by elution of bound Abs with 100 mM glycine buffer (pH 3.0). The eluted Ab fraction was neutralized with 1 M Tris (pH 7.5). The column flowthrough and the eluted Ab fraction were concentrated by centrifugal filtration.

Binding of anti-gliadin Abs to neural proteins

Mouse brain tissue was homogenized in lysis buffer (20 mM Tris, 5 mM EDTA, 0.5% Noniden P-40, containing a mixture of protease inhibitors [Roche] (pH 7.5)) at 4°C. Homogenized sample was centrifuged at 16,000 × g for 20 min to remove cellular debris. The interaction of the anti-gliadin Abs with neural proteins was investigated by Western blot analysis. One-dimensional SDS-PAGE (7.5%) or two-dimensional nondenaturing pH gradient electrophoresis (17) was conducted on 4-8% polyacrylamide gel for 2 h. Immunoblotting was performed with affinity-purified anti-gliadin Ab (0.4–7.2 μg/ml) overnight at 4°C. Bound Abs were detected by enhanced chemiluminescence (ECL) system and autoradiography film. The membrane was washed with 5% MTT in PBS for 1 h. Incubation with affinity-purified anti-gliadin Ab (0.4–7.2 μg/ml) or with the column flowthrough Abs was conducted for 1 h. The HRP-conjugated secondary Ab (1/1600 dilution) was added to each well, and the plates were incubated for 1 h. The wells were washed and blocked by incubation with 1% BSA in PBS containing 0.05% Tween 20 for 1 h at room temperature. Serum samples were diluted at 1/400 (for gliadin-coated wells) or at 1/200 (for synapsin-coated wells) and added at 50 μl/well in duplicates. After washing the wells as before, 50 μl of peroxidase-conjugated goat anti-human IgG (Amersham Biosciences) or IgA (MP Biomedical) secondary Ab (1/1600 dilution) was added to each well, and the plate was incubated for 1 h. The wells were washed, and 50 μl of developing solution, comprising 27 mM citric acid, 50 mM NaHPO4, 5.5 mM o-phenylenediamine, and 0.01% H2O2 (pH 5), was added to each well. After incubating the plates at room temperature for 30 min, absorbance was measured at 450 nm. Absorbance values were corrected for nonspecific binding by subtraction of the mean absorbance of the associated control wells.

Results

The purified gliadin extract used for preparation of the affinity column contained proteins in the 25- to 50-kDa range (Fig. 1A). We first examined the binding of the affinity-purified anti-gliadin Abs (from pooled serum of gliadin-immunized rabbits) to mouse brain proteins by one- and two-dimensional gel electrophoresis and immunoblotting. The purified Abs strongly bound to two closely spaced bands with molecular masses of 73–78 kDa and isoelectric points of 9.5–10.5 (Fig. 1, B, C, and E). The column flowthrough Abs (from which the anti-gliadin Abs had been removed) did not bind to these bands (Fig. 1D).

To further characterize the putative immunoreactive protein, it was purified from mouse brain tissue by affinity chromatography, using an anti-gliadin Ab cross-linked column. The SDS-PAGE profile of eluted fractions showed a band at ~75 kDa (data not shown). The excised protein was digested with trypsin after chemical modification and analyzed by liquid chromatography-MS/MS (Fig. 2). The detected peptide masses were searched against the National Center for Biotechnology Information (NCBI) protein sequence database. Results of the database search revealed synapsin Ib (accession no. AAD09833) as a significant candidate protein, with seven peptides identified and 17% sequence coverage (Fig. 2) (20). Two-dimensional immunoblotting of brain proteins using anti-gliadin Ab and reblotting with anti-synapsin I Ab clearly demonstrated binding to the same two bands, representing synapsin Ia and synapsin Ib (Fig. 1F). The two-dimensional profile of the proteins also agreed with that previously reported for synapsin I (21).
Binding of affinity-purified anti-gliadin Ab from gliadin-immunized rabbits to purified synapsin Ia/Ib and to none of the controls by Western blot analysis further confirmed the identity of the protein bands (Fig. 3A).

To determine whether human anti-gliadin Abs also bind to synapsin I, we affinity purified serum anti-gliadin Ab from two patients with biopsy-proven celiac disease and elevated anti-gliadin Abs. Immunoblotting clearly demonstrated the binding of patient gliadin-specific IgG and IgA Abs to synapsin I, whereas no binding to BSA and bovine calreticulin was detected (Fig. 3, B and C). On the basis of these results, we established an ELISA for the detection of anti-synapsin I Abs in serum. Serum samples were either from subjects with clearly elevated anti-gliadin Ab titers or from controls without anti-gliadin Abs, either with or without neurologic symptoms. Five of nine patients with gluten sensitivity (three of three with and two of five without neurologic disease)
To examine the possible role of the synapsin I carbohydrate groups in the Ab interaction, the immunoblotting procedure was repeated with the affinity-purified rabbit and human anti-gliadin Abs after treatment of synapsin I with TFMS. The results showed that, while the protein was deglycosylated, with a molecular mass shift to \(\sim 60 \text{--} 65 \text{ kDa} \), the binding to anti-gliadin Abs was not inhibited (Fig. 3).

Discussion

The objective of this study was to examine the cross-reactivity of the anti-gliadin humoral immune response in neural tissue. We found that both animal and human anti-gliadin Abs can cross-react with synapsin I, a cytosolic phosphoprotein found in most neurons of the central and peripheral nervous systems (22, 23). The anti-gliadin Abs bound to both isomers of synapsin I, \(a \) and \(b \), which have very similar amino acid sequences. The \(b \) isomers in human and mouse differ from the \(a \) isomers by deletions and sequence polymorphisms at the carboxyl terminus. Additionally, mouse synapsin \(b \) has a unique deletion of aa 571—598. Apart from these, the \(b \) isomers are identical in sequence to their corresponding \(a \) isomers.

In examining the amino acid sequences of gliadins available in the NCBI database, it is apparent that a typical homology search (such as basic local alignment search tool) would not return a significant hit to synapsin I. However, the similarity between synapsin I and gliadin derives from having regions with high frequencies of proline and glutamine residues. In synapsin, the proline/glutamine rich region is in the carboxyl half of the protein. In gliadins, the multiple prolines and glutamines (including several poly-Q regions) are distributed throughout the sequence. More specifically, gliadins have several PQQ and PQP motifs, which are also found in synapsin I. The presence of these amino acid sequences may be partly responsible for the observed cross-reactivity of the anti-gliadin Abs. In contrast, while synapsin I is

Table I. Anti-gliadin and anti-synapsin I Ab reactivities in human sera, as determined by ELISA

<table>
<thead>
<tr>
<th>Serum Sample</th>
<th>Anti-gliadin Ab<sup>a</sup></th>
<th>Anti-synapsin I Ab<sup>b</sup></th>
<th>Anti-gliadin Ab<sup>c</sup></th>
<th>Anti-synapsin I Ab<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>CD 1<sup>e</sup></td>
<td>0.871 ± 0.031</td>
<td>0.477 ± 0.014</td>
<td>1.205 ± 0.012</td>
<td>0.564 ± 0.012</td>
</tr>
<tr>
<td>CD 2<sup>e</sup></td>
<td>1.430 ± 0.062</td>
<td>0.811 ± 0.020</td>
<td>0.538 ± 0.019</td>
<td>0.606 ± 0.045</td>
</tr>
<tr>
<td>CD 3<sup>e</sup></td>
<td>0.128 ± 0.008</td>
<td>0.115 ± 0.005</td>
<td>1.250 ± 0.008</td>
<td>0.332 ± 0.009</td>
</tr>
<tr>
<td>CD 4<sup>e</sup></td>
<td>0.035 ± 0.008</td>
<td>0.011 ± 0.006</td>
<td>1.021 ± 0.081</td>
<td>0.021 ± 0.007</td>
</tr>
<tr>
<td>CD 5<sup>e</sup></td>
<td>0.073 ± 0.004</td>
<td>0.028 ± 0.004</td>
<td>1.338 ± 0.133</td>
<td>0.046 ± 0.010</td>
</tr>
<tr>
<td>CD 6<sup>e</sup></td>
<td>0.055 ± 0.010</td>
<td>0.013 ± 0.008</td>
<td>1.024 ± 0.102</td>
<td>0.032 ± 0.017</td>
</tr>
<tr>
<td>CD 7<sup>e</sup></td>
<td>0.499 ± 0.014</td>
<td>0.010 ± 0.004</td>
<td>1.521 ± 0.017</td>
<td>0.327 ± 0.007</td>
</tr>
<tr>
<td>CD 8<sup>e</sup></td>
<td>0.325 ± 0.020</td>
<td>0.116 ± 0.006</td>
<td>0.875 ± 0.036</td>
<td>0.059 ± 0.010</td>
</tr>
<tr>
<td>CD 9<sup>e</sup></td>
<td>0.020 ± 0.004</td>
<td>0.021 ± 0.009</td>
<td>0.266 ± 0.022</td>
<td>0.022 ± 0.013</td>
</tr>
<tr>
<td>PN 1 (MMN)</td>
<td>0.012 ± 0.002</td>
<td>0.038 ± 0.008</td>
<td>0.014 ± 0.010</td>
<td>0.025 ± 0.019</td>
</tr>
<tr>
<td>PN 2 (MMN)</td>
<td>0.022 ± 0.002</td>
<td>0.028 ± 0.007</td>
<td>0.038 ± 0.006</td>
<td>0.048 ± 0.006</td>
</tr>
<tr>
<td>PN 3 (CIDP)</td>
<td>0.006 ± 0.004</td>
<td>0.006 ± 0.006</td>
<td>0.014 ± 0.002</td>
<td>0.008 ± 0.009</td>
</tr>
<tr>
<td>PN 4 (CIDP)</td>
<td>0.013 ± 0.003</td>
<td>0.029 ± 0.007</td>
<td>0.068 ± 0.003</td>
<td>0.011 ± 0.007</td>
</tr>
<tr>
<td>CA 1<sup>e</sup></td>
<td>0.014 ± 0.004</td>
<td>0.014 ± 0.007</td>
<td>0.047 ± 0.004</td>
<td>0.019 ± 0.011</td>
</tr>
<tr>
<td>CA 2<sup>e</sup></td>
<td>0.019 ± 0.004</td>
<td>0.036 ± 0.008</td>
<td>0.037 ± 0.005</td>
<td>0.042 ± 0.012</td>
</tr>
<tr>
<td>MS 1<sup>e</sup></td>
<td>0.028 ± 0.008</td>
<td>0.020 ± 0.009</td>
<td>0.039 ± 0.002</td>
<td>0.019 ± 0.012</td>
</tr>
<tr>
<td>MS 2<sup>e</sup></td>
<td>0.019 ± 0.006</td>
<td>0.037 ± 0.005</td>
<td>0.031 ± 0.011</td>
<td>0.042 ± 0.017</td>
</tr>
<tr>
<td>MS 3<sup>e</sup></td>
<td>0.011 ± 0.006</td>
<td>0.008 ± 0.003</td>
<td>0.042 ± 0.013</td>
<td>0.030 ± 0.016</td>
</tr>
<tr>
<td>Healthy control 1</td>
<td>0.011 ± 0.004</td>
<td>0.006 ± 0.008</td>
<td>0.057 ± 0.002</td>
<td>0.040 ± 0.017</td>
</tr>
<tr>
<td>Healthy control 2</td>
<td>0.005 ± 0.012</td>
<td>0.002 ± 0.002</td>
<td>0.077 ± 0.008</td>
<td>0.027 ± 0.012</td>
</tr>
<tr>
<td>Healthy control 3</td>
<td>0.016 ± 0.007</td>
<td>0.009 ± 0.007</td>
<td>0.038 ± 0.004</td>
<td>0.030 ± 0.008</td>
</tr>
<tr>
<td>Healthy control 4</td>
<td>0.006 ± 0.006</td>
<td>0.025 ± 0.005</td>
<td>0.043 ± 0.005</td>
<td>0.027 ± 0.011</td>
</tr>
</tbody>
</table>

^aCD, celiac disease; PN, peripheral neuropathy; CA, cerebellar ataxia; MMN, multifocal motor neuropathy; CIDP, chronic inflammatory-demyelinating polyneuropathy; MS, multiple sclerosis.

^bValues represent the mean for the difference between optical densities of Ag-coated and control wells ± SD.

^cCeliac disease patients CD 1 and CD 2 were also diagnosed with peripheral neuropathy.

^dCeliac disease patient CD 3 was also diagnosed with sporadic cerebellar ataxia.

^eCeliac disease patients CD 8 and CD 9 also had dermatitis herpetiformis.
known to carry O-linked N-acetylgalactosamine and fucosyl groups (24, 25), the removal of these carbohydrates do not inhibit the binding of anti-gliadin Abs to the protein, ruling out a major role for them as epitopes in the Ab-Ag interaction.

In the human serum samples, Ab to synapsin I was detected in several patients with gluten sensitivity, while control specimens without anti-gliadin Ab did not exhibit significant anti-synapsin Ab reactivity. The patient data also clearly demonstrated that anti-gliadin Ab levels do not necessarily correlate with anti-synapsin Ab reactivity and that only certain subsets of anti-gliadin Abs cross-react with synapsin I. Because of the large number and heterogeneous nature of gliadins, as well as the high diversity of wheat phenotypes (26), the anti-gliadin immune response is likely to involve a sizeable repertoire of antigenic determinants. Therefore, varying degrees of cross-reactivity to synapsin I can be expected in different patients with gluten sensitivity. Such differences in the anti-gliadin Ab cross-reactivity in different patients may reveal clues about the potential pathogenic role of the Ab and its association with specific extra-intestinal complications.

Whether Ab cross-reactivity to synapsin I can exert a pathogenic effect in gluten sensitivity is unknown. Synapsins appear to be multifunctional proteins, containing different domains that confer specific activities (27). In addition to binding synaptic vesicles and various cytoskeletal proteins (18, 28, 29), synapsins share structural similarity in the C domain with a group of ATP-dependent synthases, suggesting a possible enzymatic function (30, 31). Disruption of synapsin activity in a number of experiments using gene deletion, anti-synapsin Ab, or neutralizing peptides indicates that synapsin is required in forming and sustaining the reserve pool of synaptic vesicles and thereby regulating neurotransmitter release (27, 32, 33). Specifically, binding of anti-synapsin I Abs to the alypsia synapsin homolog has been shown to reduce posttetanetic potentiation and to increase the rate and extent of synaptic depression (33).

Although pathogenic Abs typically target Ags in the extracellular matrix or on the cell surface, there is evidence that Abs to intracellular Ags can also cause disease. For example, passive transfer of Abs to amphiphysin, a protein that is associated with the cytoplasmic surface of synaptic vesicles, has been shown to reproduce the stiff-person syndrome in experimental animals (34). In addition, Abs to glutamic acid decarboxylase, which catalyzes the production of the neurotransmitter γ-aminobutyric acid, have been shown to selectively suppress γ-aminobutyric acid-mediated synaptic transmission (35). As synapsin I is associated with synaptic vesicles, it might be similarly targeted by Abs taken up from the extracellular compartment. Therefore, it is conceivable that, in some patients with gluten sensitivity, the anti-gliadin Ab response would affect synapsin I activity, thus interfering with neurotransmitter release and resulting in neurologic dysfunction. The immune cross-reactivity may also lead to tissue damage through T cell-mediated mechanisms. Among the celiac patients in this study, anti-synapsin Abs were present in subjects with neurologic disease, as well as those without. This implies that, like other autoimmune disorders, Ab reactivity is only one piece of the puzzle in the pathogenic mechanism of the neurologic complications of celiac disease. Therefore, the potential pathogenic role of antisy-}

Finally, it should be noted that the pathogenic effect of antisynapsin immune reactivity might not be limited to the nervous system. As the presence of synapsin I has been demonstrated recently in nonneuronal cells (although at low levels), including liver epithelial cells (37) and pancreatic β cells (38), Ab cross-reactivity to synapsin I may be affiliated with other extraintestinal manifestations of gluten sensitivity as well. Ab and T cell access to these tissues would be more easily facilitated than to the nervous system. In addition, our study does not rule out the possibility of anti-gliadin Ab cross-reactivity toward other autoantigens. In another study, for example, anti-gliadin Abs were reported to cross-react with calreticulin (39), although we did not detect such cross-reactivity using affinity-purified rabbit and human anti-gliadin Abs.

In this study, we have shown that the anti-gliadin Ab response in immunized animals and celiac patients can cross-react with the synapsin I protein. Although the results are preliminary and should not be interpreted as indicating an association with neurologic pathogenicity, the identification of a potential neuronal autoantigen in celiac disease offers new opportunities for investigating the poorly understood connection between gluten sensitivity and neurologic deficits. To better understand the described Ab reactivity and determine whether it is associated with, or has any role in, the extraintestinal complications of celiac disease, further work involving longitudinal studies in patients and experimental animals will be undertaken.

Acknowledgments

We thank Dr. Mary Ann Gawinowicz at the Protein Core Facility of Columbia University for mass spectrometric analyses and insightful discussions. Purified bovine synapsin I was a gift from Drs. Andrew J. Czernek and Angus C. Nairn (Rockefeller University).

Disclosures

The authors have no financial conflict of interest.

References

