Chemoimmunotherapy of Tumors: Cyclophosphamide Synergizes with Exosome Based Vaccines

Julien Taieb, Nathalie Chaput, Noël Schartz, Stéphan Roux, Sophie Novault, Cédric Ménard, François Ghiringhelli, Magali Terme, Antoine F. Carpentier, Guillaume Darrasse-Jèse, François Lemonnier and Laurence Zitvogel

J Immunol 2006; 176:2722-2729; doi: 10.4049/jimmunol.176.5.2722

http://www.jimmunol.org/content/176/5/2722

References

This article cites 43 articles, 23 of which you can access for free at:
http://www.jimmunol.org/content/176/5/2722.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts

Errata

An erratum has been published regarding this article. Please see next page or:
/content/177/3/2024.1.full.pdf

The Journal of Immunology is published twice each month by
The American Association of Immunologists, Inc.,
1451 Rockville Pike, Suite 650, Rockville, MD 20852
Copyright © 2006 by The American Association of Immunologists All rights reserved.
Print ISSN: 0022-1767 Online ISSN: 1550-6606.
Dendritic cell-derived exosomes (DEX) are nanometric vesicles harboring MHC/peptide complexes capable of promoting primary T cell responses and tumor rejection in the presence of adjuvants. In this study, we show that, in the absence of adjuvants, DEX mediate potent Ag-dependent antitumor effects against preestablished tumors in mice pretreated with immunopotentiating dosing of cyclophosphamide. Cyclophosphamide could 1) abolish the suppressive function of CD4+CD25+Foxp3+ regulatory T cells, 2) markedly enhance the magnitude of secondary but not primary CTL responses induced by DEX vaccines, 3) synergize with DEX in therapy but not prophylaxis tumor models. Therefore, therapeutic vaccines such as DEX aimed at boosting tumor-primed effector T cells could benefit procedures that minimize the effects of CD4+CD25+ regulatory T cells. *The Journal of Immunology, 2006, 176: 2722–2729.

Efficient immunization against cancer requires a vaccine capable of eliciting potent primary and secondary CD4+ and CD8+ T cell immune responses. We have reported that dendritic cells (DC) secrete DC-derived exosomes (DEX), which are Ag-presenting vesicles originating from multivesicular endosomes. These nanometric membrane vesicles harbor functional MHC/peptide complexes that elicit potent CD4+ (1) and CD8+ (2, 3) T cell responses directed against the immunizing peptides in vivo. Moreover, DEX pulsed with tumor peptides generate T cell-dependent antitumor effects (4) that were dramatically enhanced by adjuvants such as mature DC and TLR-3 or -9 ligands (3).

However, tumors have evolved several mechanisms to escape immune surveillance, including immune tolerance involving immunosuppressive T lymphocytes (5–8). Indeed, as observed in autoimmune assuming that most tumor Ags are self Ags, antitumor immunity is controlled by mechanisms maintaining immunologic tolerance to self constituents, such as T cell control of self-reactive T cells. Tumors have been shown to induce rapid expansion of CD4+CD25+ regulatory T cells (Treg) in humans and mice, leading to delayed rejection of immunogenic tumors (9, 10). Conversely, elimination of these Treg, which constitute 1–3% of the peripheral CD4+ T cell pool in naive mice, elicited potent antitumor immune responses leading to tumor eradication (7, 11–13). Thus, blocking Treg cell migration or function through immunotherapeutic approaches may help to defeat human cancer.

Cyclophosphamide (CTX) is known to reverse immunological tolerance and to facilitate adoptive immunotherapy through inhibition of suppressor cell activity (14–16). In a rat tumor model, Ghiringhelli et al. (10) reported that CTX or methotrexate induced a significant decrease in the CD4+CD25+/CD4+ splenic T cell ratio and a suppression of Treg functions in tumor-bearing rats, restoring antitumor immune responses. Recently, Lutsiak et al. (17) reported that immunopotentiating dosing of CTX electively decreases Treg numbers and abolishes their regulatory functions in mice.

In the present study, we addressed the capacity of CD4+CD25+ Treg to restrict primary and secondary CD8+ T cell responses elicited by DEX vaccines in tumor-bearing mice. We found that CTX did not promote DEX-mediated primary CD8+ T cell responses, but dramatically boosted tumor or peptide-induced secondary CD8+ T cell responses leading to potent synergistic effects against preestablished tumors. Altogether, CTX combined to DEX vaccine could be of great interest for the design of peptide-based vaccines.

Materials and Methods

Reagents

Cyclophosphamide was obtained from Baxter (ENDOXAN), whereas mafosfamide was provided by F. Martin (Faculty of Medicine, Institut National de la Santé et de la Recherche Médicale Unité 517, Dijon, France). Mart-126–35 (ELAGIGILTV), gp100154–162 (KTWGQYWQV), gp100209–217 (IMDQVPFSV), and Flu (GILGFVFTL) peptides were purchased from (Neosystem). Anti-NK1.1 mAb used for the NK cell depletion was produced from YTS169 hybridoma. Anti-CD4 mAb used for the CD4 cell depletion was produced from YTS169 hybridoma.
Flow cytometry analyses

Tetramer staining. Lymph node or spleen mononuclear cells were first stained with 0.2 μg of HLA-A2/Mart1 or A2/HIVgag fluorescent (PE) soluble tetramers (Immunomics; Beckman Coulter) for 30 min at room temperature in 20 μl of PBS 1× 0.5% BSA (Sigma-Aldrich), then with anti-CD3 FITC mAb and anti-CD8 APC mAb (BD Pharmingen) for 30 min at room temperature before washing and analysis in a FACSCalibur (BD Biosciences).

Foxp3 staining. Foxp3 staining was realized according to manufacturer protocol (Foxp3 anti-mouse/rat Foxp3 staining set; Ebioscience). Briefly, mononuclear cells were first stained with surface molecule Abs and washed with cold PBS. Cells were resuspended in the fix/perm buffer (Ebioscience) and incubated at 4°C overnight in the dark. The next day, cells were first washed in cold PBS and then washed twice in permeabilization buffer (Ebioscience). FC block was then performed using anti-CD16/anti-CD32 Abs (24G2 clone; BD Pharmingen) for 15 min. Anti-mouse/rat Foxp3-PE was next added, and cells were incubated for 30 min. Cells were then washed twice in permeabilization buffer, resuspended in PBS 3% FCS, and analyzed in a FACSCalibur (BD Biosciences).

Mice

Human D0 (HHD2) mice derived from a strain deficient for mouse β2-microglobulin and H-2Dα molecules and transgenic for a chimeric MHC class I molecule, HLA-A0201/D0, linked to the human β2-microglobulin (18), were provided by F. Lemonnier. Female BALB/c (H-2a) wild type were obtained from the “Centre d’ E'levage Janvier” (L’Arbresle, France) and the “Centre d’ E'levage Ifa Credo” (L’Arbresle, France) and maintained in the animal facility of the Gustave Roussy Institute according to the Animal Experimental Ethics Committee Guidelines.

DC culture

Mouse bone marrow-derived DC (BM-DC) were cultured as previously described (1). Briefly, bone marrow progenitor cells were grown in IMDM culture medium (Sigma-Aldrich) supplemented with 50 U/ml penicillin, 50 μg/ml streptomycin, 2 mM l-glutamine, 10% decomplemented FCS (Invitrogen Life Technologies), 50 μM 2-ME (Sigma-Aldrich), and 30% J558-mGM-CSF culture supernatants for 10–12 days. At day 10, BM-DC were propagated in ultrafiltration or ultraconcentrated medium (depleted in serum exosomes) as previously described (1, 19), and at day 12, the culture supernatant was collected for exosome preparation. The phenotype of BM-DC was analyzed by flow cytometry using anti-mouse CD11c, I-Ab, CD80, CD86, and CD40 mAbs (BD Pharmingen), and H-2Kb and H-2Db class I molecule Abs and washed with cold PBS. Cells were resuspended and stained with MA2.1 Ab-containing ascites.

Exosome production, purification, and loading

Exosomes were derived according to a process of ultrafiltration/diafiltration from Lamparski et al. (19). Briefly, 2–4 liters of DC culture medium was microfiltrated (3 μm/0.8 μm) and then ultrafiltered through a 500-kDa filter (final volume of 50 ml). These 50 ml of exosome containing medium was supplemented with up to 1 liter of PBS and a second step of 500–kDa ultrafiltration was performed, leading to a final volume of 20–50 ml. This preparation was ultraconcentrated at 100,000 × g onto a D20/30% sucrose gradient density cushion (d = 1.217 g/cm³). The exosomal pellet recovered in the cushion was diafiltered for sterilization and will be referred to as “DEX” henceforth. To elute the endogenous MHC class I peptides bound to exosomes, 100 μl of exosomes was treated with an equal volume of acetate buffer (pH 5.1), containing the synthetic CTL epitope MelanA/Mart1 at 10 μM at 4°C for 30 min (DEX/Mart1). After such an acidification, the preparation was neutralized with a Tris buffer (pH 11) on ice for 15 min to allow reformation of the trimolecular MHC class I/peptide complexes. Then, unbound peptides and debris were removed using an ultracentrifugation (100,000 × g, 40 min) step on a D20/30% sucrose gradient density cushion. The exosomes recovered in the cushion were subsequently ultraconcentrated (100,000 × g, 1 h). The pellet was resuspended in PBS 1× and stored at −80°C. Unbound peptides could not exceed a final concentration of 1–7 nM (3, 19). The process was similar for the loading of gp100p14.162 and gp100p20.215 or Flu peptide (DEX/gp100; DEX/Flu).

Regulatory T cell purification and MLR

CTX or PBS were injected i.p in HHD2 mice. At day 6, spleen cells were collected. CD4+CD25+ T (Tconv) and CD4+CD25- T (Treg) lymphocytes were purified using a CD4+CD25+ T cell isolation kit (Miltenyi Biotec) according to the manufacturer’s protocol. For MLR cocultures, 1 × 10⁶ Tconv from PBS-treated HHD2 were cultured alone or with 2 × 10⁶ irradiated allogeneic BALB/c splenocytes during 4 days in the presence or absence of CD4+CD25- Treg (derived from CTX or PBS-treated HHD2 mice) at different Tconv to Treg ratio (2:1, 4:1, 8:1, and 16:1). One microliter per well of [3H]Thymidine incorporation was measured by liquid scintillation counting after harvesting the cells on glass fiber filters using an automatic cell harvester (Tomtec). The same procedure was used to purify Treg and Tconv for adoptive transfer in tumor-bearing mice.

Tumor models

B16F10 cotransfected with the human HLA-A2 and gp100 encoding cDNA (B16A2/gp100) was provided by the Department of Tumor Immunology, Center for Molecular Life Science, Radboud University Center, Nijmegen, The Netherlands (Dr. G. Adema). A total of 3 × 10⁶ tumor cells was inoculated at day 0 in the right abdominal flank, and tumor growth was monitored biweekly using a caliper. The murine hepatoma MM45T-Li cell line was given by Dr. J. M. Perron (Liver Unit, Digestive Disease Federation, Clinique Dieulatoy, Centre Hospitalier Régional Universitaire Purpan, Toulouse, France) and used as irrelevant control for in vitro stimulation experiments.

Melana/Mart-1 specific CD8⁺ T cell induction in HHD2 mice

Transgenic mice were immunized in the footpad with 50 μl of the vaccine consisting of either DEX/Mart-1 (10 μg) or Mart-1 peptide (50 μg). When DEX/Mart-1 was admixed with endotoxin-free ODN-CpG oligomeric sequences, the dose of ODN-CpG was 20 μg of ODN-CpG per mouse in a total volume of 50 μl for footpad inoculation.

For priming studies, 2 mg per mouse of CTX was injected i.p. at day 0, followed, at day 6, by inoculation of the vaccines, and mice were sacrificed at day 11 for harvesting of popliteal and inguinal draining lymph nodes (LN). For prime-boost studies, a boost was performed at day 13 with the different vaccines, and mice were sacrificed at day 18 to analyze LN cells. Lymph node and spleen mononuclear cells were first stained with A2/Mart-1 or A2/HIVgag fluorescent (PE) soluble tetramers (0.2 μg), then with anti-CD3 FITC mAb and anti-CD8 APC mAb (BD Pharmingen) and analyzed in a FACSCalibur (BD Biosciences). LN and spleen cells were subjected to in vitro restimulation with Mart1 or irrelevant peptides for 48 h. Supernatants of these cultures were collected at 48–72 h to evaluate IFN-γ in EIA (BD Pharmingen).

Statistical analyses

Results were expressed as means ± SEM, or as ranges when appropriate. Groups were compared by using ANOVA followed by multiple comparisons of means with Fisher’s least significance procedure. When the variables studied were not normally distributed, nonparametric statistical methods were used. The Wilcoxon two-sample rank sum test was used to compare the values of continuous variables between two groups. When three or more groups were compared, the Kruskal-Wallis test was used. Values of p < 0.05 were considered significant at 95% confidence interval.

Results

CTX dramatically enhanced DEX-mediated antitumor effects

We have reported previously that DEX pulsed with HLA-A2.1-restricted synthetic tumor/self peptides (Mart1/gp100) induced the differentiation of primary CD8⁺ Tc1 lymphocytes in HLA-A2 transgenic mice (HHD2) mostly when combined to natural adjuvants (mature DC) or to TLR-3 and -9 ligands (dsRNA or ODN-CpG) (3). gp100 peptides presented by the DEX A2.1 molecules combined to ODN-CpG adjuvants were far more efficient than free peptides to reduce the growth of B16F10 melanoma coexpressing HLA-A2/gp100 in HHD2 mice (3). However, when DEX/gp100 vaccines in ODN-CpG adjuvants were used to immunize the host against bulky B16A2/gp100 tumors, DEX did not exhibit marked effects.
antitumor efficacy (Fig. 1A). Enhanced antitumor effects were achieved by pretreating the tumor-bearing hosts with immunopotentiating dosing of CTX. Indeed, CTX alone also promoted some tumor growth retardation (Fig. 1A), but markedly augmented the DEX/ODN-CpG-mediated antitumor effects against established tumors (Fig. 1A). Pretreatment of tumor-bearing mice with CTX before DEX/CpG vaccines promoted up to 30 ± 10% long-lasting complete tumor eradication (as compared with 10 ± 10% with DEX/ODN-CpG or CTX alone). Tumor-free animals were able to reject rechallenge with 10 times the minimal tumorigenic dose of B16A2/gp100 in 66% of cases, suggesting that long-term protective immune responses can be achieved using DEX/ODN-CpG combined with CTX (data not shown).

It is noteworthy that mafosfamide, the active metabolite compound mediating the alkylating bioactivity of CTX, had no direct cytotoxic effects onto B16A2/gp100 tumor cells in vitro (Fig. 1B), suggesting a noncell autonomous mode of action. Accordingly, CTX could enhance primary (Fig. 1C) and secondary (Fig. 1D) Mart-1 peptide-specific CD8+ T cell responses elicited by DEX/ODN-CpG by 2- and 10-fold, respectively. Furthermore, ODN-CpG were dispensable for the antitumor effects mediated by DEX in combination with CTX. Indeed, DEX/gp100 acquired, in hosts pretreated with CTX, a significant and long-lasting therapeutic efficacy against established B16A2/gp100 tumors (Fig. 2A). In similar settings, substitution of DEX/gp100 by high doses of synthetic gp100 peptides did not induce significant tumor growth retardation in the presence of CTX (Fig. 2B).

Altogether, CTX can boost DEX-mediated antitumor effects in the absence of adjuvants.

CTX inhibited Treg functions in vivo

Because immunopotentiating dosing of CTX is known to decrease absolute numbers and functions of Treg (17), we investigated the capacity of CTX to induce such effects in HHD2 mice bearing established B16A2/gp100 tumors. First, CTX significantly reduced the whole spleen cellularity (75 ± 8.7 × 10⁶ vs 52 ± 10 × 10⁶ in...
PBS- vs CTX-treated mice, respectively, \(p < 0.05 \). Second, CTX significantly decreased the CD4^+CD25^+ to CD4^+ ratio (8 ± 1.2% vs 15 ± 2.6% in CTX- vs PBS-treated mice, respectively, \(p < 0.05 \)). Third, although pathognomonic of Treg function, expression of Foxp3 remained stable on CD4^+CD25^+ cells purified with magnetic beads after treatment with CTX (76.8 vs 74.4% of CD4^+CD25^+ T cells purified from PBS- or CTX-treated mice, respectively, NS) (Fig. 3A). However, CD4^+CD25^+Foxp3^+ cells derived from CTX-treated hosts lost their inhibitory functions in mixed allogeneic reactions in vitro (Fig. 3B).

To confirm that CTX facilitated DEX immunotherapy by eliminating tumor-induced Treg, we adoptively transferred CD4^+CD25^+ Treg derived from naive HHD2 mice into CTX-pretreated tumor-bearing mice before vaccination with DEX. The administration of Treg but not Tconv completely abrogated the therapeutic benefit of the combination of CTX and DEX vaccines, suggesting that Treg were indeed inhibited by CTX (Fig. 3C).

CD8^+ and CD4^+ T cells, but not NK cells, were required for DEX/CTX efficacy

To investigate the role of NK cell effectors in the DEX/CTX-mediated antitumor effects, we depleted HHD2 mice from NK cells using the anti-NK1.1 depleting Ab before vaccination. The combination of DEX/CTX remained efficient at preventing tumor growth in the absence of NK1.1^+ cells (Fig. 4A). In parallel, we failed to show that DEX loaded with an irrelevant CTL epitope (Flu peptides) or unloaded DEX (data not shown) could synergize with CTX to eradicate established tumors (Fig. 4B), suggesting that the therapeutic efficacy of DEX combined with CTX is dependent on HLA-A2-restricted CD8^+ T cells. The role of conventional CD4^+ T cells has also been assessed by treating HHD2 mice with the depleting YTS169 mAb against CD4^+ T cells (which depleted both conventional and Treg). In the absence of CD4^+ lymphocytes, the combination of CTX/DEX was significantly less efficient at preventing tumor growth than in the absence of depletion. It is interesting to note that in the absence of CD4^+ T cells, CTX...
still mediated antitumor effects in addition to DEX, suggesting that
another suppressor cell type is inhibited by CTX (Fig. 4C).

CTX promoted DEX-mediated secondary CD8+ T cell responses
We hypothesized that CTX could either promote the capacity of
DEX to prime naive CD8+ T cells or to boost tumor-primed effec-
tor T cells in vivo. We failed to show that CTX allowed efficient
priming by DEX in the absence of adjuvants. Indeed, in CTX-
treated animals, DEX pulsed with Mart-1 peptides did not elicit the
expansion and differentiation of Mart1-specific CD8+ Tc1 cells in
draining lymph node or spleen, as shown in flow cytometry using
specific Mart1 tetramers and in IFN-γ secretion (Fig. 5).

When CTX and DEX were administered in prophylaxis 3–10
days (data not shown) before tumor inoculation, no synergistic
antitumor effects could be observed (Fig. 6). To formally dem-
strate that CTX enabled DEX to boost secondary CD8+ T cell responses,
we immunized tumor-free hosts with Mart-1 peptides in
adjuvant (ODN-CpG) (at day 0) and challenged mice (at day 12)
using either Mart-1 peptides or DEX/Mart-1 6 days after admin-
istration of CTX (Fig. 7A). Administration of CTX after Mart-1
priming allowed the expansion of Mart1-specific CTLs after a
boost with either Mart-1 peptides (7 ± 0.16% of CD3+CD8+ A2/
Mart1+ cells in draining LN vs 0.5 ± 0.35% in contralateral LN,
p < 0.05) or DEX/Mart1 (4 ± 1.5% in draining LN vs 2.3 ± 0.5% in
contralateral LN, p < 0.05). However, CTLs were able to
produce high amounts of IFN-γ, only when mice were challenged
with DEX/Mart1 but not Mart-1 peptides alone (Fig. 7B). In the
absence of CTX, no CTL differentiation was observed. The DEX
capacity to boost peptide-specific CD8+ Tc1 lymphocytes in
the presence of CTX was not further enhanced by CpG (data not
shown).

This result suggests that in the presence of CTX, DEX can boost
effector T cell functions. Tumor cells should be able to prime spe-
cific effector T cells in vivo. Thus, we confirmed that tumor growth
is able to promote the expansion of tumor-specific T cells because
splenic T cells from tumor-bearing HHD2 mice produced tumor-
specific IFN-γ in mixed B16A2/gp100 tumor lymphocyte cultures
when mice were treated with CTX (Fig. 7C). As expected, no
IFN-γ secretion was observed in PBS-treated animals or when
splenocytes were stimulated with irrelevant tumor cells (Fig. 7C).
Thus, DEX vaccines were able to boost secondary immune re-
sponses primed by tumor growth or peptides in the absence of
functional CD4+ CD25+ Treg cells.

Discussion

These experiments show for the first time 1) the ability of DC-
derived exosomes to boost secondary immune responses induced
by immunogenic tumors or peptides in adjuvants, 2) the inhibitory
effects induced by Treg on DEX-mediated secondary immune re-
sponses, and 3) therefore, the synergistic antitumor effects of the
combination of CTX and DEX.
CTX is an alkylating agent directly cytotoxic on various tumor cell types but also used as an immunosuppressive agent in organ transplants or in the management of rheumatoid arthritis, systemic lupus erythematosus, scleroderma, glomerulonephritis, chronic hepatitis, and other diseases. It is also known for decades that at low doses, CTX exhibits immunopotentiating properties (20–22). In various animal models, CTX augments delayed type hypersensitivity responses (20–22), increases Ab production, abrogates tolerance, and potentiates antitumor immunity (23–28). The mechanism of CTX immunopotentiation involves inhibition of a suppressor function (22). The demonstration has been made that tumor regression caused by the combination of CTX together with immune T cells could be inhibited by infusing CTX-sensitive L3T4\(^{+}\) T cells from tumor-bearing hosts and not normal donors (29, 30). Thus, CTX facilitated the effectiveness of adoptive transfer of immune cells against tumor cells by eliminating tumor-induced suppressor T cells. Moreover, Ibe et al. (31) have also shown that CTX resulted in tumor regression by modulating the capacity of tumor-infiltrating lymphocytes to switch IL-10-producers, leading to destruction of the tumor vasculature. Interestingly, in a model of mouse diabetes depending on Treg and synchronously induced by a single injection of CTX, a time course analysis of the gene expression profiles of purified islet cells using microarrays revealed surprising findings. There was no reduction in the expression of genes characteristic of regulatory T cells but instead, a marked decrease in transcripts of genes specific to B cells followed by an increase in transcripts of chemokine (CXCL1, CXCL5, CCL7) and IFN-\(\gamma\)-regulated genes (32). Thus, the involvement of Treg in CTX-induced immunopotentiation has not been fully demonstrated, specifically during tumor regression. In our model system, we showed a 2-fold decrease in CD4\(^{+}\)CD25\(^{+}\)Foxp3\(^{+}\) to CD4\(^{+}\) ratio in spleens of B16A2/gp100-bearing HHD2 mice 6 days after CTX administration (but not at later time points). It is noteworthy that Foxp3\(^{+}\) Treg are more susceptible to mafosfamide-induced cell death than conventional T cells in vitro (F. Ghiringhelli, unpublished data). We also showed that the suppressive function of purified Foxp3\(^{+}\) Treg was lost 6 days after CTX administration using mixed allogeneic lymphocyte reactions (Fig. 3B), suggesting than molecular events downstream of Foxp3 transcription might influence Treg inhibitory function. Importantly, Treg could curtail the DEX-mediated antitumor effects because adoptively transferred Treg completely abrogated the synergistic tumoricidal activity elicited by CTX plus DEX (Fig. 3C).

Treg can restrict both priming of CD4\(^{+}\) and CD8\(^{+}\) T cell immune responses as well as memory responses. Treg control Th1 responses to foreign Ags induced by mature DC in vivo and contribute to Th2 responses (33). Similarly, CD4\(^{+}\)CD25\(^{+}\) T cells promoted Th2 polarization during helminth infection by suppressing...
the development of Th1 responses (34). In tumor settings, a critical role of Treg to prevent elicitation of tumor-specific immunity in various tumor models has been described (7, 13). Depletion of CD4⁺CD25⁺ T cells enhanced the strength of memory CD8⁺ T cell responses elicited after secondary *Listeria monocytogenes* infection or after boost immunization with LLO peptides or a DNA vaccine containing the listeriolysin gene (35). Suvas et al. (36) also showed, in a model of HSV1 viral infection, that depletion of Treg prolonged the maintenance of responding CD8⁺ T cells. Preclinical studies in mice using DEX loaded with tumor peptides highlighted the priming capacity of these nanomeric vesicles harboring MHC class I/peptide complexes only in the presence of mature bone marrow DC or TLR-3 and -9 ligands (3). In this study, we show that, in the absence of adjuvants, DEX can boost peptide-induced CD8⁺ Tc1 immune responses (Fig. 7) and presumably tumor-induced CD8⁺ T cell responses (Fig. 7). This study clearly demonstrates that both primary immune responses induced by DEX/ODN-CpG and secondary immune responses induced by DEX alone are controlled by Treg, limiting the antitumor efficacy of the DEX vaccines in tumor-bearing hosts. Indeed, the combinations of DEX/CTX or DEX/CTX/ODN-CpG were efficient at promoting up to 30% tumor eradication and marked tumor growth retardation in most animals. However, ODN-CpG did not add any clinical benefit in the presence of CTX. This is surprising because suppressor T cells restrict the ability of DEX/ODN-CpG to induce expansion of peptide-specific primary and secondary CD8⁺ T cell immune responses. Indeed, CTX could enhance by 2-fold (priming experiment) to 10-fold (prime boost experiment) the number of T cells binding to specific tetramers in draining lymph nodes of normal mice (Fig. 1C). It is possible that CpG might have induced the development of Treg in the B16 tumor model. Indeed, TLR-9 stimulation could promote plasmacytoid DC-mediated generation of Treg exhibiting strong immune suppressive function (37). Similarly, Treg are not only induced by viral infection (36) and tumor growth (9, 10) but also by active immunization as reported in clinical studies (38, 39). Supporting this view, investigators showed that DC from autoimmune mice can increase the number and function of Ag-specific Treg (40). Whether DEX could also induce Treg remains to be determined and compared with alternate vaccine strategies. However, IL-2 and/or strong CD4⁺ Th responses generated by tumor vaccines could overcome the deleterious suppressive effects of Treg (13, 39).

It is important to bear in mind that vaccine strategies might not prime naive T cells but rather boost preexisting CD4⁺ and CD8⁺

FIGURE 7. CTX allowed DEX-mediated secondary immune responses. A, Experimental setting. Mice were primed with Mart-1 peptides (50 µg/mouse) in ODN-CpG adjuvants (20 µg/mouse) at day 0. At day 6, CTX (2 mg/mouse) or PBS was administered i.p. At day 13, a boost consisting of either 50 µg of Mart-1 peptides or 10 µg of DEX/Mart1 was inoculated. B, DEX, but not synthetic peptides, boost secondary immune responses elicited by peptides/ODN-CpG in CTX-treated mice. At day 18, LN or spleen mononuclear cells were harvested for in vitro stimulation with or without Mart-1 peptides. Dosage of IFN-γ was performed in the culture supernatant 48 h later. *p < 0.05 as compared with cells from PBS-treated mice and cells from Mart-1-vaccinated mice. C, Tumor cells elicited tumor-specific T cells. A total of 3 × 10⁶ B16A2/gp100 tumor cells was injected at day 0 in the right abdominal flank; at day 6, PBS or CTX was injected i.p. to mice (five mice per group); at day 12, mice were sacrificed. Spleen cells were then harvested alone or in the presence of irradiated B16 or irrelevant tumor cell line MMTLi or medium alone. Dosage of IFN-γ was performed in the culture supernatant 48 h later. *p < 0.05 as compared with all PBS-treated groups and medium and MMTLi CTX-treated groups.
T cell responses elicited by the tumour-host itself. Several lines of evidence point to the natural immunogenicity of certain tumour types that could be revealed after immunotherapy (41). Our data clearly indicate that tumour-induced priming is required for the efficacy of DEX/CTX (Fig. 7). However, the mechanisms by which DEX/CTX switched the balance from tumour-induced tolerance towards tumour-induced immunogenicity remains unclear. It is conceivable that in the absence of functional Treg, effector CD4+ T cells might activate tumour-infiltrating DC through a CD40L-dependent pathway (42, 43). In this scenario, DEX could be efficiently presented by mature DC and promote T cell activation (3).

Preliminary studies using oral administration of low doses of CTX in cancer-bearing patients suggest the possibility to inhibit Treg functions (our unpublished data) in vivo. Our data suggest that the combination of DEX and CTX represents a valuable combination therapy for immunotherapy against cancer.

Disclosures

The authors have no financial conflict of interest.

References

CORRECTIONS

In Results, in the penultimate sentence of the second paragraph under the heading A Gly-Gly motif is conserved within the CDR3 of lymph node T cell hybridomas, reference to Figure 7a and 7b are reversed. The corrected sentence is shown below.

The lymph node TCR contains a rigid loop with an extended planar surface (Fig. 7b), whereas the splenic Th1 TCR presents a round shape with a less extended surface (Fig. 7a).

The tenth author’s last name is incorrect. The correct name is Guillaume Darrasse-Jèze.

In Table II, the data reported for GA2–3b in column six (∆rmlD spores) should be negative (−) not 2-log shift (++). The corrected table is shown below.

Table II. mAbs raised against irradiated B. anthracis spores or purified B. anthracis exosporium

<table>
<thead>
<tr>
<th>mAbs</th>
<th>Western Anti-E. coli Bc1A</th>
<th>Western Anti-Deglyco, Bc1A</th>
<th>FACS WT Sterne spores</th>
<th>FACS Δbc1A spores</th>
<th>FACS ΔrmlD spores</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB2</td>
<td>ND*</td>
<td>ND</td>
<td>+</td>
<td>−</td>
<td>++</td>
</tr>
<tr>
<td>AF10</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>++</td>
</tr>
<tr>
<td>AE1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>++</td>
</tr>
<tr>
<td>BD8</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>++</td>
</tr>
<tr>
<td>BE12</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>++</td>
</tr>
<tr>
<td>BF1-4</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>++</td>
</tr>
<tr>
<td>BF12</td>
<td>ND</td>
<td>ND</td>
<td>+</td>
<td>−</td>
<td>++</td>
</tr>
<tr>
<td>BG11</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>++</td>
</tr>
<tr>
<td>CA3*</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>++</td>
</tr>
<tr>
<td>DE3-1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>++</td>
</tr>
<tr>
<td>DE12</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>++</td>
</tr>
<tr>
<td>FD3-4</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>++</td>
</tr>
<tr>
<td>EF12</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>++</td>
</tr>
<tr>
<td>AA2-1</td>
<td>ND</td>
<td>ND</td>
<td>+</td>
<td>−</td>
<td>++</td>
</tr>
<tr>
<td>BA10-1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>++</td>
</tr>
<tr>
<td>DA1</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>++</td>
</tr>
<tr>
<td>EA2-1</td>
<td>ND</td>
<td>ND</td>
<td>+</td>
<td>−</td>
<td>++</td>
</tr>
<tr>
<td>EA4-10</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>++</td>
</tr>
<tr>
<td>EA4-10-4</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>++</td>
</tr>
<tr>
<td>EG4-4</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>++</td>
</tr>
<tr>
<td>FH6-1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>++</td>
</tr>
<tr>
<td>GA2-3</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>++</td>
</tr>
<tr>
<td>GB4</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>++</td>
</tr>
<tr>
<td>GB4-6-2</td>
<td>ND</td>
<td>ND</td>
<td>+</td>
<td>−</td>
<td>++</td>
</tr>
<tr>
<td>HB2-2</td>
<td>ND</td>
<td>ND</td>
<td>+</td>
<td>−</td>
<td>++</td>
</tr>
<tr>
<td>IC801</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>++</td>
</tr>
<tr>
<td>JB5-1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>++</td>
</tr>
<tr>
<td>JCS-5</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>++</td>
</tr>
</tbody>
</table>

*ND, Not determined, −, negative by Western or FACS; +, positive by Western or 1-log shift by FACS; ++, 2-log shift by FACS ABS-EF12, mAbs raised against spores; AA2-1-JC8-5, mAbs and raised against exosporium.

bIncluded in Ref. 9.
In Results, in the last sentence of the paragraph under the heading CCL18 is up-regulated in BAL and sera from AA patients, and in Figure 4C, the concentration of serum CCL18 is expressed incorrectly as “pg/ml” instead of “ng/ml.” The corrected sentence and figure are shown below.

CCL18 was significantly elevated in AA (73.9 ± 11.2 ng/ml) compared with NA (31.7 ± 5 ng/ml) subjects (Fig. 4C).

The third author’s first name is incorrect. The correct name is Kaihong Su.

During production, the figure from an unrelated article was inadvertently inserted as the image for Figure 8. The correct figure is shown below. The error has been corrected in the online version, which now differs from the print version as originally published.