In Vitro and In Situ Expression of IL-23 by Keratinocytes in Healthy Skin and Psoriasis Lesions: Enhanced Expression in Psoriatic Skin

Gamze Piskin, Regien M. R. Sylva-Steenland, Jan D. Bos and Marcel B. M. Teunissen

J Immunol 2006; 176:1908-1915; doi: 10.4049/jimmunol.176.3.1908

http://www.jimmunol.org/content/176/3/1908

References This article cites 40 articles, 13 of which you can access for free at: http://www.jimmunol.org/content/176/3/1908.full#ref-list-1

Subscription Information about subscribing to *The Journal of Immunology* is online at: http://jimmunol.org/subscription

Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts
In Vitro and In Situ Expression of IL-23 by Keratinocytes in Healthy Skin and Psoriasis Lesions: Enhanced Expression in Psoriatic Skin

Gamze Piskin,1 Regien M. R. Sylva-Steenland, Jan D. Bos, and Marcel B. M. Teunissen

Keratinocytes contribute to cutaneous immune responses through the expression of cytokines. We investigated whether human keratinocytes can express IL-23, a newly defined IFN-γ-inducing cytokine composed of a unique p19 subunit and a p40 subunit shared with IL-12. Cultured keratinocytes from normal and lesional psoriatic skin were found to express constitutively mRNA for both subunits of IL-23. Low but significant levels of the heterodimeric IL-23 protein could be detected in cell lysates and supernatants from stimulated keratinocytes by immunoblotting and ELISA. Functional analysis showed that these low levels of keratinocyte-derived IL-23 were sufficient to enhance the IFN-γ production by memory T cells. Immunostaining of skin sections confirmed expression of both subunits of IL-23 by keratinocytes in situ and also revealed expression of this cytokine in the dermal compartment. IL-23 expression was significantly higher in psoriatic lesional skin, compared with normal and psoriatic nonlesional skin. The immunostained preparations of cultured cells and IL-23 levels in culture supernatants did not show any difference between normal and psoriatic keratinocytes indicating no intrinsic aberration of IL-23 expression in keratinocytes from psoriatic skin. Double staining of cytospin preparations demonstrated that IL-23 p19 is also expressed by epidermal Langerhans cells, dermal dendritic cells, and macrophages. Psoriasis is a chronic inflammatory skin disease mediated by IFN-γ-expressing type 1 memory T cells. As IL-23 is important to activate memory T cells to produce IFN-γ, its augmented expression of IL-23 by keratinocytes and cutaneous APC may contribute to the perpetuation of the inflammation process in this disease. The Journal of Immunology, 2006, 176: 1908–1915.

The skin is the main organ connecting the body to the potentially harmful environment. To achieve homeostasis and to defend the body against microbial invaders, it serves not only as a physical barrier, but is also equipped with numerous immunological functions collectively called the skin immune system (1). In addition to the well-known immunocompetent cells, which traffic into and out of the skin (e.g., dendritic cells (DC) and T cells), keratinocytes, as the main constituent of the epidermis, also have an important contribution to the development of optimal cutaneous immune responses. Keratinocytes can, constitutively or after stimulation, produce many cytokines as reviewed elsewhere (2). Physical, chemical, and pathogenic triggers induce keratinocytes to secrete proinflammatory cytokines, such as IL-1β and TNF-α, resulting in autoactivation of these cells to produce other inflammatory cytokines and chemokines. The proinflammatory cytokines may also activate other cells in the skin, such as DC, which start to mature and migrate to lymph nodes inducing adaptive immunity (3).

Expression of type 1 cytokines is crucial for defense against intracellular microorganisms and for development of delayed-type hypersensitivity reactions. Type 1 T cells produce IFN-γ, the principal mediator of subsequent type 1-associated immune responses. Expression of IFN-γ is strictly regulated by other cytokines (4): IL-12 was initially identified as an inducer of IFN-γ expression (5); subsequently, several other cytokines were also found to contribute to this regulation, namely IL-15, IL-18, IL-21, IL-23, and IL-27, which act separately or in combination to induce type 1 cytokine responses (4, 6). Within this group of IFN-γ-inducing cytokines, IL-23 and IL-27 exhibit structural and functional similarities to IL-12. However, they differ in the timing of their contribution to the type 1 responses; IL-27 is known to be important in the early expansion of naïve T cells and IFN-γ expression by these cells, whereas IL-23 only acts on memory T cells to induce IFN-γ expression, suggesting that IL-23 might be important in the maintenance of immune responses (4). The IL-23 heterodimer is formed by the combination of the p19 and p40 subunits and possesses the most structural similarity to IL-12, compared with other IFN-γ-inducers. The p40 subunit of IL-23 is shared with IL-12, whereas the unique IL-23 p19 molecule resembles to the IL-12-specific p35 subunit. In addition to their structural similarity, IL-12 and IL-23 both act through specific receptors that share a common IL-12Rβ1 chain (7). Human keratinocytes produce both subunits of the IL-12 heterodimer, allowing these cells to promote type 1 T cell responses (8); however, it is as yet not known whether keratinocytes also express the IL-23 p19 subunit.

It has been suggested that the expression of IL-12 might play an important role in certain inflammatory skin diseases (9, 10). Psoriasis vulgaris is a chronic inflammatory type 1 cytokine-related cutaneous disease, which is characterized by infiltrates of activated memory T cells that have a high IFN-γ expression (11). An enhanced expression of IL-12 mRNA and protein was found in psoriatic lesional skin, compared with nonlesional and normal skin, and a causative relationship to the high IFN-γ expression in lesional skin was suggested (12). Considering that IL-23, not IL-12,
preferentially activates memory T cells (7) and the fact that activated proliferating memory T cells are abundantly present in psoriasis lesions (13), we proposed that IL-23 rather than IL-12 would play a major role in the sustained inflammatory reaction taking place in psoriasis plaques. This consideration prompted us to investigate the expression of IL-23 p19 in normal and lesional psoriatic skin. Special attention was paid to keratinocytes because mutual interaction and activation of keratinocytes and T cells is thought to be responsible for the perpetuation of the inflammatory process in the psoriatic lesions (14).

In this study, we show that human keratinocytes constitutively express mRNA for the two subunits of IL-23 and demonstrate that these cells are able to secrete the IL-23 heterodimer, which turned out to enhance the IFN-γ expression by memory T cells. Specific staining for IL-23 in cryostat sections confirmed the expression of this cytokine by keratinocytes in situ, and furthermore, IL-23 expression appeared to be significantly stronger in psoriatic skin compared with normal skin. Double-staining experiments indicated that Langerhans cells, dermal DC, and macrophages can also express IL-23.

Materials and Methods

Skin biopsy and isolation of keratinocytes

Skin biopsy specimens (5 mm) were obtained from patients with chronic plaque-type psoriasis (16 lesional and 10 nonlesional biopsy samples) and from normal skin of individuals (n = 13) who had an operation for abdominal or breast reduction. The study was approved by the Medical Ethical Committee of the Academic Medical Center (Amsterdam, The Netherlands). These specimens were either snap frozen for in situ stainings or processed in the form of 80 μm sections and saved at 80°C until use.

Assessment of the biological activity of keratinocyte-derived IL-23

T cells from peripheral blood of healthy donors were obtained by negative selection by means of a CD4 T cell isolation kit and an autoMACS instrument from Miltenyi Biotec according to the manufacturer’s protocol. Cells suspended in IMDM with 10% FCS were plated at a density of 10^6 per well and a 96-well plate (final volume, 200 μl/well) and were stimulated with plate-bound anti-CD3 plus anti-CD28. After 10 days, the memory T cells were harvested and subjected to a second round of similar stimulation, this time seeded in triplicate in the absence or presence of 10 ng/ml rIL-23 or 5% of concentrated supernatant from stimulated keratinocytes, using the monoclonal mouse anti-human IL-12 p70 (R&D Systems) to block the IL-23 heterodimer, but neither the IL-12 heterodimer nor the common p40 subunit, was detectable by this ELISA (data not shown) with a detection limit of 300 pg/ml.

Immunohistochemical staining

Immunohistochemical staining was performed to determine the expressions of the p19 subunit of IL-23, the common IL-12/IL-23 p40 subunit, and the IL-12 p70 heterodimer in 5-μm sections, keratinocytes cultured on object glass, and cytospin preparations from epidermal and dermal cell suspensions. Primary Abs were polyclonal rabbit anti-human IL-23 p19 (purchased from Millipore) and a gift of Dr. P. Lane, National Public Health Institute, Helsinki, Finland) for 18 h at 4°C. The specificity of this Ab was tested in an earlier study (17). The membrane was washed with PBS and 5% milk. After incubation with peroxidase-conjugated goat anti-rabbit IgG (DakoCytomation) for 60 min at room temperature, specific protein bands in the filter were visualized by the ECL Plus Western Blotting Detection System (Amersham Biosciences) and detected by a fluorescence imager (Typhoon 9400; Amersham Biosciences).

Determination of the IL-23 heterodimer by ELISA

The amount of IL-23 protein in the supernatants from keratinocytes and MoDC and in keratinocyte cultures was determined by a solid-phase sandwich ELISA using polyclonal goat anti-human IL-23 p19 (R&D Systems) as the coating Ab and biotin-conjugated monoclonal mouse anti-human IL-12/IL-23 p40 (BD Pharmingen) as the detecting Ab. Hence, this ELISA detects only the heterodimer form of IL-23, but not the separate subunits. Specificity of the ELISA was tested by using recombinant human IL-23 heterodimer (R&D Systems), IL-12 heterodimer (Strathmann Biotec), and IL-12/IL-23 p40 subunit (BioSource International). Only the rIL-23 heterodimer, but neither the IL-12 heterodimer nor the common p40 subunit, was detectable by this ELISA (data not shown) with a detection limit of 300 pg/ml.

PCR analysis

Total RNA was purified from cultured unstimulated keratinocytes by using the Nucleospin RNA II kit (Macherey-Nagel) following the manufacturer’s instructions. First strand cDNA was generated with help of a synthesis kit for RT-PCR (MBI Fermentas), using 9 μl of total RNA, 1 μl of oligo(dT)18, and 1 μl of D(N)4, and heating the mix at 94°C for 5 min. The primers used were: IL-23 p19 (forward) 5′-TCG GCA CGA GAA CAA CAT CG 3′, (reverse) ACA TCA TCT TTT GGA TGC GTC 3′; IL-23 p40 (forward) 5′-AAG AGA CCA GAC TGC CGG G-3′, (reverse) TGG GGA ACA TCA TTT GTA GTC T-3′; and 12 p35 (forward) 5′-AAG AGA CCA GAC TGC CGG G-3′, (reverse) GGA GCA TGT TGC TGA CGG C-3′ defining a 311-bp product; IL-12/IL-23 p40 (forward) 5′-ATT GAC GTG ATG GTG ATG GC-3′, (reverse) 5′-AAT GCT GGC ATT TTT GGC GC-3′ defining a 297-bp product; and β2-microglobulin (forward) 5′-AAG ATT CAG GGT TAC TCA CGT C-3′, (reverse) 5′-TGA TGC TGG TTA CAT GTC TGC-3′. The PCR protocol was as follows: start with a 3 min incubation at 94°C, followed by 45 cycles of sequential incubations at 94°C for 30 s, 60°C for 30 s, and 72°C for 1 min. Analysis of the PCR products was done on a 1% agarose gel containing ethidium bromide. A 100-bp DNA ladder standard (MBI Fermentas) was used as a size marker.

The supernatant from stimulated keratinocytes was concentrated 20-fold by means of centrifugation (Millipore), whereas adherent keratinocytes (~2 × 10^6) were washed once with PBS before the cells were lysed in 150 μl of PBS by freeze/thaw. The 25 μl of the supernatant and cell lysate was loaded onto a 12% polyacrylamide gel (Bio-Rad) and separated by electrophoresis under reducing and nonreducing conditions. Next the separated proteins were transferred onto a nitrocellulose membrane (Schleicher & Schuell). Recombinant human IL-23 (R&D Systems) was used as a positive control and recombinant prestained proteins of known molecular mass (Bio-Rad) were included to enable the estimation of the molecular mass of our specific IL-23 signal. Before incubating the nitrocellulose membrane with polyclonal rabbit anti-human IL-23 p19 (a gift of Dr. J. Pirhonen, National Public Health Institute, Helsinki, Finland) for 1 h at 4°C. For the determination of the IL-23 heterodimer by ELISA. The supernatant from stimulated keratinocytes and MoDC and in keratinocyte cultures was determined by a solid-phase sandwich ELISA using polyclonal goat anti-human IL-23 p19 (R&D Systems) as the coating Ab and biotin-conjugated monoclonal mouse anti-human IL-12/IL-23 p40 (BD Pharmingen) as the detecting Ab. Hence, this ELISA detects only the heterodimer form of IL-23, but not the separate subunits. Specificity of the ELISA was tested by using recombinant human IL-23 heterodimer (R&D Systems), IL-12 heterodimer (Strathmann Biotec), and IL-12/IL-23 p40 subunit (BioSource International). Only the rIL-23 heterodimer, but neither the IL-12 heterodimer nor the common p40 subunit, was detectable by this ELISA (data not shown) with a detection limit of 300 pg/ml.
mRNA integrity was controlled by amplification of the IL-23 p19 and IL-12/IL-23 p40 subunits, indicating that these cell types constitutively express the two subunits of IL-23. In addition, we also demonstrated the constitutive presence of IL-12 p35 mRNA, confirming earlier studies (12, 19, 20).

Normal human keratinocytes express the IL-23 heterodimer

The RT-PCR analysis clearly revealed that keratinocytes can synthesize the mRNA for both subunits of IL-23. As a next step we wanted to determine whether these cells were able to produce these subunits at the protein level and to combine them to form the heterodimeric IL-23. The cell lysate and supernatant of stimulated normal keratinocytes were subjected to Western blot analysis, using a polyclonal rabbit Ab that is specific for IL-23 p19. In non-reduced samples, we detected a protein with a molecular mass of ~60 kDa (Fig. 2, top), which probably represents a complex composed of the p19 and p40 subunits of IL-23 and is in line with an earlier study using the same Ab (21). In the reduced samples, p19 was detectable both in the recombinant and the keratinocyte samples (Fig. 2, bottom).

Immature MoDC, a potentially rich source of IL-23, were stimulated with several different stimuli, either alone or in combination, to determine which stimulus is most powerful to provoke IL-23 production. For this purpose, we designed a specific ELISA that only detects IL-23 heterodimers. As shown in Fig. 3a, no IL-23 could be detected in supernatants of unstimulated cells. Triggering via the CD40 molecule present on the cell surface induced IL-23, whereas peptidoglycan and poly(I:C) did not. Costimulation with IL-1β resulted in an enhanced IL-23 secretion by immature MoDC. The highest expression was achieved by a combination of J558-CD40L cells, peptidoglycan, poly(I:C), IFN-γ, and IL-1β (Fig. 3a). Because this mixture of stimuli gave the strongest expression of IL-23 in MoDC, we used it to stimulate keratinocytes. In contrast to the high production of IL-23 by MoDC, we found a low but significant amount of the IL-23 heterodimer in the supernatants of stimulated keratinocytes when the supernatant was concentrated 40- to 70-fold (Fig. 3b). On the cell basis, this expression was ~1000-fold lower than in MoDC used to set up the detection system. The level of IL-23 production by keratinocytes from normal human skin or from lesional psoriatic skin appeared to be comparable.

Keratinocyte-derived IL-23 stimulates IFN-γ production in memory T cells

In the next series of experiments we questioned whether the low amount of IL-23 produced by keratinocytes was sufficient to affect
the IFN-γ production by memory T cells. To this end, we set up a T cell stimulation assay in which the IFN-γ production could be enhanced by addition of rIL-23, and neutralization of this effect could be achieved with anti-IL-23 (Fig. 4). Addition of concentrated supernatant from activated keratinocytes to the CD3/CD28-stimulated memory T cells provoked an enormous boost in the IFN-γ production (n = 2). This amplification could only partially be blocked with anti-IL-23 (Fig. 4). The isotype control mouse IgG2b did not significantly affect the IFN-γ production (Fig. 4), nor did the concentrated keratinocyte culture medium or the mixture used to stimulate the keratinocytes (data not shown). These results indicate that the keratinocyte-derived IL-23 is biologically active, and in addition, that other IFN-γ promoting cytokines are secreted by keratinocytes.

Expression of p19 and p40 subunits of IL-23 at protein level in keratinocytes

To further substantiate the evidence that human keratinocytes are able to express IL-23, we cultured keratinocytes from normal (n = 3), lesional psoriatic skin (n = 3), and nonlesional psoriatic skin (n = 3) on object glasses and subsequently stained them with Abs recognizing the unique p19 subunit or the common p40 subunit of IL-23. For reasons of comparison, we stained the cells for the presence of the p70 heterodimer of IL-12 as well. The IL-23 p19 subunit was expressed in normal, lesional, and nonlesional psoriatic keratinocytes at comparable levels (Fig. 5, a–c). The staining was stronger in small and round cells than in big cells with abundant cytoplasm, suggesting that the p19 expression was more prominent in the undifferentiated keratinocytes. Staining with the p40 Ab revealed a similar picture as the staining with the IL-23 p19 Ab (Fig. 5, d–f). However, IL-12 p70 expression, which represents the biologically active form of IL-12, was seen only in a few cells in normal and in lesional or nonlesional psoriatic keratinocytes (Fig. 5, g–i). Polyclonal rabbit Factor XIIIa Ab, which is used as a control for the polyclonal rabbit p19 Ab, did not show any staining in the keratinocytes (data not shown).

In situ expression of the IL-23 p19 subunit in skin

To confirm the expression and localization of IL-23 in situ, we stained normal (n = 7), nonlesional (n = 5), and lesional (n = 10) psoriatic skin sections with the IL-23 p19-specific rabbit polyclonal Ab. The expression of the p19 subunit in the epidermis of psoriatic lesional skin was diffuse and very strong, whereas in the dermis, perivascular cells abundantly expressed this molecule (Fig. 6a). In contrast, in normal human skin the IL-23 p19 expression in the epidermis was much weaker and in the dermis this expression was present in only a limited number of cells, mainly around the capillaries (Fig. 6c). The control stainings with Factor XIIIa, known to be specifically expressed by dermal DC, revealed a completely different staining pattern, showing positive cells in the papillary and superficial dermis and no positive cells in the epidermis.
In addition, the staining with IL-23 p19-specific polyclonal goat Ab showed the same distribution pattern and intensity of p19 as obtained with the rabbit polyclonal Ab (data not shown). The expression of IL-23 p19 in normal, nonlesional, and lesional psoriatic skin was scored in arbitrary units and was summarized in Fig. 7. Statistical analysis of these values indicates that lesional psoriatic skin had a significantly higher expression of IL-23 than normal skin and nonlesional psoriatic skin. The expression of IL-23 p19 in normal vs nonlesional psoriatic skin did not differ significantly. These results are different from the staining pattern seen in the preparations of cultured keratinocytes that showed a similar level of p19 expression in lesional, nonlesional, and normal skin. This discrepancy might be caused by the induction of IL-23 p19 expression during in vitro processing and culturing of keratinocytes.

Identification of IL-23 p19 expressing epidermal and dermal cells

In the following experiments, we wanted to determine which cell types were responsible for the in situ expression of IL-23 p19 in the epidermis and dermis. Cytospin preparations of freshly isolated epidermal and dermal cells from normal skin were double-stained with IL-23 p19 and different cell markers. Concerning the epidermal compartment, double staining with p19 and CD1a revealed that Langerhans cells expressed IL-23 (Fig. 8a). Double staining with p19 and HMB45 indicated that melanocytes were not able to produce IL-23 (Fig. 8b). In dermal cell suspensions, IL-23 p19 expression colocalized with cells that displayed CD1c (Fig. 8c), CD36 (Fig. 8d), and HLA-DR (Fig. 8e). Few CD3+ T cells also expressed this cytokine (Fig. 8f). CD83+ cells were quite low in number, but stained for IL-23 p19 (Fig. 8g). There were no CD15+ polymorphonuclear cells present in the dermal cell suspension (data not shown).

Discussion

In this study, we demonstrated that human keratinocytes constitutively express mRNA for the p19 and p40 subunits of IL-23 and synthesize the heterodimer protein of ~60 kDa, which is the biologically active form of this cytokine. By means of ELISA we showed that human keratinocytes can secrete low but significant levels of IL-23, and functional analysis proved that these low levels of keratinocyte-derived IL-23 are biologically active and sufficient to amplify the IFN-γ production by memory T cells. These results not only support the view that keratinocytes contribute to cutaneous inflammation but also indicate that they can enhance type 1 immune responses through the expression of IL-23.

FIGURE 6. Expression of IL-23 p19 in normal and lesional psoriatic skin in situ. Immunohistochemical staining of skin sections with polyclonal rabbit anti-IL-23 p19 showed a diffuse positive staining pattern in the epidermis. The epidermis in lesional psoriatic skin (a) stained markedly stronger than the epidermis in normal skin (c) and the number of positive dermal cells were higher in psoriatic than in normal dermal skin. Staining of psoriatic (b) and normal (d) skin sections with polyclonal rabbit antihuman Factor XIIIa Ab (detecting dermal DC) was performed as a control for the p19 staining (original magnification, ×200).
We found that a powerful stimulation for IL-23 production by MoDC was provided via CD40 triggering, and this effect was enhanced by IFN-γ and in particular IL-1β. This kind of stimulation may also be biologically relevant for keratinocytes, because, like DC, they also express CD40, enabling them to interact with CD40L-expressing T cells (22, 23). IL-1β and IFN-γ are known to induce CD40 expression on DC (24, 25), whereas IFN-γ, but not IL-1β, increases the expression of CD40 by keratinocytes (26). Further, IFN-γ also stimulates expression of IL-1β by keratinocytes (27). Although it is clear that triggering by CD40L, IFN-γ, and IL-1β are appropriate stimuli for immature MoDC to produce IL-23, it cannot be excluded that other kind of costimuli are needed to boost IL-23 production by keratinocytes. In contrast, one can imagine that keratinocytes only produce low levels of IL-23 because robust secretion by the epidermal layer would be harmful, as will be discussed below.

Keratinocytes in lesional psoriatic skin expressed markedly higher levels of IL-23 compared with keratinocytes in normal skin. In a separate study we found that after successful narrow-band UV B irradiation therapy, a common treatment for moderate to severe psoriasis, the elevated levels of IL-23 were reduced to levels found in normal skin or in nonlesional skin (17). The increased expression of this cytokine in the epidermis of psoriatic lesions does not seem to be an intrinsic aberration of the keratinocytes because cultured keratinocytes from normal skin and from nonlesional and lesional psoriatic skin display similar IL-23 staining by immunohistochemistry and secrete comparable levels of IL-23. The enhanced expression of IL-23 in psoriatic lesional keratinocytes in situ is likely to be induced by cells in their neighborhood, perhaps the activated memory T cells within the infiltrate. A key role of cutaneous T cells in the induction of psoriatic lesions is underlined in a recent study in which symptomless skin of patients with psoriasis was grafted onto immunodeficient mice lacking T cells, B cells, and NK cells (28). It appeared that due to the local proliferation of donor T cells in the transplanted skin the graft transformed into a psoriatic lesion.

The importance of IL-23 in immune responses in vivo has been clearly demonstrated in mice; IL-23-deficient mice display severely compromised T cell-dependent humoral immunity and strongly impaired delayed-type hypersensitivity responses (29). The lack of IL-23 could apparently not be compensated by endogenous IL-12, indicating that IL-23 is critical for memory T cell responses in vivo. In contrast, T cell priming is not impaired in these animals and normal levels of memory T cells are present. Interestingly, IL-23-deficient mice show a clear reduction in IL-17 production (29), which matches with the finding that IL-23, but not IL-12, is a potent inducer of the proinflammatory cytokine IL-17 in both CD4+ and CD8+ T cells (30, 31). In addition, the IL-23-deficient animals phenotypically resemble IL-17-deficient mice (29, 32). In contrast to IL-23 deficiency, engineered systemic overexpression of IL-23, as present in transgenic p19 mice, causes

FIGURE 7. Significantly stronger expression of IL-23 in psoriasis lesional skin. Normal human (n = 7) and lesional psoriatic (n = 10) and nonlesional skin (n = 5) sections were stained for IL-23 p19 and the specific staining was scored in epidermis (a) and dermis (b). Significant difference (*, p < 0.05; **, p = 0.001) shown.

FIGURE 8. Identification of the IL-23 p19-expressing cells. Cytospin preparations of fresh epidermal and dermal cell suspensions were stained for IL-23 p19 (red) and several different cell markers (blue). The staining of the epidermal cells revealed that beside keratinocytes, the major group of epidermal cells expressing IL-23 p19, CD1a+ Langerhans cells expressed this subunit as well (a). HMB45+ melanocytes did not show costaining with the IL-23 p19 subunit (b). Most IL-23 p19 subunit expression in the dermis was present in DC and macrophages as identified by the expression of surface markers CD1c (c), CD36 (d) and HLA-DR (e). Approximately one-fifth of CD3+ T cells (f) expressed IL-23 p19 as well. The few CD83+ DC (g) in cytospin preparations of dermal cells were mostly IL-23 p19 positive. Thick arrows indicate double-positive cells and thin arrows single-positive cells (original magnification, ×400). Double-positive cells (inset) are shown.
IL-23 EXPRESSION BY KERATINOCYTES

Acknowledgments

We thank R. Westland for performing the PCR analysis, A. Versnick for help during the inclusion of psoriasis patients, and Dr. Clare Bennett for the critical reading of the manuscript.

Disclosures

The authors have no financial conflict of interest.

References

