Maintenance of HIV-Specific CD4+ T Cell Help Distinguishes HIV-2 from HIV-1 Infection

J Immunol 2006; 176:6973-6981; doi: 10.4049/jimmunol.176.11.6973

http://www.jimmunol.org/content/176/11/6973
Maintenance of HIV-Specific CD4+ T Cell Help Distinguishes HIV-2 from HIV-1 Infection

Unlike HIV-1-infected people, most HIV-2-infected subjects maintain a healthy CD4+ T cell count and a strong HIV-specific CD4+ T cell response. To define the cellular immunological correlates of good prognosis in HIV-2 infection, we conducted a cross-sectional study of HIV Gag-specific T cell function in HIV-1- and HIV-2-infected Gambians. Using cytokine flow cytometry and lymphoproliferation assays, we show that HIV-specific CD4+ T cells from HIV-2-infected individuals maintained proliferative capacity, were not terminally differentiated (CD57-), and more frequently produced IFN-γ or IL-2 than CD4+ T cells from HIV-1-infected donors. Polyfunctional (IFN-γ/IL-2-) HIV-specific CD4+ T cells were found exclusively in HIV-2+ donors. The disparity in CD4+ T cell responses between asymptomatic HIV-1- and HIV-2-infected subjects was not associated with differences in the proliferative capacity of HIV-specific CD8+ T cells. This study demonstrates that HIV-2-infected donors have a well-preserved and functionally heterogeneous HIV-specific memory CD4+ T cell response that is associated with delayed disease progression in the majority of infected people. The Journal of Immunology, 2006, 176: 6973–6981.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 This work was supported by the Medical Research Council (U.K.).

2 Address correspondence and reprint requests to Prof. Sarah L. Rowland-Jones, Director of Research, MRC Laboratories, P.O. Box 273, Banjul, The Gambia. E-mail address: rowland-jones@mrc.gm

3 Abbreviations used in this paper: LTNP, long-term nonprogressor; ICS, intracellular cytokine staining; ART, antiretroviral therapy; SEB, staphylococcal enterotoxin B.
HIV-specific CD4+ and CD8+ T cells. We show that nonprogression in HIV-2 infection is associated with strong HIV-2-specific CD4+ T cell responses, particularly a non-terminally differentiated, poly-functional population of cytokine-producing cells with preserved proliferative capacity.

Materials and Methods

Study population

This study was conducted at the Medical Research Council (MRC) Laboratories in Fajara, The Gambia, West Africa. A total of 72 HIV-infected individuals, 39 HIV-1+ and 33 HIV-2+, was recruited from the clinical HIV cohort attending the Genitourinary Medicine Clinic based at the MRC Unit. Additionally, 21 confirmed HIV-seronegative blood donors were recruited from the National Blood Bank at the Royal Victoria Teaching Hospital in Banjul, The Gambia. As antiretroviral therapy (ART) was not available in The Gambia until recently, all study subjects in this study were untreated. All individuals recruited for this study were infected with either HIV-2 or HIV-1 and were seronegative for the other virus. Individuals with dual HIV-1+ HIV-2+ infection were excluded from the study. For analysis, study subjects were stratified into three categories based on CD4+ T cell percentage rather than absolute CD4 count as this has proven to be a more reliable indicator of HIV-induced lymphopenia and mortality in the developing world (20, 26, 27). These stratifications included individuals with a CD4 percentage (CD4%) within the normal range (CD4% ≥28%), symptomatic individuals who had an intermediate CD4% (CD4% = 14–27), and those individuals with clinical AIDS with a CD4% <14%. Percentages of CD4+ T lymphocytes were determined by flow cytometry using BD MultiTest reagents and MultiSet software (BD Immunocytometry Systems). Patients’ characteristics are detailed in Table I. Study participants were screened for HIV-1 and HIV-2 using the Murex ICE HIV-1,2.0 capture enzyme immunoassay (Murex Diagnostics). All reactive samples were confirmed as HIV-1 or HIV-2-positive using two type-specific competitive ELISAs (Murex Diagnostics). HIV-1 and HIV-2 plasma viral loads were measured by an in-house reverse-transcriptase PCR assay using specific long terminal repeat primers (28). The lower limit of detection for viral load assays was 100 RNA copies/ml. Samples with PCR signals below the level of detection were assigned a viral load value of 100 RNA copies/ml. Individuals with undetectable VL were assigned a VL at the level of detection (100 RNA copies/ml) for calculation of mean.

Table I. Clinical and demographic characteristics of study cohort

<table>
<thead>
<tr>
<th>Subjects</th>
<th>n</th>
<th>Mean (range)</th>
<th>Mean cells/ml (range)</th>
<th>Mean RNA copies/ml (range)</th>
<th>Mean (range)</th>
<th>Sex</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asymptomatic</td>
<td>11</td>
<td>34 (28–48)</td>
<td>760 (410–1,610)</td>
<td>18,973 (<100–127,933)</td>
<td>1,011 (537–2,133)</td>
<td></td>
</tr>
<tr>
<td>AIDS</td>
<td>15</td>
<td>9 (2–13)</td>
<td>239 (20–550)</td>
<td>84,423 (16,346–151,537)</td>
<td>23/39 (59%)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIV-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asymptomatic</td>
<td>17</td>
<td>36 (29–52)</td>
<td>701 (310–1,440)</td>
<td>1,485 (<100–5,910)</td>
<td>37 (17–61)</td>
<td></td>
</tr>
<tr>
<td>Intermediate</td>
<td>10</td>
<td>21 (15–25)</td>
<td>448 (200–640)</td>
<td>10,754 (<100–77,430)</td>
<td>24/33 (77%)</td>
<td></td>
</tr>
<tr>
<td>AIDS</td>
<td>6</td>
<td>9 (4–13)</td>
<td>137 (70–240)</td>
<td>260,312 (47,628–996,541)</td>
<td>43 (33–52)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td>5/21 (24%)</td>
<td></td>
</tr>
<tr>
<td>HIV negative</td>
<td>21</td>
<td>43 (33–52)</td>
<td>1,011 (537–2,133)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* CD4+ percentage is the percentage of total peripheral lymphocytes that are CD3+ CD4+. Asymptomatic category includes individuals with CD4+ percentages within the normal range (≥28%). Intermediate category includes individuals with intermediate CD4 percentage (14–27%). AIDS category includes symptomatic individuals with clinical AIDS (CD4% <14%). Viral load (VL) <100 = below the limit of detection. Individuals with undetectable VL were assigned a VL at the level of detection (100 RNA copies/ml) for calculation of mean.

Twenty-mer peptides overlapping by 10 aa corresponding to Gag sequences (p17 and p24) of the HIV-2 subtype A consensus and HIV-1 clade A consensus strains were synthesized as free amino acids (HIV-2 [Affiniti]; HIV-1 [NIBSC]; >85% purity by HPLC). Previous studies have shown that the majority of HIV-1 infections in The Gambia are CRF-02, an AG recombinant strain of which the gag gene is subtype A (30, 31), and HIV-2 infections are with subtype A virus (32). Lyophilized peptides were reconstituted in DMSO (Sigma-Aldrich) at 50 mg/ml. The overlapping 20 mer were grouped into an HIV-1 Gag pool (33 peptides) and an HIV-2 Gag pool (37 peptides) such that the concentration of each peptide in the pool was 400 μg/ml. Small aliquots of the Gag peptide pool mixtures were stored at −80°C and peptides were used at a final concentration of 2 μg/ml peptide in all experiments.

Monoclonal Abs and flow cytometric analysis

FITC, CFSE, PE, PerCP, and allophycocyanin were used as the fluorophores for these experiments. Unconjugated anti-human CD28 and anti-human CD49d were used as costimulatory Abs. mAbs used for the ICS were anti-CD57 FITC, anti-IL-2 PE, anti-CD4 PerCP, and anti-IFN-γ allophycocyanin (BD Pharmingen). CFSE (Molecular Probes), anti-CD8 PE, anti-CD3 PerCP, and anti-CD4 allophycocyanin (BD Biosciences) were used for characterization of T cell proliferative responses. Four-parameter flow cytometric analysis was performed using a FACSCalibur flow cytometer (BD Biosciences). The list-mode data files were analyzed using FlowJo (Tree Star).

ICS for production of IFN-γ and IL-2 by HIV-specific CD4+ T cells

Ten to 15 ml of peripheral blood was collected via venipuncture and PBMC were isolated using Ficoll-Hypaque (Pharmacia) density centrifugation. This assay was performed only on freshly isolated PBMC and stimulation was performed as previously described (33). Briefly, PBMC were resuspended at 10^6/ml in RPMI medium supplemented with 10% heat-inactivated FCS and 1 μg/ml anti-CD28 and anti-CD49d costimulatory Abs. Due to restrictions on the number of PBMCs recovered from the small volume of venipuncture, this study was restricted to the study of HIV-Gag-specific responses as this protein has been shown to be highly immunodominant in both HIV-1- and HIV-2-infected individuals (25, 34, 35). Synthetic overlapping Gag peptide pools (final concentration 2 μg/ml/peptide) were used to stimulate HIV-specific responses. HIV-1 or HIV-2 Gag peptide pools were used according to the status of the individual. These viruses share 60% amino acid homology in the Gag region (36). For each individual, a negative control containing only anti-CD28 and anti-CD49d was used to measure Ag-independent stimulation and a positive control staphylococcal enterotoxin B (SEB; final concentration 2 μg/ml) was used.
to ensure that cells were responsive. The cultures were incubated for 1 h at 37°C in a 5% CO₂ incubator, followed by an additional 5 h in the presence of Brefeldin A (10 μg/ml; Sigma-Aldrich). Stimulated cells were washed, fixed/permeabilized (FACSPerm2; BD Biosciences), and stained for surface markers and cytokines of interest. Cells were then washed and resuspended in 2% paraformaldehyde in PBS for flow cytometric analysis. Responses are reported after background correction, using the anti-CD28/49d-negative control to define nonspecific responses. A threshold of 0.1% was used to define a positive HIV Gag-specific CD4⁺ T cell response because no negative control sample showed nonspecific responses above this level and HIV Gag peptides did not induce this level of nonspecific cytokine production in seronegative donors.

CD4⁺ and CD8⁺ T cell CFSE proliferation assay

Briefly, freshly isolated PBMC or freshly thawed cryopreserved samples rested overnight were resuspended in PBS at a concentration of 1–2 × 10⁶/ml. Cells were stained with CFSE (final concentration 0.25 μM; Molecular Probes) for 7 min in a 37°C water bath. CFSE labeling was then quenched with 3 ml of FCS and cells were washed three times with RPMI supplemented with 10% FCS. CFSE-labeled PBMC were resuspended at a final concentration of 1–2 × 10⁶/ml in RPMI supplemented with 10% human AB serum (Sigma-Aldrich) and 1 μg/ml anti-CD28 and anti-CD49d costimulatory Abs for culture. PBMCs from each individual were then stimulated with overlapping Gag peptide pools (2 μg/ml/peptide), SEB (2 μg/ml), or anti-CD28 and anti-CD49d alone (1 μg/ml each) and cultured at a concentration of 1–2 × 10⁶ PBMC in a volume of 1 ml in 48-well plates (Nunc) at 37°C for 5 days. PBMC were then collected and stained for surface markers of interest and fixed with 2% paraformaldehyde in PBS. CFSE-labeled cells were kept free from excessive light to avoid photobleaching and were analyzed by flow cytometry within 24 h of staining. Percentages of total CD4⁺ or CD8⁺ T cells that divided in response to Gag peptide stimulation were calculated using the proliferation platform of FlowJo. Values for Ag-specific responses are reported as the percent divided after subtraction of background proliferation in the unstimulated samples.

Statistical analysis

Statistical tests were performed using two-tailed χ² analysis, Fisher’s exact test, two-sided ANOVA, Mann-Whitney U test, and Spearman rank correlations using GraphPad Prism 4.0a software and GenStat. Values of p were corrected for multiple comparisons and differences were considered statistically significant when p < 0.05 after correction.

Results

More HIV-2- than HIV-1-infected subjects have detectable HIV Gag-specific CD4⁺ T cells

ICS was used to monitor production of IFN-γ and IL-2 by Ag-specific CD4⁺ T cells. Although HIV Gag-specific CD4⁺ T cell responses were observed in the majority of both HIV-1- and HIV-2-infected subjects, more HIV-2-infected (85%; 28 of 33) than HIV-1-infected individuals (64%; 25 of 39) had CD4⁺ T cells producing IFN-γ in response to their respective Gag peptide pools (p = 0.04; Table II). The difference was more marked for IL-2-producing CD4⁺ T cells, which were detected in 64% of HIV-2-infected compared with 36% of HIV-1-infected individuals (p = 0.01). Interestingly, among individuals with a relatively preserved CD4⁺ T cell count (>28%) 94% (16 of 17) of HIV-2-infected individuals had detectable IFN-γ-producing CD4⁺ T cells, and 53% (9 of 17) had detectable IL-2-producing CD4⁺ T cells. In contrast, 64% (7 of 11) of asymptomatic HIV-1-infected individuals had detectable IFN-γ-producing CD4⁺ T cells, while only 9% (1 of 11) had IL-2-producing CD4⁺ T cells (Table II).

HIV-2-infected donors have higher frequencies of HIV-specific CD4⁺ T cells than HIV-1-infected donors

We quantified the frequency of CD4⁺ T cells producing IFN-γ only, IL-2 only, or both IFN-γ and IL-2 in response to stimulation with overlapping Gag peptides using flow cytometry (representative flow cytometric plots are shown in Fig. 1a). In donors with relatively preserved CD4⁺ T cell counts (≥28%), a greater proportion of total CD4⁺ T cells from HIV-2-infected subjects produced IFN-γ in response to Gag peptides than from HIV-1-infected subjects (median 0.315 vs 0.130%; p = 0.014) (Fig. 1b). Additionally, the frequency of IL-2-producing HIV-specific CD4⁺ T cells was significantly greater in HIV-2-infected individuals with preserved CD4⁺ T cell counts (median 0.068%) than in CD4⁺-matched HIV-1-infected individuals (median 0.012%; p = 0.0077) (Fig. 1c). The differences in HIV-specific CD4⁺ T cell responses between HIV-1- and HIV-2-infected subjects were less obvious in donors with intermediate CD4⁺ T cell counts (CD4⁺ = 14–27) and were absent in donors with CD4⁺ <14 (Fig. 1, b and c). CD4⁺ T cell responses to the superantigen SEB did not differ between any group of HIV-1- and HIV-2-infected individuals (data not shown) and control experiments in HIV-seronegative blood donors demonstrated that HIV Gag peptides induced <0.1% of total CD4⁺ T cells to produce either IFN-γ or IL-2.

Overall, the frequency of cytokine-producing HIV-specific CD4⁺ T cells was far greater in HIV-2⁺ individuals with preserved CD4⁺ T cell counts than in HIV-1⁺ individuals with comparable CD4⁺ T cell counts; individuals infected with HIV-2 had a 2.4-fold higher median frequency of IFN-γ-producing CD4⁺ T cells, and a 5.7-fold higher median frequency of IL-2-producing CD4⁺ T cells, when stimulated with their respective Gag peptide pools. These trends were the same when individuals were stratified by absolute CD4 count rather than by CD4%. Significantly greater frequencies of IFN-γ- or IL-2-producing HIV-specific CD4⁺ T cells were found among HIV-2-infected individuals with an absolute CD4 count ≥500 cells/ml compared with CD4⁺-matched HIV-1-infected individuals (data not shown). These findings indicate that asymptomatic HIV-2⁺ individuals maintain a more substantial HIV-specific memory CD4⁺ T cell response than HIV-1⁺ subjects.

HIV-specific CD4⁺ T cells producing both IFN-γ and IL-2 are detected exclusively in HIV-2-infected individuals

HIV-specific CD4⁺ T cells that produced both IFN-γ and IL-2 in response to HIV Gag peptides were detected at a frequency of >0.1% in 36% (12 of 33) of HIV-2⁺ subjects, predominantly among individuals with a normal CD4⁺ T cell percentage (Fig. 1, a and d). This population of CD4⁺ T cells made a substantial

Table II. Proportion of HIV-1- and HIV-2-infected individuals with CD4⁺ T cells producing IFN-γ or IL-2 in response to HIV Gag peptides

<table>
<thead>
<tr>
<th>IFN-γ Responses</th>
<th>IL-2 Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. positive (%)</td>
</tr>
<tr>
<td>All HIV-2⁺ (n = 33)</td>
<td>28 (85%)</td>
</tr>
<tr>
<td>All HIV-1⁺ (n = 39)</td>
<td>25 (64%)</td>
</tr>
<tr>
<td>Asymptomatic HIV-2⁺ (n = 17)</td>
<td>16 (94%)</td>
</tr>
<tr>
<td>Asymptomatic HIV-1⁺ (n = 11)</td>
<td>7 (64%)</td>
</tr>
</tbody>
</table>

*Ag-specific responses above 0.1% of total CD4⁺ T cells producing cytokine were considered a positive response. Statistical significance was determined using χ² analysis or Fisher’s exact test (for tests with less than five individuals in a category) and significant differences are in bold type.
FIGURE 1. Functional flow cytometric analysis of HIV-1 and HIV-2 Gag-specific CD4+ T cell response. a, Representative FACS plots from asymptomatic HIV-1 (top row) and HIV-2 (bottom row) subjects, both with CD4+ T cell percentages ≥28%. The flow cytometric data represent gated CD4+ T cells and are demonstrated as follows: background (costimulatory Abs alone, left column); HIV Ag-specific (Gag peptide pool, center column); and polyclonal positive control (SEB, right column). y-axis represents staining for IL-2 and x-axis is staining for IFN-γ. The numbers in each quadrant indicate the percentage of CD4+ T cells that produced either IFN-γ, IL-2, or both in response to the respective stimulus. b, Scatter plots show the proportion of CD4+ T cells producing IFN-γ (left bottom), IL-2 (right bottom), or both IFN-γ and IL-2 (right upper) from all 39 HIV-1-infected individuals we studied (Figs. 1, a and d, and 2b). c, In our cohort of HIV-1-infected donors, HIV-1-specific CD4+ T cells responded to Gag peptides by producing either IFN-γ or IL-2, but not both.

Those HIV-2-infected individuals with strong CD4+ T cell responses to HIV-2 Gag peptides had high frequencies of CD4+ T cells in all three functional populations: IFN-γ only, IL-2 only, and polyfunctional IFN-γ+IL-2+. There was a strong correlation between the frequency of CD4+ T cells producing only IFN-γ and those CD4+ T cells producing IL-2 alone (R = 0.43, p = 0.01; data not shown). There was also a very strong correlation between the frequency of polyfunctional IFN-γ+IL-2+ CD4+ T cells and the frequency of IFN-γ only (R = 0.69, p < 0.0001) or IL-2 only producing CD4+ T cells (R = 0.47, p = 0.005; data not shown). This suggests that the CD4+ T cell response to HIV-2 is indeed functionally heterogeneous and individuals with strong responses tend to have a total CD4+ T cell response to the virus that is a compilation of at least three functionally distinct cytokine-producing populations.

The increase in HIV-specific CD4+ T cell responses to HIV-2 is indeed associated with the inability to proliferate and indicates terminal differentiation (37). To determine whether the higher frequency of HIV-specific CD4+ T cells in HIV-2-infected individuals was among the terminally differentiated (CD57+) or non-terminally differentiated (CD57−) fraction, we measured CD57 expression on the HIV-1- and HIV-2-specific cytokine-producing CD4+ T cells. We found that the increase in HIV-specific cytokine-producing CD4+ T cells in HIV-2+ as compared with HIV-1− subjects with preserved CD4+ T cell counts was predominantly within the CD57+ fraction (p = 0.01, Fig. 3b). There was no difference in the frequency of CD57+ HIV-specific, cytokine-producing CD4+ T cells among HIV-1− or HIV-2-infected individuals at any stage of disease (Fig. 3a). These data indicate that the increase in HIV-2-specific CD4+ T cells is predominantly made up of CD57+ cells, which likely retain proliferative capacity.

Interestingly, HIV-2-specific CD4+ T cells that expressed CD57 were skewed toward IFN-γ-producing populations, with a mean 77% of the Gag-responsive CD4+ T cells producing IFN-γ alone (Fig. 3c). HIV-2-specific CD4+ T cells lacking CD57 expression were more polyfunctional in nature, with a greater percentage of CD4+ T cells producing IL-2 in response to Gag peptides (Fig. 3d).

The increase in HIV-specific CD4+ T cells in HIV-2 infection is due to the presence of CD4+ T cells lacking CD57 expression. An important function of CD4+ T cells is their ability to proliferate in response to cognate Ag stimulation. Surface expression of CD57 is associated with the inability to proliferate and indicates terminal differentiation (37). To determine whether the higher frequency of HIV-specific CD4+ T cells in HIV-2-infected individuals was among the terminally differentiated (CD57+) or non-terminally differentiated (CD57−) fraction, we measured CD57 expression on the HIV-1- and HIV-2-specific cytokine-producing CD4+ T cells. We found that the increase in HIV-specific cytokine-producing CD4+ T cells in HIV-2+ as compared with HIV-1− subjects with preserved CD4+ T cell counts was predominantly within the CD57+ fraction (p = 0.01, Fig. 3b). There was no difference in the frequency of CD57+ HIV-specific, cytokine-producing CD4+ T cells among HIV-1− or HIV-2-infected individuals at any stage of disease (Fig. 3a). These data indicate that the increase in HIV-2-specific CD4+ T cells is predominantly made up of CD57+ cells, which likely retain proliferative capacity.

Interestingly, HIV-2-specific CD4+ T cells that expressed CD57 were skewed toward IFN-γ-producing populations, with a mean 77% of the Gag-responsive CD4+ T cells producing IFN-γ alone (Fig. 3c). HIV-2-specific CD4+ T cells lacking CD57 expression were more polyfunctional in nature, with a greater percentage of CD4+ T cells producing IL-2 in response to Gag peptides (Fig. 3d).
CFSE-based lymphoproliferation assay to monitor CD4+ and CD8+ T cell proliferative capacity in response to HIV Gag peptides in HIV-1- and HIV-2-infected study participants. Fresh PBMC from 14 HIV-1- and 18 HIV-2-infected individuals were isolated from a venipuncture 5–10 mo after the original time point. For those individuals who were lost to follow-up, we used frozen PBMC samples where available (14 HIV-1 and 8 HIV-2 samples collected between 16 mo before and 8 mo after the original time point). We could not complete the study for 11 of 39 HIV-1-and 7 of 33 HIV-2-infected individuals from our original cohort for whom there were no frozen historical samples.

Fresh or frozen PBMC were stimulated with Gag peptides, SEB, or costimulatory Abs alone for 5 days and proliferative responses were measured in the CD3+CD4+ and CD3+CD8+ T cell subsets (representative flow plots are shown in Fig. 4a). Stimulation from HIV-2-infected individuals with normal CD4+ T cell percentages (≥28%) with HIV-2 Gag peptides induced the proliferation of a median 0.6% of total CD4+ T cells over 5 days (range 0.0–3.1%; Fig. 4b). In striking contrast, we observed a profoundly attenuated proliferative response in CD4+ T cells from HIV-1-infected individuals with comparable CD4+ T cell percentages. In these subjects, a median 0.2% of total peripheral blood CD4+ T cells expanded in response to HIV-1 Gag peptides over 5 days (range 0.02–0.40%; p = 0.03). These differences were also apparent when subjects were stratified by absolute CD4 count (data not shown). Thus, the proliferative capacity of HIV-2-specific CD4+ T cells among individuals with normal CD4+ T cell counts was 3-fold greater than that of CD4-matched HIV-1-infected individuals. This difference was not observed in individuals with CD4+ T cell percentage below the normal range (<28%) where proliferative responses in both HIV-1- and HIV-2-infected individuals were diminished.

FIGURE 2. Functional heterogeneity of HIV-2-specific CD4+ T cell cytokine profile. Stacked graphs show percentage of CD4+ T cells that produced IFN-γ only (black), IL-2 only (gray), or both IFN-γ and IL-2 (striped) in response to pooled Gag peptides in the 6-h assay in HIV-2 (a) and HIV-1 (b) infected individuals. A column composed of these three categories, represents each individual’s response. Ag-specific responses above 0.1% of total CD4+ T cells producing each cytokine were considered a positive response. Total IFN-γ production is the combined black and striped segments. Total IL-2 production is the combination of the gray and striped segments. Vertical lines stratify patients based on CD4+ T cell percentage and pie charts depict the mean proportion of the total HIV-specific response contributed by each cytokine population in each stratified category.

No difference in the capacity of HIV-2- and HIV-1-specific CD8+ T cells to proliferate

In contrast to the differences we observed in the proliferative capacity of HIV-specific CD4+ T cells between HIV-1– and HIV-2– infected individuals, we found no differences in the ability of HIV Gag-specific CD8+ T cells from HIV-1– and HIV-2–infected individuals to proliferate in response to type-specific HIV Gag peptides (Fig. 4c). The median frequencies of responding CD8+ T cells were similar among individuals with a normal CD4+ percentage, with responses of 0.60% in HIV-2– infected subjects compared with 0.89% in HIV-1– donors (p = 0.34). The frequency of proliferating CD8+ T cells decreased as CD4 counts declined in both HIV-1– and HIV-2–infected individuals, but the median frequencies still did not differ significantly (0.17 vs 0.09%; p = 0.99).

The frequency of polyfunctional IFN-γ IL-2+ CD4+ T cells correlates with the proliferative capacity of HIV-2-specific CD4+ and CD8+ T cells

Previous studies have shown that HIV-1-infected individuals who fail to control viral load even in the presence of ART have HIV-specific CD4+ T cells that predominantly produce IFN-γ, and have a greatly diminished proliferative capacity (38, 39). In contrast, we find that HIV-2–infected individuals have an expanded frequency of polyfunctional IFN-γ IL-2+ CD4+ T cells which correlated with the proliferative capacity of both HIV-2-specific CD4+ (R = 0.44, p = 0.02) and CD8+ (R = 0.44, p = 0.02) T cells (data not shown). We also found that although HIV-2-infected individuals with a high frequency of HIV-specific IFN-γ IL-2+ CD4+ T cells tended to have low or undetectable plasma viral load, there was no correlation between these parameters (data not shown).

Discussion

Although HIV-2 can, in a minority of infected individuals, cause AIDS indistinguishable from that caused by HIV-1, many HIV-2-infected people behave as LTNPs. This provides a unique natural human model in which to investigate correlates of immune protection against HIV disease progression. One of the characteristic immune defects in HIV-1 infection is the early loss of HIV-specific CD4+ T cells with proliferative capacity and the ability to secrete IL-2 (3, 40), which leaves an impaired CD4+ Th cell response that is skewed toward a population that produces IFN-γ only (33, 39). Indeed, aside from a unique population of HIV-1–infected individuals who meet the definition of LTNPs and some patients treated with highly active ART, HIV-specific CD4+ T cell
responses are conspicuously absent or impaired in HIV-1 infection, irrespective of viral load and CD4\(^+\) T cell count (1, 38, 39). In this study, we demonstrate that HIV-2-infected subjects, especially those with preserved CD4\(^+\) T cell counts, are distinct from HIV-1-infected individuals in that they maintain a proliferation-competent, nonterminally differentiated, multiple cytokine-expressing HIV-specific CD4\(^+\) T cell response.

These findings extend previous studies that demonstrated preserved virus-specific proliferative responses in a small number of HIV-2-infected individuals (23, 24). Although a prior study has shown that the magnitude of the HIV Gag-specific IFN-\(\gamma\) response by ex vivo ELISPOT was not significantly different in HIV-1- and HIV-2-infected donors (25), we found using ICS that the magnitude of CD4\(^+\) T cells responding to HIV Gag peptides was much greater among HIV-2-infected individuals. HIV-specific CD4\(^+\) Th cell function is reported to be impaired from the earliest stages of HIV-1 infection (40), in the absence of prompt treatment with ART (2), which may be explained by the preferential infection of HIV-1-specific CD4\(^+\) T cells (41). The devastating impact of primary SIV infection on the CD4\(^+\) T cell population in gut-associated lymphoid tissue, which accounts for the bulk of the body’s CD4\(^+\) T cells, has recently been documented in animal models (42, 43), and a similar phenomenon is likely to occur in human HIV-1 infection, in which gut-associated lymphoid tissue CD4\(^+\) T cells are profoundly depleted even in primary HIV-1 infection (44, 45). The preservation of virus-specific T cell help in many subjects with HIV-2 infection suggests that HIV-2 may not preferentially infect or deplete HIV-2-specific cells in these subjects. Further studies to investigate whether HIV-2-specific CD4\(^+\) T cells resist viral infection and, if so, by what mechanism are clearly warranted.

The critical features of CD4\(^+\) T cell help that contribute to protective immunity probably differ among viral infections, but recent studies in other chronic viral infections have shown that Ag load and persistence dictate the functional profile of CD4\(^+\) T cell responses, and that protective and effective responses, typified by those seen in CMV and EBV infections, are characterized by the presence of CD4\(^+\) T cells that produce both IFN-\(\gamma\) and IL-2 (46).

In keeping with these observations, we find that maintenance of a normal CD4\(^+\) T cell count in HIV-2 infection is associated with a population of polyfunctional IFN-\(\gamma\)\^IL-2\(^\ast\) HIV-specific CD4\(^+\) T cells that was absent in all HIV-1-infected individuals in our cohort. This polyfunctional CD4\(^+\) T cell population contributes substantially (17–18%) to the total HIV-2-specific CD4\(^+\) T cell response and the magnitude of this population correlates with the ability of both HIV-2-specific CD4\(^+\) and CD8\(^+\) T cells to proliferate in vitro. In a cross-sectional study of this nature, it is not possible to determine whether preserved CD4\(^+\) T cell counts in the presence of virus-specific IFN-\(\gamma\)\^IL-2\(^\ast\) CD4\(^+\) T cells is a cause or effect of this population. However, because this polyfunctional subset is found only among HIV-2-infected individuals, and has been shown to be a hallmark of effective immunity in other viral infections, the presence of this subset may be a contributing factor in the attenuated clinical phenotype of HIV-2 infection. Though polyfunctional IFN-\(\gamma\)\^IL-2\(^\ast\) HIV-1-specific CD4\(^+\) T cells have been documented in rare HIV-1 LTNP (47), we did not detect them in our HIV-1-infected population which was not enriched for LTNP and may have predominantly comprised donors with typical disease progression at an early stage of infection.

Terminally differentiated CD57\(^+\) T cells are often IFN-\(\gamma\)-producing effector cells (48) that lack proliferative capacity and die upon secondary stimulation (37). In mice, these IFN-\(\gamma\)-producing effector cells are not precursors of memory CD4\(^+\) T cells, which instead make IL-2 and proliferate on secondary stimulation (49). Consistent with this paradigm, we found that HIV-2-specific CD57\(^+\) CD4\(^+\) T cells generally lacked IL-2 production and instead predominantly made IFN-\(\gamma\). However, the HIV-2-specific CD57\(^+\) CD4\(^+\) T cells were more polyfunctional, with 29% producing IFN-\(\gamma\) and IL-2, and 20% producing only IL-2. We observed similar trends in the two HIV-1-infected individuals who had a substantial CD57\(^+\) HIV-specific CD4\(^+\) T cell response (data not shown). These data demonstrate that the difference in frequency of HIV-specific CD4\(^+\) T cells between asymptomatic HIV-1- and HIV-2-infected donors is predominantly driven by the non-terminally differentiated subset, which more frequently express IL-2.

FIGURE 3. CD57 expression on HIV-specific CD4\(^+\) T cells. Scatter plots show the proportion of total CD4\(^+\) T cells that produced cytokine (IFN-\(\gamma\), IL-2, or IFN-\(\gamma\)\^IL-2\(^\ast\)) in response to pooled Gag peptides and express (a) or lack (b) cell surface expression of CD57 in HIV-2 (○) and HIV-1 (●) donors. Median value in each category is delineated with a horizontal line. Values of p were generated using two-tailed Mann-Whitney U test. Bar graphs depict the proportion of the total HIV-2-specific CD57\(^+\)CD4\(^+\) (c) or CD57\(^+\)CD4\(^+\) (d) response contributed by IFN-\(\gamma\) (ⅰ), IL-2 (ⅱ) or IFN-\(\gamma\)\^IL-2\(^\ast\) (ⅲ) populations in four HIV-2\(^+\) individuals with the percentage of CD4\(^+\) cytokine CD57 \(>0.28\%\). Mean and SDs are shown.
These cells are functionally more consistent with memory than effector Th cells and should retain proliferative capacity. Interestingly, despite the increased functionality of HIV-2-specific CD4⁺/H11001 T cells, we found that the maintenance of CD4⁺/H11001 T cell help in HIV-2-infected individuals is not reflected in increased proliferative capacity of HIV-2-specific CD8⁺/H11001 T cells. This is in keeping with other studies that have demonstrated similar antiviral activity, phenotype, and function of virus-specific CD8⁺/H11001 T cells in HIV-1- and HIV-2-infected donors at similar stages of disease (20, 21). One potential explanation for these findings is that HIV-2-specific CD4⁺/H11001 T cells themselves may have direct effector functions that are protective and antiviral and may be contributing to control of HIV-2 viremia via this mechanism. Alternatively, other aspects of CD8⁺/H11001 T cell functionality that require CD4⁺ T cell help may be enhanced in HIV-2-infected individuals. Indeed, many recent studies, mostly in murine models, have investigated the requirement of CD8⁺ T cells for CD4⁺ T cell help, and have suggested that CD4⁺ T cells are required at the time of primary infection to ensure the expansion and maintenance of memory CD8⁺ T cells in a secondary response (50). In the absence of CD4⁺ T cell help, the secondary CD8⁺ T cell response is both smaller (51) and functionally impaired (51, 52); that impairment is manifested in both reduced proliferative capacity and effector potential (lytic activity and IFN-γ secretion). Fewer studies have examined the role of CD4⁺/H11001 T cell help in supporting the CD8⁺/H11001 T cell response in persistent infection, but in the lymphocytic choriomeningitis virus model, the maintenance and function of memory CD8⁺ T cells are impaired in the absence of CD4⁺ T cell help (53). Consistent with these observations, impairments in HIV-1-specific CD8⁺/H11001 T cell phenotype and function have been noted and ascribed to the lack of appropriate CD4⁺ T cell help (54–56). Although we only measured the proliferative capacity of HIV-2-specific CD8⁺ T cells, we found this activity to be intact in HIV-2-infected subjects who have preserved HIV-2-specific CD4⁺/H11001 T cell function.

Other studies have failed to detect differences in the magnitude or cytokine secretion profile of HIV-specific CD8⁺ T cells between HIV-1- and HIV-2-infected subjects (20, 21, 25). Similarly,
we did not detect significant differences in the proliferative capacity of HIV-specific CD8$^+$ T cells between HIV-1- and HIV-2-infected subjects, despite the marked discrepancy in the levels of CD4$^+$ T cell help and viral load between the two groups. Assuming that CD8$^+$ T cells are the major antiviral effector arm of the immune system, it becomes difficult to reconcile our results. However, it is certainly plausible that other aspects of CD8$^+$ T cell function than those we have measured are more effective in HIV-2 infection than in HIV-1 infection and are responsible for the differences in control of these two human pathogens. Additionally, preserved HIV-specific CD4$^+$ T cell help could support other host immune responses such as enhanced neutralizing Ab activity (57, 58) or improved activation of APCs. Although our cohorts of HIV-1- and HIV-2-infected individuals were matched in terms of CD4$^+$ T cell counts (both percentages and absolute counts are similar at equivalent stages of disease), viral plasma load was >10-fold lower among asymptomatic HIV-2-infected individuals. Either as a cause or consequence of this lower viral burden, HIV-specific CD4$^+$ T cells retain a robust proliferative capacity and ability to secrete multiple cytokines. Our findings of preserved polyfunctional CD4$^+$ T cell help in HIV-2 infection should provide a foundation upon which to investigate those aspects of human CD8$^+$ T cell activity that are dependent on CD4$^+$ T cell help. Our data also provide support for vaccine strategies that are designed to elicit a strong and polyfunctional CD4$^+$ T cell response in addition to a CD8$^+$ T cell response to HIV.

Acknowledgments

We thank the medical, nursing, field, and laboratory staff of the Genito-Urinary Medicine Clinic in The Gambia for all their help in obtaining blood samples for this study. We thank Akum Avelka, Ramu Saneh-Jigy, and Bakary Saneh for patient recruitment and laboratory assistance. We also acknowledge the generosity of the patients from the clinic who donated these blood samples. Finally, we thank Joseph Casazza, Melissa Precopio, Jay Vasudevan, and David Price for critical review of the manuscript.

Disclosures

The authors have no financial conflict of interest.

References

29. Sun, J. C., M. A. Williams, and M. J. Bevan. 2004. CD4+ T cells are required for the maintenance, not programming, of memory CD8+ T cells after acute infection. Nat. Immunol. 5: 927–933.

