The Combined Effects of Tryptophan Starvation and Tryptophan Catabolites Down-Regulate T Cell Receptor ζ-Chain and Induce a Regulatory Phenotype in Naive T Cells

Francesca Fallarino, Ursula Grohmann, Sylvaine You, Barbara C. McGrath, Douglas R. Cavener, Carmine Vacca, Ciriana Orabona, Roberta Bianchi, Maria L. Belladonna, Claudia Volpi, Pere Santamaria, Maria C. Fioretti and Paolo Puccetti

J Immunol 2006; 176:6752-6761; doi: 10.4049/jimmunol.176.11.6752
http://www.jimmunol.org/content/176/11/6752

Why *The JI*?

- **Rapid Reviews!** 30 days* from submission to initial decision
- **No Triage!** Every submission reviewed by practicing scientists
- **Speedy Publication!** 4 weeks from acceptance to publication

*average

References

This article *cites 54 articles*, 28 of which you can access for free at:
http://www.jimmunol.org/content/176/11/6752.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
The Combined Effects of Tryptophan Starvation and Tryptophan Catabolites Down-Regulate T Cell Receptor ζ-Chain and Induce a Regulatory Phenotype in Naive T Cells

Francesca Fallarino,* Ursula Grohmann,* Sylvaine You,† Barbara C. McGrath,‡ Douglas R. Cavener,§ Carmine Vaccia,* Ciriana Orabona,* Roberta Bianchi,* Maria L. Belladonna,* Claudia Volpi,* Pere Santamaria,§ Maria C. Fioretti,* and Paolo Puccetti*‡

Tryptophan catabolism is a tolerogenic effector system in regulatory T cell function, yet the general mechanisms whereby tryptophan catabolism affects T cell responses remain unclear. We provide evidence that the short-term, combined effects of tryptophan deprivation and tryptophan catabolites result in GCN2 kinase-dependent down-regulation of the TCR ζ-chain in murine CD8+ T cells. TCR ζ down-regulation can be demonstrated in vivo and is associated with an impaired cytotoxic effector function in vitro. The longer-term effects of tryptophan catabolism include the emergence of a regulatory phenotype in naive CD4+ CD25− T cells via TGF-β induction of the forkhead transcription factor Foxp3. Such converted cells appear to be CD25+, CD69−, CD45RBlow, CD62L+, CTLA-4+, BTLAlow and GITR+, and are capable of effective control of diabetogenic T cells when transferred in vivo. Thus, both tryptophan starvation and tryptophan catabolites contribute to establishing a regulatory environment affecting CD8+ as well as CD4+ T cell function, and not only is tryptophan catabolism an effector mechanism of tolerance, but it also results in GCN2-dependent generation of autoimmune-preventive regulatory T cells. The Journal of Immunology, 2006, 176: 6752–6761.

The immunoregulatory enzyme IDO mediates conversion of the essential amino acid tryptophan to metabolic by-products collectively known as kynurenines (1, 2). IDO contributes to maternal tolerance in pregnancy (3), control of allograft rejection (4), and protection against autoimmunity (5), inflammatory pathology (6, 7), and allergy (8). In both humans (9) and mice (10), IDO-expressing tolerogenic dendritic cells (DCs) are found in tumor-draining lymph nodes, possibly resulting in Ag-specific anergy. IDO expression by certain tumors could contribute to immune unresponsiveness by the host (11, 12). In peripheral tolerance, modulation of tryptophan catabolism is thought to function as a general mechanism of action of regulatory T cells (Tregs) that express CTLA-4 (13, 14). Several cell types in addition to DCs (4) respond to CTLA-4 engagement of B7 receptor molecules with the release of IFN-γ and activation of IDO, including CD4+ T cells (15) and polymorphonuclear leukocytes (16).

The wide spectrum of physiopathologic conditions in which IDO appears to be at work suggests that multiple mechanisms are used by this effector system to down-regulate T cell and inflammatory responses. IDO can deplete tryptophan in local tissue microenvironments, and thus prevent T cell proliferation (2), but can also generate immunoexcitatory kynurenines resulting in T cell apoptosis (1). Neither mechanism alone can explain the diversity (3, 5, 6, 8), durability (4), and Ag specificity (10) of the IDO-mediated suppressive effect. Naive CD4+ T cells and Th2 cells are resistant to apoptosis induced by kynurenines (17), and CD8+ T cells are resistant to activation blockade by tryptophan depletion when exposed to strong antigenic stimuli (15).

Reversible impairment of T cell function through down-regulation of the TCR ζ-chain could be a physiological means of down-regulating exacerbated immune responses (18). This phenomenon has also been observed in several pathologic settings, including chronic infection, neoplasia, and autoimmune disease (19). Tregs are crucial in regulating self-reactive T cells in the periphery and ameliorating established inflammation in experimental models (20–22). They are usually described as CD4+ CD25+ CD69− cells that inhibit the activation and proliferation of CD4+ CD25− lymphocytes via mechanisms ranging from cell-cell contact to the production of the inhibitory cytokines IL-10 and TGF-β (23). In vitro-expanded Ag-specific Tregs can suppress autoimmune diabetes (24).

In a microbial infection model in which exacerbation of the immune response is avoided through the action of Tregs, blockade of IDO results in an impaired generation of Tregs and in overwhelming immunopathology (16). Successful treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite associated with the development of Treg activity has recently been reported (25). Thus, it is possible that besides generalized cell...
cycle arrest due to sustained tryptophan deprivation, IDO contributes to fine-tuning immune responsiveness by multiple mechanisms that are coordinate but differentiated for specific T cell subsets. We report that early down-regulation of the TCR in CD8+ cells and longer-term induction of a tolerogenic phenotype in naive CD4+ T cells results from the combined effects of tryptophan starvation and tryptophan metabolites. Both of these effects require the general control non-derepressing 2 (GCN2) protein kinase, which is responsive to starvation for amino acids. The CD8+ T cells display impaired function ex vivo, whereas the CD4+ Treg are shown to prevent disease in an experimental setting of diabetes transfer.

Materials and Methods

Mice

Eight- to 10-wk-old DBA/2 (H-2b) and 4-wk-old NOD (Kc, I-AF, Dn) mice were purchased from Charles River Breeding Laboratories. Gen2−/− mice, homozygous for the Gcn2 targeted mutation, and wild-type Gcn2+/- controls were as described (26). NOD-SCID mice were bred in our animal facility under specific pathogen-free conditions to be used at ages 8–10 wk. Transgenic 3.3-NOD mice (27) and BDC2.5-NOD mice (28) were as described. Colorimetric strips were used to monitor glycosuria and hyperglycemia (>300 mg/dl) in NOD-SCID mice (4). Only female mice were used in this study, and all in vivo experiments were done in compliance with National and Perugia University Animal Care and Use Committee guidelines.

Reagents and treatments

The IDO inhibitor 1-methyl-11,12-tryptophan (1-MT) was purchased from Sigma-Aldrich to be used in vitro at the concentration of 20 M. To inhibit IDO activity in vivo, 1-MT or placebo pellets (150 mg/pellet, 7-day release at 0.9 mg/h; Innovative Research of America) were implanted as described (4). NRP-A7 (KYNKANAKL), a synthetic peptide mimotope recognized in the MHC class I H-2Kd molecule by 8.3-NOD T cells (29), was as described (13). FITC-conjugated NRP-A7 pentamer and negative control peptide pentamer were prepared by ProImmune and validated against staining of 8.3-NOD spleen cells according to manufacturer’s instructions. Pentamer-positive 8.3-NOD T cells were recovered by magnetic-activated cell sorting and were expanded by the respective use of SXC-1 (rat IgM) anti-CD4 (GK1.5), anti-CD69 (H1.2F3), and anti-CD45RB (16A). FACS analysis re-

Flow cytometry, pentamer staining, and immunoblot analysis

In all FACS analyses, cells were treated with rat anti-CD16/32 (2.4G2) for 30 min at 4°C for blockade of Fc receptors before assaying on an EPICS flow cytometer using EXP0 32 ADC software (Beckman Coulter). The following FITC-labeled Abs were used in cell surface staining (BD Pharmingen): anti-CD4 (SK3; BD Pharmingen); anti-CD62L (MEL-14; BD Pharmingen), anti-glucocorticoid-inducible TNFR (GITR, 108619; R&D Systems), and anti-CD4 (GK1.5; BD Pharmingen) were also used. Detection of the surface molecule B and T cell lymphocyte attenuator (BTLA) was accomplished by the use of biotinylated anti-BTLA (a gift from K. Murphy, Washington University, St. Louis, MO) and Streptavidin-FITC. Total CTLA-4 expression was analyzed as described (13). For pentamer staining, spleen and lymph node cells were incubated for 30 min at room temperature with FITC-conjugated H-2Kd pentamers before FACS analysis. For intracellular staining, cells were washed and fixed for 5 min with 2% paraformaldehyde at room temperature, permeabilized and incubated for 30 min with PE-labeled anti-CD3 (6B10.2; Santa Cruz Biotechnology). All FACS analyses included the use of isotype control Abs. For CFSE or CellTrace Far Red DDAO-SE (Molecular Probes) labeling, the fluorescent dyes in the form of 5 mM stock solutions were added to 2 × 105 CD4+ T cells/ml to a final concentration of 2 (CFSE) or 1 M (DDAO-SE). The cells were incubated at room temperature for 10 min and washed twice with the same volume of FCS and then with culture medium. Immunoblot of TCR chain and chain involved total T cells or CD4+ and CD8+ fractions purified by magnetic-activated sorting (Miltenyi Biotec), which were analyzed as described (18), using monoclonal anti-CD3 (6B10.2) and polyclonal anti-CD3e (M20; both from Santa Cruz Biotechnology) in combination with the appropriate Abs conjugated to HRP, followed by ECL.

Analysis of lymphocyte function

For mitogen-induced cell proliferation and cytokine induction, CD4+ or CD8+ T cells (1 × 105/ml) were cultured in the presence of 1 M plate-bound anti-CD3e (145-2C11), 2.5 mg/ml Con A (Sigma-Aldrich), or 2 ng/ml PMA (Sigma-Aldrich) combined with 0.2 M calcium ionophore (Sigma-Aldrich). In T cell–DC co-cultures, T cells (1 × 105) were stimulated with DCs (at a DC to T cell ratio of 1:5 and in the presence of 1 M solutions anti-CD3), and cultures were assayed for T cell proliferation by incorporation of [3H]thymidine or cell-free supernatants were analyzed for cytokine secretion in CD4+ T cells result from the combined effects of tryptophan deprivation and amino acid deprivation. The CD8+ T cells display impaired function ex vivo, whereas the CD4+ Treg are shown to prevent disease in an experimental setting of diabetes transfer.
of 3-hydroxykynurenine, 3-HAA, and quinolinic acid, each at 10 μM, or a combination of LT with kynurenines (LT-K). Plate-bound anti-CD3 and anti-CD28 were present in the cultures. FACS analysis revealed that the LT-K culture conditions, but not LT or kynurenines alone, decreased CD3ζ, and did so mostly in CD8⁺ T cells (Fig. 1C). The LT-K conditions had no effect on the expression of other TCR components, including TCRαβ and TCRε, and did not affect costimulatory molecules, including CD28 (data not shown). The effect of LT-K was time-dependent (Fig. 1D) and slowly reversible, as it required reculturing the cells for at least 72 h in control medium for 90% recovery of the original ζ expression (data not shown). The effect was also demonstrable by immunoblot analysis with anti-ζ but not anti-ε Abs, and was likewise observable using IDO⁺ DCs in place of LT-K (Fig. 1E).

The GCN2 stress-response kinase is activated by starvation for amino acids and functions to control transcriptional and translational programs that couple cell growth to amino acid availability (26). Recent evidence indicates that GCN2 activation could be an upstream mechanism in the immunoregulatory effects of IDO (32). To ascertain whether down-regulation of CD3ζ by tryptophan catabolism requires GCN2, we used Gcn2⁻/⁻ mice as a source of CD8⁺ T cells that were exposed to LT-K medium (Fig. 1F). In contrast to the Gcn2⁻/⁻ mice, we observed no changes in CD3ζ expression in the T cells lacking GCN2.
TCRζ-chain down-regulation is associated with impaired function

We investigated whether the diminished expression of CD3ζ induced by LT and kynurenines in CD8+ T cells correlates with an impaired immune function in vitro. Purified CD8+ and CD4+ T cells were exposed to LT-K for 72 h, washed and recultured for 48 h in the presence of anti-CD3, Con A, or a combination of PMA and calcium ionophore (Fig. 2A). Proliferation was significantly reduced by LT-K conditioning upon activation of CD8+ cells, but not CD4+ cells, with anti-CD3 or Con A. No effect was found on activation with PMA and calcium ionophore in either cell type, demonstrating a selective impairment of TCR-mediated signaling events in the CD8+ cells conditioned by LT-K. Under the same conditions, the production of IFN-γ and IL-2 by CD8+ T cells in response to anti-CD3 was severely impaired (Fig. 2B). The cytokine response of CD4+ T cells was apparently unaffected (data not shown).

NOD mice expressing the 8.3-TCRζβ transgene (8.3-NOD) (27) possess a prevalent population of autoreactive CD8+ T cells that recognize a β cell autoantigen and are reactive to the islet-related NRP-A7 peptide (29, 33, 34). To ascertain whether ζ-chain down-regulation occurs in vivo, we used pentamer technology to transfer NOD-SCID mice with a combination of NRP-A7-pulsed, IDO+ DCs and NRP-A7 pentamer-positive 8.3-CD8+ T cells.

FIGURE 2. TCRζ-chain down-regulation by tryptophan catabolism correlates with impaired T cell function in vitro and occurs in vivo. A, Purified CD8+ or CD4+ T cells were precultured for 72 h in control or LT-K medium in the presence of plate-bound anti-CD3 and anti-CD28, and were then exposed for 48 h to plate-bound anti-CD3, Con A, or PMA and calcium ionophore, to be assayed for cell proliferation as measured by [3H]thymidine incorporation (mean ± SD of triplicate samples). *, p < 0.001, LT-K vs control in one experiment representative of three. B, Cultures of CD8+ T cells established as in A and recultured with anti-CD3 were assayed for IFN-γ and IL-2 contents in 48-h supernatants (mean ± SD of triplicate samples). *, p < 0.005, LT-K vs control in one experiment representative of three. C, IDO− and IDO+ DCs pulsed with NRP-A7 were injected s.c. into NOD-SCID mice (1 × 10⁶), which also received NRP-A7 pentamer-positive 8.3-CD8+ T cells (5 × 10⁶) i.v. The injection of IDO− or IDO+ NRP-A7-pulsed DCs was repeated after 1 wk and, after 48 h, CD8+ cells were recovered from the spleen and lymph nodes; of these cells, 95.4 and 97.3% were pentamer-positive cells in the spleen and lymph nodes, respectively. The CD8+ T cells were pooled and assayed for CD3ζ expression by FACS analysis as in Fig. 1C. Isotype control treatment (open histogram) is indicated. The mean channel fluorescence intensity is indicated for one experiment representative of three. The mean fluorescence value ± SD for the three experiments were 22.3 ± 4.1 and 9.5 ± 2.0 for IDO− and IDO+ DC treatments, respectively (p < 0.01). D, Portions of the CD8+ cells recovered as in C were assayed for lytic activity to NRP-A7-pulsed RMA-S/Kd target cells at different E:T ratios (mean ± SD of replicate samples). *, p < 0.01, IDO− vs IDO+ DC treatment of the prospective donors of CD8+ cytotoxic effectors. One experiment representative of three is shown.
CD8\(^+\) T cells were harvested from the spleen and lymph nodes, and were analyzed for CD3\(\varepsilon\) expression (Fig. 2C) and for ability to lyse peptide-pulsed target cells (Fig. 2D). Noticeable down-regulation of the \(\zeta\)-chain and impaired lytic activity were observed in the CD8\(^+\) T cells recovered from NOD-SCID mice immunized with IDO\(^+\) DCs at the time of T cell transfer.

Tryptophan catabolism converts CD25\(^-\)Foxp3\(^-\) into CD25\(^+\)Foxp3\(^+\) cells

Despite the lack of LT-K effects on proliferation and cytokine production by CD4\(^+\) T cells following a 48-h exposure, we asked whether a prolonged exposure to LT and kynurenines might act on naive CD4\(^+\) T cells to change their functional properties. When CD4\(^+\) T cells exposed to LT-K for 7 d were recultured for 24 h with anti-CD3 in standard medium, they produced little or no IFN-\(\gamma\) and IL-4; yet, they produced noticeable amounts of IL-10 and TGF-\(\beta\) (Fig. 3). A similar pattern of cytokine production was observed on assaying CD4\(^+\) T cells exposed to IDO\(^+\) DCs in place of LT-K (data not shown).

Accumulating evidence suggests that Tregs, including those characterized by IL-10 and TGF-\(\beta\) secretion, represent a dedicated T cell lineage, and that the forkhead family transcription factor Foxp3 functions as the Treg cell lineage specification factor (35). We used real-time PCR analysis for measuring Foxp3 transcript expression in unfractionated CD4\(^+\) T cells exposed to IDO\(^-\) or IDO\(^+\) DCs or to LT or LT-K for 1, 3, or 6 days (Fig. 4A). The results demonstrated an 8- to 40-fold increase in Foxp3 transcript expression at 3–6 days of cell culture with IDO\(^+\) DCs or in the LT-K medium. The effect of culturing CD4\(^+\) T cells with IDO\(^+\) DCs on Foxp3 transcript expression was negated by the presence of 1-MT.

The CD25 molecule, which is expressed by 5–10% of CD4\(^+\) T cells in naive mice, is able to operationally if not specifically differentiate naturally present autoimmune-preventive Tregs from other T cells (22). Using RT-PCR, we examined Foxp3 transcripts in CD25\(^+\) and CD25\(^-\) CD4\(^+\) fractions after cell culture in LT-K for 1, 3, or 6 days (Fig. 4B). We obtained evidence for the appearance of Foxp3 transcripts in the CD25\(^-\) fraction at 3–6 days of culture. Foxp3 expression in the CD25\(^+\) cells remained unchanged. The presence of Foxp3 protein in the CD25\(^-\) fraction after LT-K exposure was confirmed by flow cytometry (Fig. 4C).

We used FACS analysis to investigate the possible conversion of CD25\(^-\) cells into CD25\(^+\) cells in concomitance with Foxp3 appearance, and to evaluate the expression of a series of phenotypic and functional markers including CD69, CD45RB, CD62L, CTLA-4, BTLA, and GITR. At 1 wk of LT-K exposure, >90% of the original CD25\(^-\) cells appeared to express the CD25 molecule. The converted cells were CD69\(^-\), CD45RB\(^{low}\), CD62L\(^+\), CTLA-4\(^+\), BTLA\(^{low}\), and GITR\(^+\), thus expressing markers associated with the function of CD4\(^+\)CD25\(^+\) Tregs and subsets thereof in different experimental settings (28, 36–39) (Fig. 4D).

Next we investigated whether the conversion of CD4\(^+\)CD25\(^-\) T cells into CD4\(^+\)CD25\(^+\) Tregs by LT-K could be the result of expansion of residual CD4\(^+\)CD25\(^-\) cells or selective CD4\(^+\)CD25\(^+\) cell survival. Using individual populations or combinations of CD4\(^+\)CD25\(^+\) and CD4\(^+\)CD25\(^-\) T cells we examined proliferation, cell division, and viable cell recovery data at different times of LT-K exposure. Purified CD4\(^+\)CD25\(^-\) T cells but not CD4\(^+\)CD25\(^+\) proliferated in LT-K medium, by both [\(\text{H}\)]thymidine uptake and trypan blue dye exclusion analysis (Fig. 5A). Coculturing CFSE-labeled CD4\(^+\)CD25\(^-\) cells with 10% DDAO-SE-labeled CD4\(^+\)CD25\(^+\) cells in LT-K revealed selective proliferation of CD4\(^+\)CD25\(^+\) cells (Fig. 5B). Thus, neither expansion of residual CD4\(^+\)CD25\(^-\) cells nor selective CD4\(^+\)CD25\(^+\) cell survival contributed significantly to the conversion of CD4\(^+\)CD25\(^-\) T cells into CD4\(^+\)CD25\(^+\) Tregs by LT-K.

** Converted CD4\(^+\)CD25\(^+\) cells mediate CTLA-4 and IL-10-dependent suppression

To investigate whether the CD4\(^+\)CD25\(^+\) Foxp3-expressing cells induced by LT-K display regulatory function in vitro, we cocultured various numbers of those cells with responder CD4\(^+\)CD25\(^-\) T lymphocytes from naive mice in the presence of anti-CD3 and T cell-depleted splenocyte samples as APCs (Fig. 6A). CD4\(^+\)CD25\(^-\) T cells were exposed to LT-K or cultured with IDO\(^+\) DCs for 7 days (a time when no viable CD8\(^+\) T cells would be recoverable from parallel cultures; Fig. 5A), and cells were then assayed for suppressive activity after separation into CD25\(^+\) and CD25\(^-\) fractions. The CD4\(^+\)CD25\(^-\) T cells cultured in LT-K or with IDO\(^+\) DCs for 7 days greatly inhibited the proliferation of responder T cells in contrast to the minority fraction that had remained CD25\(^+\) after LT-K or IDO\(^+\) DC treatment. (These cells did not express Foxp3 transcripts, data not shown.) Suppression was comparable to that of natural Tregs, i.e., CD4\(^+\)CD25\(^+\) Foxp3-expressing T cells isolated from lymph nodes of naive mice.

We investigated whether the expression of CTLA-4, TGF-\(\beta\), or IL-10 has any role in mediating the regulatory function of the CD25\(^-\) cells induced by LT-K. Abs to CTLA-4, TGF-\(\beta\), or IL-10 were added, either singly or in combination, to the cocultures of Treg and responder CD25\(^-\) T cells in the proliferation assay (Fig. 6B). The Abs had limited (anti-IL-10, anti-CTLA-4) or no (anti-TGF\(\beta\)) effect when used singly, but the combination of anti-IL-10 and anti-CTLA-4 resulted in ablation of the regulatory properties of the Tregs generated by LT-K exposure.

** GCN2 and TGF-\(\beta\) are required for generation of Foxp3\(^+\) Tregs by LT-K

Naive CD4\(^+\)CD25\(^-\) T cells can be converted to a CD25\(^+\) Treg phenotype by TGF-\(\beta\), which is thought to act through the induction of Foxp3 (37). Although the production of this cytokine seemed to have little role in the in vitro downstream effects of the T cells converted by LT-K, we asked whether autoimmune TGF-\(\beta\) is involved in Foxp3 induction. We also examined whether activation of the GCN2 kinase is a prerequisite for the induction of Foxp3 and Treg function by LT-K. Gcn2\(^{-}\) mice and wild-type mice served as a source of CD4\(^+\)CD25\(^-\) cells that were used for generating Tregs by 7-day exposure to LT-K in the presence of anti-CD3 and anti-CD28, with or without anti-TGF-\(\beta\). Foxp3 transcript expression (Fig. 6C) and ability to inhibit the proliferation of responder T cells (Fig. 6D) were examined in the recovered cells according to the conditions described above. The GCN2 kinase and TGF-\(\beta\) appeared to be required for the expression of Foxp3 and regulatory

** FIGURE 3.** Tryptophan catabolism and tryptophan catabolites favor the emergence of cells producing IL-10 and TGF-\(\beta\). CD4\(^+\) T cells were cultured for 7 days in control or LT-K medium in the presence of plate-bound anti-CD3 and anti-CD28 and were then activated for 24 h with anti-CD3 to be assayed for the production of IL-10, TGF-\(\beta\), IFN-\(\gamma\), and IL-4. Results are means \(\pm\) SD of replicate samples. One experiment representative of three is shown.
properties in CD4⁺ T cells exposed to LT-K. Although it is possible that the anti-TGF-β would also neutralize any TGF-β present in the bovine sera added to the media, it should be noticed that the DCs did not produce significant amounts of TGF-β in vitro in response to LT-K (data not shown).

Tregs induced by LT-K protect hosts from diabetes transfer

Clonotypic T cell NOD mice expressing the BDC2.5-TCRαβ transgene (BDC2.5/NOD) are characterized by a prevalent population of CD4⁺ T cells that recognize a mimotope homologous to a peptide of glutamic acid decarboxylase 65 (40–42). Most BDC2.5/NOD mice do not develop spontaneous diabetes, but do develop insulitis accompanied by the appearance of activated islet-specific T cells. Evidence suggests that these cells are actively prevented from causing disease by a CTLA-4-dependent immunoregulatory mechanism and by the action of CD4⁺CD25⁺CD69⁻ Tregs (43). At variance with BDC2.5/NOD mice, BDC2.5 TCR transgenic mice backcrossed into the NOD-SCID background show fulminant diabetes, strongly arguing for the regulatory role of endogenously rearranged T cells lacking the transgenic TCR (44). Rapid diabetes also develops in NOD-SCID mice adoptively transferred with spleen cells or purified CD4⁺ T cells from BDC2.5/NOD donors (45). In this setting, however, onset of disease is prevented by the cotransfer of CD4⁺CD25⁺CD62L⁻ cells from prediabetic NOD mice (45). Using the cotransfer model, we investigated whether the Tregs generated by LT-K in vitro are capable of protecting NOD-SCID mice from the induction of diabetes by BDC2.5 transgenic T cells. We tested CD4⁺CD25⁺ cells cultured for 7 d in LT-K medium in comparison with purified CD4⁺CD25⁺CD62L⁻ cells from NOD mice (Fig. 7A). The results showed that the Tregs generated by LT-K prevented transfer of diabetes in a durable and dose-dependent fashion and to an extent comparable to the control Treg population. However, when the recipients of the cotransfer received 1-MT pellets at the time of...
IDO-dependent mechanisms, and so does the CD25 (+). This result demonstrates that the Tregs respectively (Fig. 7B). Animals at 30 days were 0% and 25% for the two treatments, respectively (Fig. 7B). This result demonstrates that the Tregs induced by LT-K protect NOD-SCID mice from diabetes transfer via IDO-dependent mechanisms, and so does the CD25 (+)CD62L (-) subset of Tregs from early prediabetic NOD mice.

Discussion

The immunosuppressive pathway of tryptophan catabolism has been implicated, with either protective or disease-promoting roles, in a variety of physiopathologic conditions, ranging from pregnancy (3) to transplantation (4), from autoimmunity (5) and inflammation (6, 7, 46) to neoplasia (11, 12). Two major theories have been proposed to explain how tryptophan catabolism creates tolerance. One theory posits that tryptophan breakdown suppresses T cell proliferation by dramatically reducing the supply of this indispensable amino acid in local tissue microenvironments (2). The other theory postulates that the downstream metabolites of tryptophan catabolism act to suppress immune cells, probably by proapoptotic mechanisms (1). In addition, it has been suggested that quinolinate, a tryptophan catabolite, functions to replenish nicotinamide adenine dinucleotide in leukocytes, which is depleted by oxidative stress during an immune response (47). Recently, it has been proposed that the Treg phenotype could result, in part, from a biochemical reaction involving the modulatory activity of the tryptophan catabolite 3-HAA (48). These are not necessarily excluding possibilities and each might have a role in the biology of IDO (32). Reconciling, however, these different possibilities could be crucial to an integral role of tryptophan catabolism in mediating aspects of immune regulation that are both differentiated and interdependent (49).

Presumably due to their expression of tryptophanyl-tRNA-synthetase, which counteracts IDO-induced tryptophan depletion, naïve CD8 T cells are resistant to cell cycle arrest by tryptophan catabolism when exposed to strong antigenic stimuli (15), and are likewise resistant to kynurenine-induced apoptosis (17). Yet, Ag-specific class I-restricted responses are severely and reversibly impaired under conditions of IDO activation in vivo (10, 11). TCR ζ-chain down-regulation and impaired in vitro T cell function have been described in cancer and autoimmune and infectious diseases (19). Although down-regulation of ζ-chain could be a normal mechanism for controlling an excessive and potentially hazardous immune response, the continuous presence of pathogen or tumor Ags and chronic inflammation most likely exploits this mechanism to impair immune responses to chronic diseases (18), many of which are characterized by sustained IDO expression (1, 2). We found that a LT concentration, incapable of impairing T cell reactivity per se (30), synergized with physiologic concentrations of kynurenines (17) in down-regulating T cell CD3ζ expression in a specific and reversible fashion. The effect was demonstrable in vivo and required the activity of the GCN2 kinase. Although a causal link was not established between down-regulation of CD3ζ expression and impaired function of CD8 T cells, the data suggested an association of the former effect with a reduced cytotoxic activity in vitro.

In eukaryotes, the mechanism for recognizing indispensable amino acid deficiency follows the conserved general control system, wherein uncharged transfer RNA induces phosphorylation of eukaryotic initiation factor 2 via the GCN2 kinase. This basic mechanism of nutritional stress management functions primarily to couple cell growth to amino acid availability (26). It has been proposed that GCN2 acts as a molecular sensor in T cells, allowing them to detect and respond to conditions created by IDO (32). Although amino acid deficiency alone is necessary and sufficient to activate a GCN2 response, our current data demonstrate that CD3ζ down-regulation requires the combined effects of tryptophan depletion and tryptophan catabolites. This clarifies the qualitative nature of the stress conditions created by IDO in vivo and, at the same time, explains the specificity of the T cell response to this particular form of ‘nutritional’ stress. In the case of conditions generated by tumoral IDO (11), the exquisite sensitivity of TCR-expressing T cells to LT-K effects could explain why tryptophan catabolism likely represents an efficient mechanism used by tumors for immune evasion in the absence of any gross effect of nutrient depletion, which would be detrimental to the tumor itself.

CD4 CD25 Tregs are crucial in controlling autoimmune and inflammatory pathology, but little is known about their development and maintenance (20–23). Although it appears very likely that most CD4 CD25 Treg cell development occurs in the thymus, accumulating evidence suggests that these cells can also develop in the periphery (50, 51), and that they do so under natural conditions, i.e., with the expression of a natural TCR repertoire and exposure to the natural endogenous Ag load (38). We found that mature peripheral CD4 CD25 T cells, that are relatively resistant to CD3ζ down-regulation by LT-K, can indeed convert to a CD4 CD25 Treg phenotype through a process requiring GCN2 and leading to a gradual decrease in IL-2 production and up-regulation of IL-10 and TGF-β. Although the converted CD4 CD25 T cells themselves fail to proliferate after stimulation, they can suppress proliferation of responder cells in vitro. The converted cells express high amounts of Foxp3 transcript and Foxp3 protein. Autocrine TGF-β appears to be a prerequisite for the induction of Foxp3 and Treg function.

Much evidence is now available for the diversity of CD4 Tregs that control distinct pathologies (52). Treg subsets defined by the CD25, CD62L, and CD45RB markers overlap only partially, suggesting that these subsets are functionally distinct or that a relevant Treg subset represents only a minority of the cells composing the three populations defined by these markers. As a result, the Treg...
population that protects NOD mice from fulminant diabetes appears to be CD25^+CD62L^-, shows a variable expression of CD45RBlowCTLA-4, and is distinct from the Treg subset protecting from colitis or gastritis (28). Conversion of peripheral CD4^+CD25^- naive T cells to CD4^+CD25^+ Tregs by TGF-β induction of Foxp3 results in the appearance of a CD25^+CD45RBlowCTLA-4^+ subset that is unresponsive to TCR stimulation, produces neither Th1 nor Th2 cytokines, expresses TGF-β, and inhibits normal T cell proliferation in vitro (37). Similar to this Treg population, we found that cell conversion in our model system with LT-K was further characterized by the presence of CD62L, GITR and secreted IL-10, with little or no expression of CD69 or BTLA.

Among Foxp3-expressing Treg populations, CD4^+CD25^+ T cells are known to function through different mechanisms, including cell-cell contact, membrane or soluble TGF-β, and secreted IL-10 (21, 23, 52). We found that the Tregs generated by LT and kynurenines would suppress naive T cell proliferation in vitro by a combination of CTLA-4-dependent and IL-10-dependent effects, as demonstrated by the blocking effect of neutralizing Abs. In vivo, we found that the CD4^+CD25^+ Tregs induced by LT-K prevented transfer of diabetes to an extent comparable to the control Treg population from prediabetic NOD mice. The protection transferred by both populations required tryptophan catabolism in the host. This indicates that modulation of tryptophan catabolism could represent an important mechanism of action not only for developmentally controlled ‘professional’ Tregs (52), as suggested by previous data (13), but also for T cells that are induced in the periphery to express a regulatory phenotype.

In conclusion, our data demonstrate that, before T cell cycle arrest due to a critical shortage in tryptophan supply, the early control of an immune response byIDO involves adjustable and versatile effects, including CD3ξ down-regulation and Treg generation, operated by two distinct signals, i.e., tryptophan deficiency and kynurenine production. Although the mechanisms of kynurenine action are largely unknown (17, 25, 53, 54), this observation clearly distinguishes the activity of IDO as a truly immunoregulatory enzyme from the effects on T cells of a mere starvation for amino acids, and distinguishes the activity of IDO as a truly immunoregulatory enzyme from the effects on T cells of a mere starvation for amino acids, and paves the way to the possible use of synthetic kynurenines as therapeutic agents. Defining one possible means by which Tregs are physiologically generated and maintained in the periphery could provide...
new opportunities for designing ways to induce or abrogate tolerance in physiopathologic conditions.

Acknowledgments
We thank L. Chatenoud (Institut National de la Santé et de la Recherche Médicale Unité 580, Paris, France) for the gift of transgenic B2C2.5/NOD mice, T. Fortunati for performing surgical procedures, and G. Andrielli for technical assistance.

Disclosures
The authors have no financial conflict of interest.

References

