Deficit of CD47 Results in a Defect of Marginal Zone Dendritic Cells, Blunted Immune Response to Particulate Antigen and Impairment of Skin Dendritic Cell Migration

Sven Hagnerud, Partha Pratim Manna, Marina Cellla, Åsa Stenberg, William A. Frazier, Marco Colonna and Per-Arne Oldenborg

J Immunol 2006; 176:5772-5778; doi: 10.4049/jimmunol.176.10.5772

http://www.jimmunol.org/content/176/10/5772

References

This article cites 34 articles, 16 of which you can access for free at: http://www.jimmunol.org/content/176/10/5772.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at: http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts
Deficit of CD47 Results in a Defect of Marginal Zone Dendritic Cells, Blunted Immune Response to Particulate Antigen and Impairment of Skin Dendritic Cell Migration

Sven Hagnerud, Partha Pratim Manna, Marina Cella, Åsa Stenberg, William A. Frazier, Marco Colonna, and Per-Arne Oldenborg

CD47 is a ubiquitously expressed cell surface glycoprotein that associates with integrins and regulates chemotaxis, migration, and activation of leukocytes. CD47 is also a ligand for signal regulatory protein α, a cell surface receptor expressed on monocytes, macrophages, granulocytes, and dendritic cell (DC) subsets that regulates cell activation, adhesion, and migration. Although the function of CD47 in macrophages and granulocytes has been studied in detail, little is known about the role of CD47 in DC biology in vivo. In this study we demonstrate that CD47−/− mice exhibit a selective reduction of splenic CD11c+CD11b+CD8α− CD4+ DCs. These DCs correspond to marginal zone DCs and express signal regulatory protein α, possibly explaining their selective deficiency in CD47−/− mice. Deficiency of marginal zone DCs resulted in impairment of IgG responses to corpuscular T cell-independent Ags. Although epidermal DCs were present in normal numbers in CD47−/− mice, their migration to draining lymph nodes in response to contact sensitization was impaired, while their maturation was intact. In vitro, CD47−/− mature DCs showed normal CCR7 expression but impaired migration to CCL-19, whereas immature DC response to CCL-5 was only slightly impaired. These results demonstrate a fundamental role of CD47 in DC migration in vivo and in vitro and in the function of marginal zone DCs.

Copyright © 2006 by The American Association of Immunologists, Inc. 0022-1767/06/$02.00
SIRPα+ DCs, which correspond to marginal zone DCs. This defect resulted in impaired Ab responses to cupulaceous Ags. Following contact sensitization, we also detected a strong reduction in the migration of epidermal DCs to the draining lymph nodes of CD47−/− mice. In vitro, CD47−/− mature DCs showed an impaired migration to the CCR7 ligand CCL-19, whereas CD47−/− immature DCs responded to CCL-5. Thus, these data indicate that CD47 is required for the trafficking and function of specific DC subsets.

Materials and Methods

Mice

CD47−/− C57BL/6J mice (2), backcrossed to C57BL/6J for 21 or more generations, and their homozygous littermates were from our own breeding colony. The mice were housed in a pathogen-free barrier facility according to local guidelines. All experiments were approved by the local animal ethics committee.

In vitro generation of bone marrow-derived DCs

Bone marrow-derived DCs were generated from wild-type or CD47-deficient mice by culture of bone marrow cells in 50 ng/ml GM-CSF (Amgen) and 1 ng/ml IL-4 (R&D Systems) for 9 days. Nonadherent CD11c+ cells were used for in vitro migration experiments. DC expression of CCR7 was determined by flow cytometry using the anti-mouse CCR7 mAb 4B12 (eBioscience).

Isolation of splenic or lymph node DCs

Following mechanical disruption, spleens or lymph nodes were treated with 0.1 mg/ml collagenase D (Roche) for 1 h at 37°C. DCs were enriched by CD11c+ magnetic adsorption cell sorting or by using a CD8+ DC isolation kit according to the manufacturer’s instructions (MACS; Miltenyi Biotec).

Isolation of epidermal ear sheets and epidermal DCs

Preparation of epidermal ear sheets and isolation of epidermal DCs were performed essentially as previously described (16).

Antibodies and flow cytometry

Conjugated mAbs, streptavidin-PE, streptavidin-allophycocyanin, and avidin-FITC were from BD Pharmingen. Cells were labeled with Abs for 30 min on ice and analyzed using flow cytometry (FACScan or FACScalibur, BD Biosciences) and Cell Quest software (BD Biosciences).

In vivo uptake of particulate Ag

Washed SRBCs (Hutnaholm) were labeled with PKH26 (Sigma-Aldrich). Mice were injected i.v. with 2.5 × 10⁷ PKH26-labeled SRBCs diluted in 200 µl of 0.9% NaCl. After 4 h the mice were sacrificed, and their spleens were harvested for flow cytometric analysis or immunohistochemistry.

FIGURE 1. Reduced numbers of marginal zone DCs in CD47-deficient spleens. A, The fraction of CD11c+high cells from total spleen cells was reduced in CD47−/− mice as compared with that in wild-type controls. Values are mean ± SD for three mice in each group. *, p < 0.05 using Student’s t test for paired comparisons. B, Phenotype of CD11c magnetic bead-isolated DCs in wild-type or CD47−/− spleens. CD11c+ cells were labeled with Abs as indicated and analyzed by flow cytometry. C, Absence of marginal zone (MZ) DCs in spleens of CD47−/− mice. Frozen sections of spleens were stained with anti-CD11c mAb N418 (green) and anti-CD19 (red) and analyzed using laser confocal microscopy. Representative images are shown; scale bar represents 200 µm.

Immunizations and ELISA

All mice were bled on the day before immunization to get preimmune sera. On day 0, wild-type or CD47−/− mice were immunized i.v. with 10⁷ SRBCs or keyhole limpet hemocyanin (KLH) (1 µg or 25 µg), followed by a booster immunization on day 28. Sera of blood collected at times indicated were stored at −20°C until assayed for Ig content. Diluted serum samples were analyzed using ELISA as previously described (23).

Immunohistochemistry

Frozen sections of spleens were labeled with mAb N418 (anti-CD11c) and fluorescein tyramide amplification (PerkinElmer) as previously described (8). Sections were further incubated with rat anti-mouse CD19 or anti-CD8a, followed by Cy5-conjugated goat anti-rat IgG (BD Pharmingen) and analyzed using laser confocal microscopy (Leica TSP-2). Staining of resident epidermal DCs was performed using en face staining of epidermal ear sheets with anti-SIRPα, mAb P84 (rat IgG1) and FITC-conjugated goat anti-rat IgG (Sigma-Aldrich) as previously described (16).

Skin migration assay

CellTracker Green (Invitrogen Life Technologies) was dissolved 1:20 in a 50:50 (v/v) acetone dibutyl phthalate mixture and painted on the dorsal side of the ears. After 24, 36, or 48 h, single cell suspensions of collagenase-digested draining lymph nodes, with or without CD11c magnetic sorting, were labeled with Abs and analyzed by flow cytometry as described above.

Delayed-type hypersensitivity (DTH) response

Mice were sensitized epicutanously on day 0 by applying 50 µl of a 0.5% 2,4-dinitro-1-fluorobenzene (DNFB) solution in 4:1 acetone/olive oil (v/v) onto 2 cm² of shaved abdominal skin. On day 5 after sensitization the mice were challenged on the right ear by topical application of 0.2% DNFB, whereas the left ear received vehicle alone. Contact sensitivity was determined by measuring the increase in the thickness of the challenged ear compared with that of the control left ear and was expressed in micrometers.

In vitro chemotaxis assay

Chemotaxis of bone marrow-derived DCs to CCL-5 or CCL-19 (Peprotech) was measured in a Transwell migration assay using 24-well Costar Transwell chambers (5-µm pore size; Corning). For migration to CCL-19, the bone marrow-derived DCs were cultured with LPS (1 µg/ml) for 24 h before the experiment.

Statistics

Statistical analysis was performed by using the two-tailed Student’s t test for paired or unpaired samples (see legends to the figures).
Results

Reduced numbers of marginal zone DCs in spleens of CD47-deficient mice

We examined splenocytes in wild-type and CD47-deficient mice by flow cytometry and found that CD11c^{high} DCs were reduced in CD47^{−/−} mice, as compared with their wild-type controls (0.89 ± 0.05 vs 1.55 ± 0.1%) of total spleen cells; Fig. 1A). Following magnetic bead purification of CD11c⁺ splenocytes, we recovered a reduced number of CD11c^{high} cells (data not shown). Further investigation of the phenotype of purified splenic CD11c⁺ DCs in CD47^{−/−} compared with that of wild-type mice revealed a reduced proportion of CD11b^{high} DCs (Fig. 1B), whereas the proportion of CD8α[−] DCs was increased (Fig. 1B). Notably, we also found a strong reduction of CD4⁺ and 33D1⁺ DCs in CD47^{−/−} spleens (Fig. 1B). Because 33D1 is a marker of marginal zone DCs (15), these data suggested that the spleens of CD47^{−/−} mice were deficient in marginal zone DCs. Indeed, immunohistochemical staining of CD47^{−/−} and wild-type spleens showed a virtual absence of CD11c⁺ DCs in the splenic marginal zones of CD47^{−/−} mice, whereas CD11c⁺ DCs were maintained in the T cell area surrounding the central artery of the white pulp (Fig. 1C). We did not find any difference in the expression levels of the activation markers CD40, CD80, or CD86 (data not shown). Moreover, B220⁺Gr1⁺CD11b[−] plasmacytoid DCs were equally represented in wild-type or CD47^{−/−} mice (data not shown). Thus, these findings demonstrate that CD47^{−/−} mice exhibit a selective defect of CD11c^{high}CD11b^{high}CD8α[−]CD4⁺33D1⁺ DCs, which correspond to marginal zone DCs.

SIRPα is selectively expressed by marginal zone DCs

Because the interaction between CD47 and its receptor SIRPα has been found to be important for normal migration of both human and rat leukocytes (3, 9), we compared the SIRPα expression levels on purified CD11c⁺CD8α[−] and CD11c⁺CD8α[−] DCs from the spleens of CD47^{−/−} mice. This analysis showed that CD8α[−]CD11c⁺ DCs expressed marginal, if any, amounts of SIRPα (Fig. 2A). In contrast, CD11c⁺CD8α[−] DCs, which include CD4⁺ marginal zone DCs, all expressed SIRPα (Fig. 2B).

FIGURE 2. SIRPα is expressed by splenic CD8α[−]CD11c^{high} DCs, but not by CD8α[−]CD11c^{high} DCs. CD8α[−]CD11c[−] DCs isolated by magnetic adsorption cell sorting from collagenase-digested spleens of wild-type mice (A) or CD11b[−]CD4⁺CD8α[−]CD11c[−] DCs collected from the negative fraction (B) were labeled with Abs and analyzed by flow cytometry. The CD8α[−] DC subpopulation lack SIRPα expression, whereas DCs positive for CD4 and CD11b (not shown) but negative for CD8α readily express SIRPα. Data from one representative experiment of four are shown.
Reduction of marginal zone DC in CD47−/− mice impairs uptake of corpuscular Ags and Ab responses

Because marginal zone DCs are important for the uptake of blood-borne particulate Ags (24), we studied DC-mediated uptake of PKH26-labeled SRBCs in CD47−/− and wild-type mice. In wild-type mice, the majority of SRBCs were retained in the marginal zone of wild-type spleens 4 h after injection (Fig. 3A), whereas the distribution of SRBCs in the spleens of CD47−/− mice was diffuse throughout the red pulp and not distinctly localized to the marginal zone (Fig. 3B). Further labeling of the spleen sections with anti-red pulp macrophage Abs (mAb F4/80) revealed a substantial interaction between SRBC and F4/80+ macrophages in the spleens of CD47−/− mice, but not in wild-type spleens (not shown). These data were confirmed by flow cytometric analysis of purified splenic DCs from wild-type or CD47−/− mice 4 h after the injection of PKH26-labeled SRBCs, showing a substantial uptake of SRBCs by CD11c+CD8α+ DCs in wild-type mice (21.8 ± 7.3%; Fig. 3C). In contrast, we found a significantly reduced uptake of SRBC by CD11c+DCs in CD47−/− mice (9.4 ± 8.5%, p < 0.05, Fig. 3C).

Because marginal zone DCs have been shown to promote T cell-independent Ab responses (24), we next studied the Ab response to SRBCs in wild-type or CD47−/− mice. As shown in Fig. 3D, the primary IgM response was not different between CD47−/− or wild-type mice. However, the total IgG response (Fig. 3D) was markedly reduced. Interestingly, we found no difference in the immune response to either low (1 μg) or high (25 μg) concentrations of KLH (Fig. 3E). These data further emphasize that CD47−/− mice have a specific defect in their splenic IgG response to particulate Ag but not to soluble Ag, and the normal response to soluble Ags suggests that T and B cell responses are normal in CD47−/− mice.

FIGURE 4. Normal epidermal DC numbers but impaired skin DC migration in vivo in CD47-deficient mice. A and B, DCs were isolated from epidermal sheets of the ears from naive wild-type (A) or CD47−/− (B) mice and labeled with anti-CD11c-FITC and anti-CD11b-PE, followed by flow cytometric analysis. Shown is one representative experiment of four with similar results. C and D, Epidermal sheets were prepared from the ears of naive wild-type (C) or CD47−/− (D) mice and stained for SIRPα using mAb P84 and FITC-conjugated goat anti-rat IgG. Cell counting of eight microscopic fields per ear of four mice per genotype showed no significant differences in cell numbers (114 ± 28 vs 125 ± 19 cells per field in wild-type and CD47−/− mice, respectively). E and F, CellTracker Green/acetone/dibutyl phthalate was painted on the dorsal side of the ears of wild-type or CD47−/− mice. After 36 h, draining lymph nodes were collected, and collagenase-digested cells were stained with CD11c-APC and PE-conjugated mAbs to either CD4 or CD11b, followed by flow cytometric analysis. G, Percentage of cell tracker-positive CD11c+ cells in draining lymph nodes of wild-type or CD47−/− mice at 24, 36, or 48 h following skin painting. Values are mean ± SD for three separate experiments. H, DTH response in wild-type or CD47−/− mice. Mice were sensitized by abdominal application of 0.5% DNFB on day 0, followed by application of 0.2% DNFB to the right ear on day 5. Increase in ear thickness was determined 24 h later and is shown relative to the thickness of the vehicle-treated left ear of the same mouse. Data are mean ± SD for data pooled from 11 mice in each group. *, p < 0.05; **, p < 0.01; as compared with wild-type mice using Student’s t test for unpaired comparisons.
Impaired migration of CD47−/− DCs from the skin to draining lymph nodes in vivo

A recent study showed that epidermal DCs express SIRPa (16). Therefore, we investigated skin DCs in CD47−/− mice. We initially compared the numbers of epidermal DCs in the ears of wild-type or CD47−/− mice. No significant difference was detected by either flow cytometry of isolated epidermal DCs (Fig. 4, A and B) or immunohistochemistry of epidermal sheets of naïve CD47 wild-type or CD47−/− mice stained for SIRPa (Fig. 4, C and D; 114 ± 28 vs 125 ± 19 cells/field in wild-type and CD47−/− mice, respectively; n = 4). We then studied the impact of CD47 deficiency on skin DC mobilization and maturation in vivo induced by skin painting with a fluorescent contact sensitizer and analysis of CD11c+ DCs that had migrated to the draining lymph nodes 24, 36, or 48 h later. In wild-type mice we found a clear accumulation of CellTracker Green-positive cells that expressed CD11c and CD80, and CD86 (data not shown), indicating that impaired migration of DCs from the skin to the lymph nodes in vivo inhibited. Wild-type and CD47−/− mice was only 45 and 49%, respectively, of that in the wild-type mice (Fig. 4, E and F). In contrast, lymph nodes of CD47−/− mice showed an accumulation of green fluorescent cells (Fig. 4, G). At 24 h, lymph nodes of CD47−/− mice showed an accumulation of green fluorescent cells, which was only 15% of that in wild-type mice (Fig. 4G). Even at 36 or 48 h, the migration of DCs from the skin to the lymph nodes in the CD47−/− mice was only 45 and 49%, respectively, of that in the wild-type mice (Fig. 4G). To understand the physiological significance of the reduced skin DC migration in CD47−/− mice, we also investigated the DTH reaction to the chemical Ag DNFB. These experiments revealed a 51% inhibition of the DTH response in CD47−/− mice (p < 0.01; Fig. 4H). Thus, despite a strong impairment of skin DC migration in CD47−/− mice, a DTH response was still present although strongly inhibited. Wild-type and CD47−/− DCs that migrated from the skin showed similar up-regulation of the activation markers CD40 (Fig. 5), CD80, and CD86 (data not shown), indicating that impaired migration of epidermal DCs observed in CD47−/− mice is not the result of a maturation defect.

CD47 deficiency impairs the migration of bone marrow-derived mature DCs to CCL-19, whereas immature DCs respond to CCL-5 in vitro

CCR7 has been identified as a key regulator of migration of mature DCs into lymph nodes (25–27). To see whether CD47 deficiency affects DC responsiveness to CCR7 ligands, we studied the migration of LPS-activated wild-type or CD47−/− bone marrow-derived DCs toward the CCR7 ligand CCL-19. These experiments revealed a significant reduction in the dose-dependent migration of CD47−/− DCs to CCL-19 as compared with that of the wild-type DCs (Fig. 6A). However, we observed no differences in the expression of CCR7 (Fig. 6B) or the maturation markers CD40, CD80, and CD86 (data not shown) in response to LPS between wild-type and CD47−/− DCs. The migration of immature DCs to CCL-5 was similar in wild type and CD47−/− DCs except at 250 ng/ml CCL-5, where the migration of CD47−/− DCs was significantly reduced (Fig. 6A). These results demonstrate that the deficit of CD47 mostly affects the chemokine responsiveness of mature DCs.

FIGURE 5. Normal maturation of skin-derived DCs in lymph nodes of CD47-deficient mice. At 36 h following FITC skin painting, CD11c+ DCs were isolated from lymph nodes of wild-type or CD47−/− mice using CD11c magnetic beads, labeled with anti-CD11c-allophycocyanin and anti-CD40-PE, and analyzed by flow cytometry. Albeit reduced numbers of CD11c+ DCs were recovered from the lymph nodes of CD47−/− mice, resident DCs of both wild-type (dotted line) and CD47−/− mice (bold line) expressed low levels of CD40 (gate R4), whereas migrated cell tracker-positive DCs of both genotypes up-regulated CD40 (gate R3).

FIGURE 6. Bone marrow-derived DCs from CD47−/− mice show reduced migration to CCL-19 but not to CCL-5 in vitro. A, Bone marrow-derived immature DCs (for CCL-5) or mature DCs (for CCL-19; cultured with 1 μg/ml LPS for 24 h) were incubated with the respective chemokine for 2 h in 24-well Transwell chambers, after which the number of migrated cells was counted. Values are mean ± SD for three independent experiments. *, p < 0.05; **, p < 0.01; and ***, p < 0.001; as compared with CD47+/+ mice at the same chemokine concentration using Student’s t test for paired comparisons. B, Following the culture of CD47+/+ (gray histogram) or CD47−/− (bold line) bone marrow-derived DCs in the presence of 1 μg/ml LPS for 24 h, CCR7 expression levels were determined by flow cytometry. Dotted line, isotype control. Data are representative of three independent experiments with identical results.
Discussion
In the present study we demonstrate that CD47−/− mice have a nearly total loss of marginal zone DCs, whereas DCs in the T cell zone are conserved. Consistent with previous studies, marginal zone DCs expressed CD11c, CD11b, CD4, and 33D1 and lacked CD8 (13, 15). Moreover, we found that marginal zone DCs expressed SIRPα, thus indicating that CD8− SIRPα+ murine splenic DCs may be the counterparts of rat CD4+ SIRPα+ DCs (19). In contrast to marginal zone CD8− SIRPα+ DCs, we found that splenic T cell zone CD8α+ CD11c+ DCs did not express SIRPα. Because SIRPα has been shown to regulate DC migration (16), it is possible that CD8− deficiency selectively impairs the migration and/or proper distribution of splenic marginal zone CD8α− DCs expressing SIRPα, whereas splenic CD8α+ DCs that do not express SIRPα were normally distributed in the T cell area of the spleen of CD47−/− mice. However, because CD47−/− mice had normal numbers of epidermal DCs, which also express SIRPα, it is possible that the CD47/SIRPα interaction could have different effects on these different DC subsets. There is also a large difference in the turnover rate of skin DCs and splenic marginal zone DCs. Skin DCs persist in their tissue far longer than splenic DCs (28, 29). This rapid turnover could amplify a difference in migration or development of the marginal zone DC subset and thus play a role in the selective deficiency of splenic marginal zone DCs.

Whatever the mechanism, the defect of marginal zone DCs resulted in a dramatic impairment of Ab (IgG) responses against corpuscule T cell-independent Ags. This observation is corroborated by recent studies showing that CD11c+bright DCs in the marginal zone and the bridging channels are essential to support the expansion of marginal zone and B1 cells in response to particulate Ags such as bacteria, promoting early immune responses against T cell-independent particulate Ags (24).

Although epidermal DCs, like marginal zone DCs, express SIRPα, we found similar numbers of epidermal DCs in wild-type and CD47−/− mice. However, migration of DCs from the skin to draining lymph nodes was strongly reduced in CD47−/− mice following contact sensitization. This observation is consistent with previous studies showing that epidermal DC migration induced by contact sensitization is impaired in SIRPα mutant mice or by Ab-mediates blockade of SIRPα (16). The same inhibition of epidermal DC migration was found in the presence of soluble CD47 (16), and soluble CD47 or SIRPα Abs also inhibited neutrophil transepithelial migration (30). This finding supports the hypothesis that interaction between epithelial CD47 and leukocyte SIRPα may result in enhanced transepithelial migration (3). Such a mechanism could also explain the defects in DC migration shown in the present study, supporting the possibility that SIRPα-CD47 interaction is essential in regulating epidermal DC migration.

Because CD47 associates in cis with integrins and in trans with thrombospondin, these interactions may also be critical in regulating epidermal DC migration. It has been shown that the integrin α4β2 mediates DC migration to lymph nodes (31), which is consistent with findings showing that β2 integrin deficiency impaired DC migration to lymph nodes (32). CD47 has been shown to interact with both β1 and β2-integrins, but the functional interaction between CD47 and the β1 integrin is the interaction best understood to date (1). The fact that RGD peptides, which mediate the binding of β1 integrins to extracellular matrix proteins, did not inhibit DC migration from skin argues against involvement of the α1β2 integrin in skin DC migration to the lymph nodes (33). We have recently found that CD47 associates with α1β2 integrin on Jurkat T cells and with α3β2 on monocytes (A. Zheleznyak and W. A. Frazier, manuscript in preparation). Thus, the possibility that the impaired migration of skin DCs observed in CD47-deficient mice is due to defects in β2 integrin-dependent cell migration must be entertained. In contrast, the homing of DCs from the circulation to the skin was not impaired in CD18−/− mice (34), which would also agree with our findings of normal numbers of epidermal DCs in CD47−/− mice.

Previous studies on the human DC showed an inhibitory role of CD47 and SIRPα in DC maturation (20–22). Because migration of DCs to lymph nodes is driven by CCR7 (25–27), which is expressed on mature DCs, the defective migration of skin DCs in CD47−/− mice could be explained by an altered DC maturation. However, we did not find any differences in expression of maturation markers (CD40, CD80, or CD86) between the CD47−/− and wild-type DCs that migrated from the skin to the lymph nodes of mice painted with a fluorescent contact sensitizer. Moreover, we did not see differences in the maturation and expression of the CCR7 of bone marrow-derived DCs in response to LPS. Thus, the reduced responsiveness of CD47−/− DC to a CCR7 ligand is not due to a maturation defect but most likely to the impairment of activation of cell migration following CCR7 engagement. Interestingly, migration of immature CD47−/− DCs toward CCL-5 was only significantly impaired at the highest dose (250 ng/ml) of CCL-5 tested. Thus, CD47 may be critical in regulating the migration of distinct subsets of DCs and/or DCs in a specific state of activation.

In conclusion, our data demonstrate a fundamental role of CD47 in the biology of marginal zone DCs and the migration of skin DCs. These cells express SIRPα and rely on β2 integrins for migration. CD47 is a ligand for SIRPα and associates with β2 integrins. Thus, our results highlight two potentially critical functions of CD47, one acting in trans as a counter-receptor for SIRPα and the other acting in cis as a regulator of β2 integrins on DC. These two functions of CD47 may be expressed differently in marginal zone vs skin DCs, yet both may be important in regulating trafficking of DC subsets.

Disclosures
The authors have no financial conflict of interest.

References