Cutting Edge: TRAIL Deficiency Accelerates Hematological Malignancies

Nadeen Zerafa, Jennifer A. Westwood, Erika Cretney, Sally Mitchell, Paul Waring, Manuela Iezzi and Mark J. Smyth

J Immunol 2005; 175:5586-5590; doi: 10.4049/jimmunol.175.9.5586

http://www.jimmunol.org/content/175/9/5586

References

This article cites 24 articles, 13 of which you can access for free at:
http://www.jimmunol.org/content/175/9/5586.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Cutting Edge: TRAIL Deficiency Accelerates Hematological Malignancies

Nadeen Zerafa, Jennifer A. Westwood, Erika Cretney, Sally Mitchell, Paul Waring, Manuela Iezzi, and Mark J. Smyth

TNF apoptosis-inducing ligand is a member of the TNF superfamily that induces apoptosis through engagement of the TRAIL-R2 (DR5) receptor in mice (1). TRAIL is expressed constitutively on a subset of liver NK cells (2) and may be induced on other leukocytes, such as NK cells, monocytes, dendritic cells, B cells, neutrophils, and T cells by IFN-α/β, IFN-γ, or signals via TLR (3–6). More recent studies have focused on the role of TRAIL in natural host suppression of tumors (7), including the antimetastatic function of NK cells in mice that is partially TRAIL dependent (2, 3). Further studies using TRAIL-deficient mice supported a role for TRAIL in host immune responses to experimental tumors (8–10). Continued interest in the role of TRAIL expressed by innate leukocytes such as NK cells and neutrophils has been fueled by the discovery that existing and promising new adjuvant therapies may mediate their antitumor activities in part via TRAIL (3, 5, 9). Furthermore, a clear role for TRAIL in the T cell-mediated immune defense against tumor was formally shown in various graft vs leukemia models in mice (11).

Although convincing, past studies were limited by only examining the role of TRAIL in host protection from transplanted experimental tumors. Thus far only three studies have addressed the role of the TRAIL-DR5 pathway in tumor immunosurveillance (9, 12, 13). Two studies using either neutralizing anti-TRAIL Ab (12) or TRAIL-deficient mice (9) have shown that TRAIL suppresses methylcholanthrene (MCA)-induced sarcoma, a mouse tumor initiation model where multiple innate and adaptive immune cells have been implicated in control of tumor initiation. A substantial contribution of TRAIL to immune surveillance against spontaneous tumor development caused by p53 mutation was demonstrated using long-term administration of anti-TRAIL Ab (12). By contrast, a recent study using TRAIL-R (DR5)-deficient mice bred with p53−/− or adenomatous polyposis coli mutant mice did not indicate any significant role for the DR5 pathway in tumor control (13).

To compare these contrasting results further, we now present evidence from three distinct mouse strains that shed more light on the role of TRAIL in host protection from malignancy. Most surprisingly, loss of TRAIL itself is sufficient to lead to the development of spontaneous lymphoma.

Materials and Methods

Mice

Inbred BALB/c and C57BL/6 (B6) wild-type mice were purchased from the Walter and Eliza Hall Institute (Parkville, Australia). The Tnfsf10 (TRAIL) gene-targeted mice (9) were bred at the Peter MacCallum Cancer Centre (East Melbourne, Australia). C.129-Tnfsf10<tmMjs>/MGL (BALB/c TRAIL−/−) were 10 generations backcrossed to BALB/c and B6.129-Tnfsf10<tmMjs>/B6 (B6 TRAIL−/−) mice (10 generations backcrossed to B6). Inbred C57-Tg (MMTV-ErbB2)1Pv (BALB/c Her2/neu) (backcrossed to BALB/c for >12 generations and provided by Dr. G. Forni, University of Turin, Turino, Italy) and B6.129S7-Tp53<tm1Brd>/B6 (B6 p53−/−) (backcross n > 20) obtained from Dr. A. Harris (Walter and Eliza Hall Institute) were bred and maintained at the Peter MacCallum Cancer Centre. BALB/c TRAIL-deficient Her2/neu-transgenic mice (BALB/c TRAIL−/− Her2/neu) supported by a National Health and Medical Research Council of Australia Principal Research Fellowship. E.C. was supported by a Cancer Council of Victoria Postdoctoral Fellowship.

1 The work was supported by a program grant from the National Health and Medical Research Council and a project grant from the Cancer Council of Victoria. M.J.S. was supported by a National Health and Medical Research Council of Australia Principal Research Fellowship. E.C. was supported by a Cancer Council of Victoria Postdoctoral Fellowship.

2 J.W. and N.Z. contributed equally to this work.

3 Address correspondence and reprint requests to Dr. Mark J. Smyth, Cancer Immunology Program, Peter MacCallum Cancer Centre, Locked Bag 1, A’Beckett Street, 8006, Victoria, Australia. E-mail address: mark.smyth@petermac.org

4 Abbreviation used in this paper: MCA, methylcholanthrene.
were generated by backcrossing BALB/c Her2/neu with BALB/c TRAIL−/− mice until BALB/c TRAIL+/− Her2/neu mice were generated. Male BALB/c TRAIL+/− Her2/neu mice were then bred with female BALB/c TRAIL+/− mice and offspring were screened for the Her2/neu transgene as described below. B6 TRAIL-deficient and B6 TRAIL-sufficient p53+/− mice (B6 TRAIL−/+ p53−/−, B6 TRAIL+/+ p53−/−) were generated by B6 TRAIL−/− p53−/− × B6 TRAIL−/− p53−/− and B6 TRAIL+/+ p53−/− × B6 TRAIL+/+ p53−/− mice, respectively. Genetic screening of tail DNA of mice was performed using the Puregene DNA Purification kit (Fisher Bioseek) as per the instructions and as previously described (8, 14, 15). All experiments were performed in accordance with guidelines set out by the Peter MacCallum Animal Experimental Ethics Committee.

Tumor monitoring

All mice were routinely screened for viruses, parasites, and other microbes and tested negative over the entire course of the experiment. B6 TRAIL−/−, B6 TRAIL+/+ p53−/−, and B6 TRAIL−/− p53−/− mice were monitored for health three times weekly as previously described (15). When sacrificed, the mouse age was recorded, a postmortem was performed, and tissues and tumor were stored in formaldehyde for H&E analysis, fresh-frozen or spleen single-cell suspensions were frozen as described elsewhere (16). The preparation and staining of sections for histology were conducted by the Microscopy Imaging and Research Core Facility, Peter MacCallum Cancer Centre. Mean age of death ± SEM was calculated and the probability of significance was determined using a nonparametric Mann-Whitney U test. In each group, one to two mice from each strain was excluded after dying of unknown causes (no detectable tumor). No mice became moribund from autoimmunity. The significance of proportions of tumors and, in particular, disseminated lymphomas was determined by a Fisher’s exact test. The mammary glands of B6 TRAIL−/− Her2/neu mice and BALB/c TRAIL−/− Her2/neu mice were palpated two to three times per week. Mammary glands with growing masses >1 mm in diameter were considered tumors. Tumor multiplicity was calculated as the cumulative number of incidence of tumors/total number of mice and is shown as mean ± SEM. Whole-mount preparations of mammary glands and immunohistochemical analyses were performed as described previously (17).

Flow cytometry

Mammary carcinomas derived from mice were assessed for surface phenotype by multiparameter flow cytometric analysis. The following reagents used for flow cytometry were purchased from BD Pharmingen unless indicated otherwise: anti-TCRβ-PE (GL3), anti-CD3-PE (H57-597), anti-CD11b-PE (M1/70), anti-IgM-biotin (R6-6B2), anti-IgG2a-biotin (R13-2C5), anti-IgG1-biotin (R6-6B2), anti-IL-2-APC (3C17-8), anti-IL-12-APC (10B11), anti-mouse DR5 (MD5-1), anti-pan-Rae-1 (clone 186107, rat IgG2a isotype reacts with Rae-1 (R3-34). Anti-FcR (2.4G2) was used to prevent nonspecific binding by mAb. Analysis was conducted on a LSR II using FACS DIVA software (BD Biosciences).

TRAIL-mediated cytotoxicity

2P3K parent and 2P3K-TRAIL transfectants were used as effector cells to determine TRAIL sensitivity of Her2/neu mammary carcinomas by an 18-h 51Cr release assay as described elsewhere (9).

Results and Discussion

TRAIL suppresses late-age lymphoma development

Spontaneous tumor development upon aging has now been assessed in a number of mice gene-targeted for various effector molecules and cytokines (15, 16, 18, 19). Given the potential role of TRAIL as an extrinsic tumor suppressor, we aged TRAIL-deficient mice on a B6 background and compared spontaneous tumor formation with B6 TRAIL+/− and B6 TRAIL−/− controls for up to 850 days (Fig. 1A). Ten of 31 aged B6 TRAIL−/− mice developed spontaneous lesions, including 8 lymphomas, 1 ovarian cystadenoma, and 1 lacrimal gland tumor. By comparison, only 1 of 41 B6 TRAIL−/+ and 1 of 20 B6 TRAIL+/+ mice developed disseminated lymphoma over the same period. Lymphomas were verified by histopathology of the primary and subsequent transplant and growth in B6 RAG-1−/− mice. Unfortunately only three lymphomas reproducibly passed in mice to allow surface phenotyping. One B6 TRAIL−/− lymphoma recovered was a CD19+ IgM− B220− B cell lymphoma, and each lymphoma derived from B6 TRAIL+/− and B6 TRAIL+/+ mice was a TCRαβ+ T cell lymphoma. None of these lymphomas expressed detectable DR5 and it was not clear whether these tumors were truly clonal (data not shown).

TRAIL suppresses spontaneous tumors following loss of one p53 allele

A proportion (35–50%) of mice with a deficiency in one p53 allele typically develop a mixture of sarcomas and disseminated lymphomas (20). In concert with these previous reports, we

![Figure 1](http://www.jimmunol.org/Downloadedfrom)
found that 17 (53.1%) of 32 of B6 TRAIL−/− p53+/− mice developed one or more spontaneous tumors including sarcomas (5 of 17), disseminated lymphomas (9 of 17), with others including a mammary adenocarcinoma, a squamous cell carcinoma, and a hepatoma (Fig. 1B). The association between TRAIL deficiency and susceptibility to tumor was strongly reiterated in p53+/− mice with 43 (76.8%) of 56 B6 TRAIL−/− p53−/− mice developing spontaneous tumors including 15 of 43 sarcomas, 23 of 43 disseminated lymphomas, and 6 of 43 other mixed tumors, including adenocarcinoma, hepatoma, and squamous cell carcinoma. The enhanced spontaneous tumor formation in B6 TRAIL−/− p53+/− mice was significant by Fisher’s exact test (p = 0.0141); however, the mean day of survival of these groups (487 ± 19 days vs 529 ± 36 days) was not significantly different (p = 0.35). These survival data are very similar to those observed in a previous study comparing survival in B6 perforin−/− p53+/− mice (479 ± 22 days) and B6 perforin+/− p53+/− mice (569 ± 22 days) (15). Clearly lymphomas arose later and with lower penetrance in B6 TRAIL−/− mice compared with B6 perforin−/− or B6 IFN-γ−/− mice (16). We have obtained no evidence to suggest that T cells and NK cells from TRAIL−/− mice have reduced perforin or IFN-γ function (our unpublished data and Refs. 3 and 9).

TRAIL does not affect mammary epithelial carcinoma development

Since there is little evidence for immune surveillance of epithelial malignancies with nonviral etiologies, we sought to investigate this possibility by comparing mammary carcinogenesis in BALB/c Her2/neu mice and BALB/c TRAIL−/− Her2/neu mice (Fig. 2). TRAIL deficiency did not significantly affect the mean day of first onset of BALB/c Her2/neu mice with mammary carcinoma (BALB/c TRAIL−/− Her2/neu mice vs BALB/c Her2/neu TRAIL+/+ mice, 115.8 ± 2.4 days (n = 20) vs 115.7 ± 1.6 days (n = 29), respectively, p = 0.6472, Mann-Whitney U test; Fig. 2A). Once the mammary tumors appeared, there was no significant difference in tumor growth rate between each of the groups and day of sacrifice (mortality) was almost identical between BALB/c TRAIL−/− Her2/neu and BALB/c TRAIL+/+ Her2/neu mice (data not shown). The mean tumor multiplicity (number of mammary glands involved) was also similar between BALB/c TRAIL−/− Her2/neu and BALB/c TRAIL+/+ Her2/neu mice (Fig. 2B). Mammary whole mounts of groups of three to five mice, between 3 and 18 wk of age, were prepared to evaluate lesion progression from hyperplasia to neoplasia. There was no discernable difference in the onset or appearance of hyperplastic foci within BALB/c TRAIL+/− Her2/neu and BALB/c TRAIL+/+ Her2/neu mice, nor was the progression from the hyperplastic lesions to carcinoma in situ and lobular carcinomas any different in BALB/c TRAIL+/− Her2/neu mice than in BALB/c TRAIL+/+ Her2/neu mice (Fig. 2C and data not shown). Mammary tumors derived from BALB/c TRAIL−/− Her2/neu and BALB/c TRAIL+/+ Her2/neu mice were examined for their expression of Her2/neu (Fig. 2D, i and ii) and BALB/c TRAIL+/− Her2/neu (Fig. 2D, iii and iv) mice at 15 wk of age. Representative photographs of mammary glands (original magnification, × 200). D, Mammary carcinomas derived from BALB/c TRAIL+/− Her2/neu and BALB/c TRAIL−/− Her2/neu mice express MHC class I allele Dd, CD1d, and DR5, but lack expression of Rae-1 and H60. E, TRAIL sensitivity of mammary carcinomas derived from BALB/c TRAIL+/+ Her2/neu (●) and BALB/c TRAIL−/− Her2/neu (●) mice in an 18-h 51Cr release assay using TRAIL-2PK3 transfected as effector cells. 4T1 mammary carcinoma target cells are a TRAIL-sensitive control (○). Data are representative of at least four tumors examined from each strain. WT, Wild type.

FIGURE 2. TRAIL does not delay the onset of mammary carcinogenesis. A, Mammary glands of groups of BALB/c TRAIL+/+ Her2/neu mice (n = 20) and BALB/c TRAIL−/− Her2/neu (n = 29) were palpated two to three times per week and growing tumors >1 mm in diameter were recorded. B, Tumor multiplicity was calculated as the cumulative number of tumors/total number of mice and is shown as mean ± SEM. C, Whole mounts of mammary glands (three to five in each group) were prepared and stained with ferric hematoxylin from BALB/c TRAIL+/+ Her2/neu (i and iii) and BALB/c TRAIL−/− Her2/neu (ii and iv) mice at 15 wk of age. Representative photographs of mammary glands (original magnification, × 200). D, Mammary carcinomas derived from BALB/c TRAIL+/− Her2/neu and BALB/c TRAIL−/− Her2/neu mice express MHC class I allele Dd, CD1d, and DR5, but lack expression of Rae-1 and H60. E, TRAIL sensitivity of mammary carcinomas derived from BALB/c TRAIL+/+ Her2/neu (●) and BALB/c TRAIL−/− Her2/neu (●) mice in an 18-h 51Cr release assay using TRAIL-2PK3 transfected as effector cells. 4T1 mammary carcinoma target cells are a TRAIL-sensitive control (○). Data are representative of at least four tumors examined from each strain. WT, Wild type.
of immune recognition molecules and sensitivity to mouse TRAIL ex vivo. Mammary carcinoma cell lines derived from both BALB/c TRAIL−/− Her2/neu and BALB/c TRAIL+/+ Her2/neu mice expressed MHC class I (H-2Dk), CD1d, and TRAIL receptor DR5, but lacked expression of NKG2D ligands (H60 and Rae-1) (Fig. 2D). Interestingly, all such tumors were found to be considerably TRAIL sensitive (Fig. 2E). A similar experiment examining BALB/c perforin−/− Her2/neu mice has revealed an earlier mammary tumor onset and greater tumor multiplicity in these mice compared with Her2/neu controls, highlighting that the Her2/neu tumors are subject to immunosurveillance (M. J. Smyth, N. Zerafa, and S. E. A. Street, manuscript in preparation). Collectively, these data suggested that despite the expression of at least some target molecules and intact sensitivity to TRAIL, mammary tumors arising in Her2/neu-transgenic mice were not suppressed by the natural host expression of TRAIL in any discernable way.

Conclusions

In this study, we have presented the first report of spontaneous tumor formation in TRAIL-deficient mice. Interestingly, these mice developed a modest frequency of disseminated lymphomas late in life without any direct induction of carcinogenesis. These data were in concert with the role of TRAIL as a tumor suppressor in mice mutant for one p53 allele, where TRAIL deficiency predisposed mice to a greater number of tumors, including disseminated lymphomas and sarcomas. Our data obtained in TRAIL−/− p53−/− mice mimicked what was previously observed in TRAIL−/− p53+/− mice that were chronically treated with a neutralizing anti-mouse TRAIL mAb (12). Sarcomas derived from TRAIL−/− p53+/− mice were more sensitive to TRAIL ex vivo than those derived from TRAIL−/− p53+/− mice (data not shown). These findings are consistent with the fact that soft tissue sarcoma formation following MCA administration has also been shown to be elevated in TRAIL-deficient mice and tumors derived from such mice were found to be more sensitive to TRAIL than those derived from control wild-type mice (9, 12). In the MCA model, it is known that NK cells are important effector cells in controlling tumor initiation (21), whereas the effector cells controlling tumor development in p53−/+ mice have not yet been established. Nonetheless, in the absence of data concerning the phenotype and TRAIL sensitivity of lymphomas arising in TRAIL−/− mice, it is possible that multiple defects in these mice could indirectly lead to lymphoma generation. More recently, there was a report that TRAIL-R deficiency did not influence spontaneous tumor formation in p53−/− mice (13); however, complete p53 loss from birth may either effect the normal functioning of the TRAIL-TRAIL-R pathway or the expression of TRAIL by immune cells. The exact reason for the discrepancy between models requires further investigation. In addition, clearly the TRAIL-deficient phenotype is complex considering that, in the absence of CD4+ T cell helper function, CD8+ T cells may actually have a survival advantage in the TRAIL-deficient mouse (22).

Notably, our study of Her2/neu-induced mammary carcinoma development did not detect a role for TRAIL in tumor suppression, despite the fact that such mammary tumors expressed MHC class I and were decidedly TRAIL-sensitive. It is possible that either TRAIL-expressing effector cells never enter the tumor microenvironment or that endogenous host osteoprotegerin might block host TRAIL activity (23). The striking sensitivity of these and other mammary tumors to TRAIL (24) warrants further attention when designing effective therapies for this disease. Our findings aligned closely with another study that reported that TRAIL-R loss did not significantly affect epithelial tumor development in adenomatous polyposis coli mutant mice (13). Therefore, further assessment in models of epithelial tumor formation will be required to assess its role in controlling more common cancers.

Acknowledgments

We thank Mark Shannon for reagent acquisition and Rachel Cameron and Shannon Griffiths of the Peter MacCallum Cancer Centre animal facilities for maintaining the mice. We also thank Dr. Jacques Peschon (Amgen, Seattle, WA) for initially providing the TRAIL-deficient mice, Drs. Piero Musiani and Guido Forni for providing the Her2/neu T mice and helpful collaboration, and Brenda Aisbett and Steve Asquith for preparing the H&E sections.

Disclosures

The authors have no financial conflict of interest.

References

