Absence of Leukotriene B₄ Receptor 1 Confers Resistance to Airway Hyperresponsiveness and Th2-Type Immune Responses

Kan Terawaki, Takehiko Yokomizo, Takahide Nagase, Akiko Toda, Masahiko Taniguchi, Kohei Hashizume, Takeshi Yagi and Takao Shimizu

J Immunol 2005; 175:4217-4225; doi: 10.4049/jimmunol.175.7.4217
http://www.jimmunol.org/content/175/7/4217

References
This article cites 50 articles, 24 of which you can access for free at:
http://www.jimmunol.org/content/175/7/4217.full#ref-list-1

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Absence of Leukotriene B\textsubscript{4} Receptor 1 Confers Resistance to Airway Hyperresponsiveness and Th2-Type Immune Responses1

Kan Terawaki,2,4,8 Takehiko Yokomizo,2,4,8 Takahide Nagase,† Akiko Toda,‡ Masahiko Taniguchi,‡ Kohei Hashizume,‡ Takeshi Yagi,¶ and Takao Shimizu3,8

Bronchial asthma is an increasingly common disorder that remains poorly understood and difficult to manage. The disease is characterized by airway hyperresponsiveness, chronic inflammation, and mucus overproduction. Based on the finding that leukotriene B\textsubscript{4} receptor 1 (BLT1) is expressed highly in Th2 lymphocytes, we analyzed the roles of BLT1 using an OVA-induced bronchial asthma model. BLT1-null mice did not develop airway hyperresponsiveness, eosinophilic inflammation, and hyperplasia of goblet cells. Attenuated symptoms were accompanied by reduced IgE production, and accumulation of IL-5 and IL-13 in bronchoalveolar lavage fluid, suggesting attenuated Th2-type immune response in BLT1-null mice. Peribronchial lymph node cells of sensitized BLT1-null mice showed much attenuated proliferation and production of Th2 cytokines upon re-stimulation with Ag in vitro. Thus, LTB\textsubscript{4}-BLT1 axis is required for the development of Th2-type immune response, and blockade of LTB\textsubscript{4} functions through BLT1 would be novel and useful in the effort to ameliorate bronchial asthma and related Th2-biased immune disorders. The Journal of Immunology, 2005, 175: 4217–4225.

Bronchial asthma is globally prevalent, affecting several million people’s daily lives. The disease is defined as a reversible airway obstruction with airway inflammation and mucus overproduction (1). Bronchial hypersensitivity and airway remodeling following inflammatory response are hallmarks of this disease (2). Whereas smooth muscle constriction is reversed by β2 agonists, chronic and persistent infiltration of inflammatory cells, accompanied by edema, is a major therapeutic target to improve pulmonary function and decrease morbidity (3). Anti-inflammatory steroids in combination with 5-lipoxygenase inhibitors, or cysteinyI leukotriene antagonists are currently used to control and treat bronchial asthma.

Studies using genetically engineered mice and various inhibitors/antagonists suggest that cytokines, chemokines, cell adhesion molecules, and lipid mediators play roles in the pathogenesis of asthma (4–9). We previously reported that cytosolic phospholipase A\textsubscript{2} plays a pivotal role in developing airway hyperresponsiveness (AHR)4 (10). However, downstream lipid mediators and detailed cellular events remained totally elusive. Among several lipid mediators, prostaglandin D\textsubscript{2} (11) and leukotrienes (LTs) (3) are potent proinflammatory mediators derived from arachidonic acid by cyclooxygenases and 5-lipoxygenase, respectively (12–14). Importantly, mice deficient in 5-lipoxygenase exhibited reduction of AHR, airway eosinophilia, and Ig production in OVA-induced asthma model (15). Among downstream lipid mediators of 5-lipoxygenase, cysteinyI LTs (LTC\textsubscript{4}, D\textsubscript{4}, and E\textsubscript{4}), originally termed slow-reacting substance of anaphylaxis have been reported to increase vascular permeability, and bronchial smooth muscle constriction, through two distinct types of receptors, CysLT1 and CysLT2. Although several CysLT1 antagonists such as zafluralkast, montelukast, and pranlukast are currently used for treatment of asthmatic patients, the effect is heterogeneous, and a significant number of patients are resistant to the CysLT antagonist treatment (16). Leukotriene B\textsubscript{4} (LTB\textsubscript{4}), another eicosanoid derived from 5-lipoxygenase pathway of arachidonic acid, has well-documented potent chemotactic activity toward granulocytes (17). This lipid mediator exerts its biological activities through two distinct LTB\textsubscript{4} receptors: BLT1, a high-affinity type, and BLT2, a low-affinity type (18, 19). Recently, LTB\textsubscript{4} was reported to recruit early effector T cells and effector cytotoxic T cells to inflamed tissues (20, 21). Mast cells release LTB\textsubscript{4} upon stimulation, leading to a prominent infiltration of effector T cells (22). These in vitro and ex vivo data prompted us to define the roles of LTB\textsubscript{4} in the pathogenesis of asthmatic Th2 responses in vivo. Here, using a mouse model in which BLT1 is genetically ablated, we provide in vivo evidence that LTB\textsubscript{4}-BLT1 interaction is necessary for production of Th2 cytokines and the development of AHR. Based on our new finding

1Department of Biochemistry and Molecular Biology, 2Department of Respiratory Medicine, and 3Department of Pediatric Surgery, Faculty of Medicine, University of Tokyo, Tokyo, Japan; 4Core Research for Evolutional Science and Technology and 5Precursory Research for Embryonic Science and Technology of Japan Science and Technology Agency, Kawaguchi, Japan; and 6KOKORO Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan

Received for publication June 6, 2005. Accepted for publication July 12, 2005.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

This work was supported in part by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology, and from the Ministry of Health, Labour and Welfare of Japan (to T.Y.), the Cell Science Foundation (to T.Y.), the Yamanouchi Foundation for Research and Welfare of Japan (to T.Y., T.N., and T.S.), Takeda Science Foundation (to T.Y.), and from the Ministry of Education, Culture, Sports, Science and Technology, and from the Ministry of Health, Labour and Welfare of Japan (to T.Y.).

K.T. and T.Y. contributed equally to this work.

Address correspondence and reprint requests to Dr. Takao Shimizu, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan. E-mail address: tshimizu@m.u-tokyo.ac.jp

4Abbreviations used in this paper: AHR, airway hyperresponsiveness; BALF, bronchoalveolar lavage fluid; EPO, eosinophil-specific peroxidase; LT, leukotriene; LTB\textsubscript{4}, (5S,12R)-dihydroxy-6,14-cis-8,10-trans-eicosatetraenoic acid; MCH, methacholine; MPO, myeloperoxidase; PAS, periodic acid-Schiff; WT, wild type.
that LTβ4 is a principal immunomodulator raised a novel thera-
peutic possibility for prevention and treatment of asthmatic patients.

Materials and Methods

Targeting construct and generation of BLT1−/− mice

Clones containing the mouse BLT1 gene were isolated by screening a
129/Sv genomic library in Lambda fix II (Stratagene) using an expressed
sequence tag clone for mouse BLT1 cDNA (GenBank accession number
AA028322) as a probe. An 18.6-kb fragment was subcloned into pBlue-
scriptII SK (Stratagene). The BLT1 genomic locus was modified by in-
serting a LacZ-neo cassette into Flot site in the open reading frame in exon
2 of the BLT1 gene. Diphtheria toxin A fragment (23) was used as a
negative selection marker. This construct was induced by electroporation
into the TT-2 line of embryonic stem cells from an F1 embryo derived from
a cross of C57BL/6 and CBA mice (24), and transfected cells were selected
by addition of the G418 at 300 ng/ml. Four clones, which showed evidence
of homologous recombination by Southern blotting, were injected into
blastocysts by standard techniques. Southern blot analysis was performed
with 10 µg of genomic DNA using probe a (0.63-kb BamHI-Dral frag-
ment; Fig. 1A) external to the 5′ end of the knockout construct, and probe b
(0.5-kb Xhol-MluI fragment; Fig. 1A) as an internal probe. After im-
plation into pseudopregnant C57BL/6 mice, these clones resulted in chi-
meric mice that transmitted the disrupted allele to the offspring. The
spring of these founders were identified by Southern blot analysis with the
same probes or more routinely by PCR from tail snips with the following
three primers: 5′-ATGGGTTGTCACCTTTCACTC-3′, 5′-GACAC
AGAGGTGACTGGTGTGAGTT-3′, 5′-ATATGGGTATGGCCAGCA
GAAAAAGACA-3′. In all experiments, BLT1−/− and BLT1+/− mice were
generated from mating between heterozygous (BLT1+/−) mice, and raised
in identical specific pathogen-free conditions. The sex, age, and generation
of mice used in the experiments are shown in the figure legends. All studies
and procedures were approved by International Guiding Principles for Bio-
medical Research Involving Animals.

[3H]LTB4 binding assay

BLT1+/− and BLT1−/− mice were injected i.p. with 2 ml of 2% casein,
and after 4 h, peritoneal cells were collected with ice-cold PBS. Dif-Fu
staining revealed >90% of the cells as granulocytes. The [3H]LTB4 bind-
ing assay was performed as described previously (25) with some modifi-
cations. Granulocytes at a density of 1 × 106 cells/ml were incubated with
2 nM [3H]LTB4 in HBSS containing 0.49 mM MgCl2 and 0.95 mM CaCl2.
For determination of nonspecific binding, 10 µM unlabelled LTB4 was
used. Mixtures were incubated at 4°C for 60 min in a total volume of 100
µl. The assay was performed in quadruplicates, followed by rapid filtration
through nitrocellulose filters (Packard Instrument) and washing with 3 ml of bind-
ing buffer. The radioactivity of the filters was determined with a scintilla-
tion counter (Top Count; Packard Instrument). Lungs and spleens were
dissected from BLT1+/− and BLT1−/− mice. Pooled tissue was minced
and homogenized twice with a Physcotron homogenizer in sonication
buffer (20 mM Tris-HCl, (pH 7.4), 0.25 M sucrose, 10 mM MgCl2, 1 mM
EDTA) containing a proteinase inhibitor mixture (Complete; Roche) at 3
°C. Aliquots of homogenates were centrifuged at 35,000 × g for 5 min at 4°C,
and after 4 h, peritoneal cells were collected with ice-cold PBS. Diff-Quik
staining membrane preparation (80
g

MPO release from mouse granulocytes was measured as previously re-
ported (28) with some modifications. Aliquots (50 µl) of the cells (2 × 107
cells/ml) in HBSS containing 0.49 mM MgCl2, 0.95 mM CaCl2, 0.05%
BSA, and 5 µg/ml cytochalasin B were preincubated at 37°C for 5 min,
and 50 µl of the ligand solution was added to initiate the reaction. After
incuba-
tion for 10 min at 37°C, the reaction was stopped by placing the plate on ice.
After centrifugation (3,000 × g for 5 min) at 4°C, the supernatants were transferred to a new 96-well plate. Remaining cells were
lysed by adding 20 µl of lysis buffer (1× HBSS, 5% Triton-X). The MPO
activities of the supernatants and cells were measured in MPO assay buffer
(50 mM potassium phosphate buffer, (pH 6.0), 0.175 mg/ml o-dianisidine
(Sigma-Alrich), and 0.0005% hydrogen peroxide). Commercially avail-
able MPO (Cubiochem) in serial dilution was used as a standard.

AHR model

Sensitization and challenge protocol

Mice used in this model were back-
crossed on the C57BL/6 background for 5–8 generations. Heterozygous
mice were intercrossed, and resulting male littersmates were genotyped
and used in all experiments. Mice were sensitized by i.p. injection of 0.5 ml of
solution containing 0.1 mg of OVA (Sigma-Alrich) complexed with al-
uminum hydroxide (Wako) (2 mg/ml) intraperitoneally (i.p.) in 2 ml of 0.9%
NaCl solution. Mice were subsequently boosted with the same mixture. On
day 12 and 13, these sensitized mice were challenged for 30 min with 1% OVA in saline aerosol generated with ultrasonic nebulizer. Control mice received i.p. in-
jection of saline/aluminum hydroxide and saline aerosols in the same man-
ner. Mice were studied 2 days after the last aerosol challenge.

Measurement of airway hyperresponsiveness

Animals were anesthetized with sodium pentobarbital (25 mg/kg, i.p.) and ketamine hydrochloride (25 mg/kg, i.p.) in combination, and then paralyzed with pancuronium bromide (0.3 mg/kg, i.p.). After tracheostomy, an endotracheal metal tube (1 ml

in diameter, 8 mm in length) was inserted into the trachea. Animals were mechanically ventilated (model 683, Harvard Apparatus) with tidal volumes of 10 ml/kg at a frequency of 2.5 Hz. The thorax was widely opened by means of midline sternotomy, and a positive end expiratory pressure of 2 cm H2O was applied by placing the expiration line under water. During the experiments, oxygen was continuously supplied to the
ventilatory system. Under these ventilatory conditions, arterial pH, PaO2,
and PaCO2 were 7.35–7.45, 100–180 mm Hg and 30–45 mm Hg, respec-
tively, at the end of experiments (blood gas analyzer; Compact 3; AVL
Medical Systems). A heating pad was used to maintain body temperature.
Tracheal pressure was measured with a piezo-resistive microtransducer
(Comark Endevco) placed against the lateral port of the endotracheal tube.
Oxygen gas flow was measured with a Fleisch pneumotachograph (Metabo SA).
All signals were amplified, filtered at a cutoff frequency of 100 Hz, and
converted from analog to digital format with a converter (DT2801-A; Data
Translation). The signals were sampled at a rate of 200 Hz and stored on an
IBM-AT compatible computer. Lung resistance (Rl) and elastance (El)
were measured as described previously (29). Saline and methacholine
(MCh) (Sigma-Alrich) were administered at a positive end expiratory pressure of 2 cm H2O to mice. At the beginning of the experiments, two
deep inhalations (3 times tidal volume) were delivered to standardize vol-
ume history. All animals were then challenged with saline aerosol for 2
min. Aerosols were generated with an ultrasonic nebulizer (Ultra Neb100;
DeVilbiss) and delivered through the inspiratory line into the trachea.
Measurements of 10 s duration were sampled during tidal ventilation beginning at 1 s after administration of saline aerosol. This represented the baseline measurement. Following this, each dose of MCh aerosol was administered for 2 min in a dose-response manner (0.3125–20 mg/ml). Airway respon-
siveness was assessed using the concentration of MCh required to increase lung resistance to 200% of baseline values (EC200Rl).

Bronchoalveolar lavages

In other experiments, blood was taken from the abdominal vein using heparinized syringes. Blood samples were col-
lected in a plasma separator tube (Microtine; BD Bioscience), and plasma was generated by centrifugation. After blood sampling, All aliquots (100 µl) were used for cell counting with a flow cytometer EPICS XL (Beckman Coulter) using Flow-count particles (Beckman Coulter) as internal standards. Aliquots (300 µl) were centrifuged onto slide glasses using a Cytospin (Thermo

Centro...)
Lymph nodes were pooled from nine mice per group, and stimulated in vitro challenged with OVA as described above. Cells isolated from peribronchial Mice were sensitized and Restimulation of lymph node cells in vitro.

Lung histology. After the blood collection, the lungs were removed and fixed in 10% phosphate-buffered formalin. From the paraffin-embedded right and left lobes of lung, sections of 5-μm thickness were prepared from the middle position of each lobe, and stained with H&E or periodic acid-Schiff (PAS). A semiquantitative scoring system was used to grade the size of lung infiltrates in the H&E-stained sections, where +1 signifies a small number of inflammatory foci (30). The goblet cell hyperplasia in the PAS-stained sections was graded by a semiquantitative scoring system (0 = <5% goblet cells in airway epithelium; 1 = 5–25%; 2 = 25–50%; 3 = 50–75%; 4 = >75%) as described by McMillan et al. (31). The sum of the airway scores from each section was divided by the number of airways examined (6–8 per section), and expressed as PAS score in the middle position of each lobe, and expressed as PAS score in arbitrary units. For both quantitative scoring, randomized and blinded slides were graded. The EPO activity in the lung was measured as described above.

Restimulation of lymph node cells in vitro. Mice were sensitized and challenged with OVA as described above. Cells isolated from peribronchial lymph nodes were pooled from mice per group, and stimulated in vitro (1.5 x 106 cells per well in a 96-well plate) with increasing doses of OVA or plate-bound anti-CD3ε Ab (10 μg/ml, clone 145-2C11; BD Biosciences) or plate-bound anti-CD28 Ab (clone 96-12.1; BD Biosciences) as described by McMillan et al. (31).

Statistical analysis

All experiments were performed at least twice with similar results, and representative results are shown. All statistical calculations were performed with ANOVA using Prism 4 (GraphPad Software). A value of p < 0.05 was considered statistically significant.

Results

Generation of BLT1-deficient mice

The BLT1 gene was disrupted by a conventional method using an embryonic stem cell line, TT-2 (23, 24). The frequency of homologous recombination attained was 2.5% (6 of 240 G418-resistant colonies). The design of the targeting is shown in Fig. 1A. Resulting chimeric mice were mated with C57BL/6 females to generate heterozygous mice. Mice were genotyped by Southern blot of KpnI- or EcoRI-digested genomic DNA (Fig. 1B). Three-primer PCR was routinely used for genotyping (Fig. 1C). BLT1−/− mice were born at the expected Mendelian distribution, were fertile, and showed no developmental or morphological abnormalities. Heterozygous mice used in this study were backcrossed with C57BL/6 mice for at least four to seven generations depending on the experiments in specific pathogen-free environment. Blood cell counts, biochemical analyses of serum, the populations of CD3-, CD4-, CD8-, B220-, Thy-1,-, MHC class II-, and CD11c-positive cells in spleen, thymus and inguinal lymph nodes were similar between naive BLT1+/+ and BLT1−/− mice (data not shown). To confirm disruption of the BLT1 gene, RT-PCR was performed. mRNA isolated from lungs or spleens of BLT1−/− mice did not produce mBLT1 transcript (data not shown).

LTβ binding assay

The binding of 2 nM [3H]LTB4 to peritoneal granulocytes from BLT1−/− mice was less than one third the capacity of that of BLT1+/+ granulocytes (Fig. 2A). Membrane fractions of lung and spleen from BLT1−/− mice also exhibited about one third of the binding to 2 nM [3H]LTB4 compared with that of BLT1+/+ mice (Fig. 2B and C). The remaining binding activity might be due to BLT2 or other LTβ-binding proteins.

Calcium mobilization and MPO release induced by LTβ

LTβ binding to BLT1 and BLT2 increases intracellular calcium concentrations (18, 19). To examine the effects of BLT1 disruption on LTβ-induced calcium mobilization, casein-induced peritoneal cells (>90% granulocytes) were analyzed. Although LTβ dose-dependently induced calcium mobilization in peritoneal cells from BLT1−/+ mice, no calcium response was observed even at 10 μM

FIGURE 1. Generation of BLT1−/− mice. A, Schematic representation of endogenous BLT1 locus (top), targeting vector for BLT1 (middle), and targeted BLT1 locus after recombination (bottom). B, Southern blot analyses of mouse tail DNA. DNA from WT and mutant mice (indicated by numbers) was digested with KpnI (top) and EcoRI (bottom). Blotted DNA was hybridized with either probe a or probe b seen in panel A. Probe a is a 5′-flanking probe, not present in the targeting vector. Probe b is an internal probe. C, Genotyping using mouse tails. Results from WT (+/+), heterozygous mice (+/−), homozygous mice (−/−), and negative control (N, no template) are indicated.
LTB₄ in BLT1⁻/⁻ cells (Fig. 3A). Peritoneal cells from BLT1⁺/⁺ and BLT1⁻/⁻ mice exhibited almost similar calcium mobilization in response to 1 μM fMLP. LTB₄ is reported to cause degranulation in granulocytes and macrophages, and the requirement of high concentrations of LTB₄ for degranulation has led to the suggestion that this response is mediated by signaling through the low-affinity LTB₄ receptor BLT2 in this process (33). However, when we analyzed the effect of BLT1 deficiency on LTB₄-dependent degranulation using mouse granulocytes by measuring released MPO, LTB₄ dose-dependently released MPO in peritoneal cells from BLT1⁺/⁺ mice, whereas in BLT1⁻/⁻ mice, LTB₄-dependent MPO release was completely lost (Fig. 3B), showing that BLT1 is required for LTB₄-dependent degranulation. Peritoneal cells from both BLT1⁺/⁺ and BLT1⁻/⁻ mice exhibited a similar response to 1 μM platelet-activating factor.

AHR model

To understand the pathophysiologic roles of BLT1 in vivo, we established a murine model of AHR that mimics human bronchial asthma. Mice were sensitized by i.p. injection of OVA in alum adjuvant twice, and challenged with OVA aerosol twice as described in Materials and Methods. Airway contraction was induced by inhalation of increasing doses of MCh, and airway responsiveness was evaluated by determining the concentration of MCh required to double the lung resistance above the basal level (EC_{200}R_{50}). Airway hyperresponsiveness in BLT1⁻/⁻ mice was significantly attenuated compared with BLT1⁺/⁺ mice and was similar to that of mice sensitized with saline alone (Fig. 4A). We analyzed the numbers and population of the cells present in BALF. Although significant increase in total cell counts was observed in the BALF of BLT1⁺/⁺ mice challenged with OVA compared with BLT1⁺/⁺ and BLT1⁻/⁻ mice treated with saline, total cells counts in BLT1⁻/⁻ mice challenged with OVA was not changed significantly (Table I). Differential cell counts revealed the prominent recruitment of eosinophils into BALF in BLT1⁺/⁺ mice challenged with OVA, which was almost completely abolished in BLT1⁻/⁻ mice with same treatments (Table I, Fig. 4, A–D). BALF contents of lymphocytes and granulocytes were also reduced in BLT1⁻/⁻ mice challenged with OVA compared with BLT1⁺/⁺ mice, but the difference was not statistically significant (Table I). The number of macrophages was not changed between BLT1⁺/⁺ and BLT1⁻/⁻ mice. Histological examination of lung revealed drastic difference between BLT1⁺/⁺ and BLT1⁻/⁻ mice (Fig. 5). Sensitization and challenge with OVA caused dense peribronchial and perivascular accumulation of inflammatory cells as well as the gross integrity of the airway walls in BLT1⁺/⁺ mice (Fig. 5, A and C). These changes were minimal in BLT1⁻/⁻ mice challenged with OVA (Fig. 5, B and D). Apparent accumulation of eosinophils to the peribronchial and perivascular inflammatory lesion and attachment of eosinophils to the vascular endothelial wall were observed in OVA-challenged BLT1⁺/⁺ mice (Fig. 5E), which was not apparent in BLT1⁻/⁻ mice (Fig. 5F). To confirm the reduced eosinophil accumulation in BLT1⁻/⁻ mice, we measured EPO activities in the lung homogenates (32). The EPO activity in OVA-challenged BLT1⁺/⁺ and BLT1⁻/⁻ mice was lower than that in OVA-challenged BLT1⁺/⁺ lung, showing that BLT1-deficiency reduced eosinophil accumulation in asthmatic lung (Fig. 5F). Blood eosinophil counts were not changed between OVA-challenged BLT1⁺/⁺ and BLT1⁻/⁻ mice (12.7 ± 4.0 and 10.3 ± 5.3% of total leukocytes, respectively; n = 5), showing that reduced eosinophil accumulation in the airway and lung of BLT1⁻/⁻ mice is not due to the decreased number of total eosinophils in the circulation. Blinded semiquantitative grading of the lung sections revealed significant difference in the degree of airway inflammation between BLT1⁺/⁺ and BLT1⁻/⁻ mice (p < 0.05, Kruskal-Wallis with Dunn’s test; Fig. 5G). Excessive production of airway mucus glycoproteins by goblet cells in airway epithelium is a consistent finding in the lungs of asthmatics. Blinded semiquantification of staining of the goblet cells stained with PAS also revealed attenuated mucus scores in BLT1⁻/⁻ mice compared with BLT1⁺/⁺ mice (p < 0.01,
FIGURE 4. Role of BLT1 in AHR. A. Airway responsiveness to MCh. MCh-induced AHR is expressed as the concentration of MCh required to double lung resistance (EC_{200} R_L). Values are mean ± SEM (n = 8). B, Eosinophil counts in BALF. BALF cells were cytospun, stained by Diff-Quik, and differential cell counts were obtained. Eosinophil numbers were calculated from total numbers of BALF cells and differential cell counts. Values are mean ± SEM (n = 6–12). *, p < 0.05, **, p < 0.01, ***. p < 0.001, ANOVA with Bonferroni’s test. C and D, Representative images of inflammatory cells in BALF obtained from OVA-treated BLT1^{+/+} mice (C) and from OVA-treated BLT1^{−/−} mice (D). Arrowheads and arrows represent macrophages and eosinophils, respectively. Age-matched (10–12 wk at initial sensitization) F6–8 male mice were used for these experiments.

Kruskal-Wallis with Dunn’s test; Fig. 5H). All these data suggest that airway inflammation and goblet cell hyperplasia are reduced in BLT1^{−/−} mice.

To assess the mechanism for the reduced AHR and inflammation in BLT1^{−/−} mice, we measured Ig contents in BALF and plasma, and accumulation of TH1/2 cytokines and eicosanoids in BALF. Sensitization and challenge with OVA caused significant increase in OVA-specific IgG1 production in BALF and plasma in BLT1^{+/+} mice, and this was not attenuated in BLT1^{−/−} mice (Fig. 6, A and C). Sensitization and challenge with OVA also increased the contents of total IgE in BALF and plasma in BLT1^{+/+} mice, which were significantly reduced in BLT1^{−/−} mice (Fig. 6, B and D). We next analyzed the concentrations of TH1/TH2 cytokines in BALF and plasma from OVA-sensitized BLT1^{+/+} and BLT1^{−/−} mice (Fig. 6). IL-5 and IL-13 contents in BALF were increased by OVA sensitization/challenge in BLT1^{+/+} mice, but this increase was significantly reduced in BLT1^{−/−} mice (Fig. 7, A and B). IFN-γ and IL-4 contents in BALF were below the detection limit (2.5 ng/ml) in all groups. We also measured eicosanoid contents in BALF. PGE_2 content in BALF was significantly reduced in BLT1^{−/−} mice, but not in OVA-sensitized BLT1^{−/−} mice (Fig. 7D). CysLTs, eotaxin, and MCP-1 were below the detection limits (0.75, 15.6, and 4.7 pg/ml, respectively) in all BALF samples.

We next hypothesized that the reduced TH2 cytokines in BALF are due to the attenuated TH2 response in BLT1^{−/−} mice, thus performed in vitro stimulation experiments using lymph node cells. Cells from peripheral lymph nodes of sensitized and challenged BLT1^{−/−} mice exhibited attenuated proliferation (Fig. 8A) and production of TH2 cytokines, IL-5 (Fig. 8C), and IL-13 (Fig. 8D) by re-stimulation with OVA in vitro compared with those of sensitized and challenged BLT1^{+/+} mice. These cells exhibited similar proliferation by stimulation with plate-bound anti-CD3e Ab (Fig. 8B), suggesting that the TCR signaling is not impaired in BLT1^{−/−} mice. The ratios of the CD4^{+}, CD8^{+}, or CD3^{−} T cells, and CD11c- and MHC class II-double positive dendritic cells were not changed between wild-type (WT) and BLT1^{−/−} lymph node. These data suggest that induction of TH2 lymphocytes relies significantly on signals through BLT1.

Discussion

LTB_4, known as a potent chemoattractant and activator for granulocytes and macrophages, has been intensively studied and implicated in various inflammatory diseases such as psoriasis and...
inflammatory bowel diseases. BLT1, a high-affinity G protein-coupled receptor for LTB4, was first isolated in our laboratory and shown to be expressed in granulocytes, macrophages, monocytes, eosinophils, and to a lesser extent in naive lymphocytes (34–36). These findings seemed consistent with the classical notion that LTB4 is a local inflammatory mediator. We, thus, generated targeted BLT1 homozygous mutant mice to clarify the in vivo functions of BLT1.

Recently, several papers suggested that LTB4 functions through BLT1 not only as a local inflammatory mediator, but also acts as an important attractant for differentiated T cells. BLT1 expression is greatly enhanced in CD4+ T cells differentiated into Th0, Th1, and Th2 in vitro (21). Accordingly, Th1- and Th2-differentiated T cells showed robust chemotaxis toward LTB4, but naive CD4+ cells did not show any chemotactic activity toward LTB4 either in vitro or in vivo (20, 37). Thus, LTB4 is now considered to control immunological reactions by attracting both CD4+ and CD8+ T cells with the effector phenotypes. Mast cells, recognized for their involvement in allergic responses, release LTB4 upon stimulation and recruit effector CD8+ cells in vitro (22). Despite these attracting ex vivo models, no prominent in vivo phenotype has been so far reported in BLT1+/− mice. Thus, we adopted a mouse AHR model using OVA sensitization to reveal the functions of BLT1 in immunological disorders in vivo, as it is an allergic inflammatory animal model where mast cells, dendritic cells, Th2 cells, and eosinophils play dominant roles.

After systemic sensitization of mice with i.p. injection of OVA in alum adjuvant, mice were challenged with inhalation of aerosolized OVA. Sensitization/challenge with OVA caused hypersensitivity to MCh (Fig. 4A) accompanied by prominent accumulation of eosinophils into airway (Fig. 4, B and C), peribronchial and perivascular accumulation of inflammatory cells (Fig. 5, C, E, and G), and by excessive production of airway mucus glycoproteins by goblet cells (Fig. 5, C and H) in WT mice. However, EC50/MCh values of MCh in BLT1−/− mice were not changed by sensitization/challenge with OVA (Fig. 4A). Airway eosinophilia and histological change in lung by sensitization/challenge with OVA were almost completely abolished in BLT1−/− mice (Figs. 4, B and D, and 5, D, F–I). All these data show that BLT1 is required for the development of airway inflammation, eosinophilia, and AHR in this mouse model that mimics human bronchial asthma.

It is widely accepted that mast cells, eosinophils, and T-lymphocytes are important inflammatory cells in the onset and progression of bronchial asthma (38–40). Recently, effector CD4+ T cells are recognized to play dominant roles in initiating allergic pulmonary inflammation, because adoptive transfer of Ag-specific Th2 cells, not Th1 cells, into naive mice followed by aerosol challenge of Ag caused AHR, eosinophilia, and mucus secretion with recruitment of Th2 cells into the allergic lung (41). Tager et al. (21) elegantly showed the requirement of BLT1 in trafficking of Th2 cells as well as Th1 cells into allergic airway in active immunization model. In our model, a relatively small number of lymphocytes accumulated into the allergic airway, and no significant difference was observed between WT and BLT1−/− mice (Table I). Although IgE content and Th2 cytokines IL-5 and IL-13 in BALF were increased in BLT1+/+ mice after sensitization/challenge with OVA, this was not observed in BLT1−/− animals (Figs. 6 and 7), suggesting the impaired development of Th2 cells in BLT1−/− mice. Impaired proliferation and production of Th2 cytokines in peribronchial lymph node cells from BLT1−/− mice (Fig. 8) showed that not only recruitment of Th2 cells into airway, but also the differentiation of naive T cells into Ag-specific Th2 cells are also impaired in BLT1−/− mice. Enhanced production of Th2 cytokines after Ag exposure is important for the initiation of bronchial asthma. In asthmatic state, IL-4 drives IgE synthesis from B cells (42), IL-5 plays important roles in differentiation, recruitment, and activation of eosinophils (43), and IL-13 is considered to activate B cells, eosinophils, and airway smooth muscle cells (44). It is reasonable to speculate that reduced IL-5 production resulted in the attenuated activation of eosinophils leading to the reduced airway eosinophilia in BLT1−/− mice (Fig. 4). The importance of LTB4-BLT1 axis is reported in relation to Th2 cytokines in...
eosinophils. BLT1 expression was greatly enhanced in eosinophils of IL-5 transgenic mice (36). In thioglycollate-induced peritonitis models, eosinophil migration into peritoneal cavity was greatly reduced in BLT1/H11002/H11002 mice (45). Although we have observed a marked reduction in the accumulation of eosinophils (Figs. 4 and 5) and LTB4 (Fig. 7D) in BALF of BLT1/H11002/H11002 mice, we have no evidence showing that LTB4 functions as a direct attractant for eosinophils in our AHR model. Because we could not detect measurable amounts of other possible eosinophil chemoattractants, eotaxin, MCP-1/H9251, and CysLTs in BALF of both BLT1/H11001/H11001 and BLT1/H11002/H11002 mice even after sensitization/challenge with OVA, LTB4 might be a principle attractant for eosinophils under Th2 environments. This does not exclude the involvement of eotaxin, MCP-1/α and CysLTs in this asthma model. We should carefully examine the roles of these possible eosinophil chemoattractants at various time points. Cells responsible for LTB4 production in allergic lung are not clear now, but mast cells, dendritic cells, and eosinophils are all candidate cells. Considering the previous report showing that expression of 5-lipoxygenase, a responsible enzyme for biosynthesis of LTB4, is enhanced in BLT1 transgenic mice (46), there is a positive feedback system between BLT1 activation and LTB4 production in

FIGURE 6. Reduced IgE production in BLT1/H11002/H11002 mice. Levels of OVA-specific IgG1 (A and C) and total IgE (B and D) were measured in mouse BALF (A and B) and plasma (C and D). Undiluted BALF and diluted plasma (100-fold dilution for IgG1, and 10-fold dilution for IgE) were subjected to ELISA. Values are mean ± SEM (n = 5–6). Age-matched (10–12 wk at initial sensitization) F8 male mice were used for these experiments. *p < 0.05, **p < 0.01, ***p < 0.001, ANOVA with Bonferroni’s test.

FIGURE 7. Reduced IL-5, IL-13, and LTB4 in BALF in BLT1/H11002/H11002 mice. Cytokines (A and B), PGE2 (C) and LTB4 (D) in BALF were measured. Values are mean ± SEM (n = 6–12). IL-2 and IL-4 in BALF were not detectable. Age-matched (10–12 wk at initial sensitization) F8 male mice were used. *p < 0.05, **p < 0.01, ANOVA with Bonferroni’s test.
FIGURE 8. Reduced Th2 response in BLT1−/− mice. Cells isolated from peribronchial lymph nodes of OVA-sensitized/challenged mice were restimulated in vitro with OVA (A, C, D) or plate-bound αCD3 Ab (B). [3H]Thymidine was pulsed for the last 8 h of 72 h of culture (A, B). Accumulation of IL-5 (C) and IL-13 (D) in culture supernatants by OVA stimulation. Age-matched (10–12 wk at initial sensitization) F8 male mice were used. Values are mean ± SD (n = 3), *** p < 0.001, two-way ANOVA.

inflammation. Indeed, the increased production of LTB4 was observed in OVA-sensitized and challenged BLT1−/− mice (Fig. 7D). IL-13 activates B cells, eosinophils, and airway smooth muscle cells (44), more importantly activates mucus metaplasia (47), and is now considered an important drug target in human bronchial asthma. In good relations to the reduced hyperplasia of PAS-positive goblet cells in the airway, BLT1−/− lymph node cells produced much less IL-13 than BLT1+/+ cells (Fig. 8D).

Recently, CD8+ T cells in the lung were reported as a possible source of IL-13 and required for the development of allergen-induced AHR (48). During preparation of this manuscript, Miyahara et al. (49) reported the attenuated allergen-induced airway hyperresponsiveness in BLT1-deficient mice, which were established independently from ours. In their study, BLT1-deficient mice on BALB/c background exhibited reduced AHR, goblet cell hyperplasia, and IL-13 production in LN cells after sensitization and challenge with OVA. In contrast to our results, airway eosinophilia and productions of IL-4 and IL-5 in peribronchial LN cells were not attenuated by BLT1 deficiency, and this could be due to the different genetic backgrounds of mice and inhalation protocols used in the experiments. They also addressed the mechanism and showed that adoptive transfer of in vivo primed CD8+ BLT−/− T cells or in vitro generated OVA-specific effector CD8+ BLT1−/− T cells from OT-1 mice fully restored the reduced AHR, airway eosinophilia, and IL-13 production in CD8−null mice (50). Thus, LTB4-BLT1 interaction plays an important role in initiating and developing Th2-type immune response by attracting CD8+ effector T cells into the lung to produce IL-13, and stimulating T cells to produce IL-4 and -5 in the LN, providing a novel idea about how LTB4 plays immunological roles. Blocking BLT1 by specific antagonists may be beneficial for the prevention and therapy of various immunological disorders including bronchial asthma, and BLT1−/− mice will be useful in the identification of the diseases for which BLT1 antagonists could be effective as novel types of anti-inflammatory and immunosuppressive drugs.

Acknowledgments
We thank all members in the laboratory, especially Dr. S. Ishii, for precious comments and T. Hashidate for mouse genotyping. We also thank Drs. K. Matsuhashi, K. Takatsu, and T. Takai for discussion, Gwendalyn J. Randolph and Peter Rudberg for critically reading the manuscript.

Disclosures
The authors have no financial conflict of interest.

References