Matrix Metalloproteinase-8 Deficiency Promotes Granulocytic Allergen-Induced Airway Inflammation

Maud M. Gueders, Milagros Balbin, Natacha Rocks, Jean-Michel Foidart, Philippe Gosset, Renaud Louis, Steven Shapiro, Carlos Lopez-Otin, Agnes Noël and Didier D. Cataldo

J Immunol 2005; 175:2589-2597; doi: 10.4049/jimmunol.175.4.2589

http://www.jimmunol.org/content/175/4/2589

References

This article cites 41 articles, 11 of which you can access for free at:

http://www.jimmunol.org/content/175/4/2589.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at:

http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:

http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:

http://jimmunol.org/alerts
Matrix Metalloproteinase-8 Deficiency Promotes Granulocytic Allergen-Induced Airway Inflammation

Maud M. Gueders,*† Milagros Balbin, ‡ Natacha Rocks, † Jean-Michel Foidart, † Philippe Gosset,§ Renaud Louis,* Steven Shapiro,¶ Carlos Lopez-Otin,‡ Agnes Noël, † and Didier D. Cataldo2‡†

Matrix metalloproteinases (MMPs) are involved in inflammatory reaction, including asthma-related airway inflammation. MMP-8, mainly produced by neutrophils, has recently been reported to be increased in the bronchoalveolar lavage fluid (BALF) from asthmatic patients. To evaluate the role of MMP-8 in asthma, we measured MMP-8 expression in lung tissue in an OVA-sensitized mouse model of asthma and addressed the effect of MMP-8 deletion on allergen-induced bronchial inflammation.

MMP-8 production was increased in lungs from C57BL/6 mice exposed to allergens. After allergen exposure, MMP-8−/− mice developed an airway inflammation characterized by an increased neutrophilic inflammation in BALF and an increased neutrophilic and eosinophilic infiltration in the airway walls. MMP-8 deficiency was associated with increased levels of IL-4 and anti-OVA IgE and IgG1 in BALF and serum, respectively. Although allergen exposure induced an enhancement of LPS-induced CXC chemokine, KC, and MIP-2 levels in BALF and lung parenchyma, no difference was observed between the two genotypes. Inflammatory cell apoptosis was reduced in the lungs from MMP-8−/− mice. For the first time, our study evidences an important role of MMP-8 in the control of neutrophilic and eosinophilic infiltration during allergen-induced lung inflammation, and demonstrates that the anti-inflammatory effect of MMP-8 is partly due to a regulation of inflammatory cell apoptosis.

Asthma is a complex inflammatory disease characterized by an eosinophilic inflammation of the bronchial walls and airway hyperresponsiveness. Neutrophils also seem to play a significant role in asthma as soon as the disease becomes severe (1, 2). A significant contribution of neutrophils to the bronchial hyperresponsiveness is suggested by in vitro studies (3) and by the increased migratory activity (4) observed in neutrophils from human asthmatics. The airways of human asthmatics display significant morphological changes referred to as bronchial remodeling (5). Among those changes, many are linked to an excessive degradation of the extracellular matrix and mainly of its collagen components. The main feature of remodeling in humans is the deposition of a dense layer made of different collagens and fibronectin just beneath the basement membrane of the bronchial epithelium (6).

Matrix metalloproteinases (MMPs)3 are a family of zinc proteases that can degrade virtually all extracellular matrix components and whose activity is controlled among others by the tissue inhibitors of metalloproteinases (TIMPs) (7–10). Most MMPs are secreted from the cells as inactive precursors requiring the cleavage of an amino-terminal peptide of ~10 kDa to be activated. MMP-1 (fibroblast collagenase, collagenase-I), MMP-8 (neutrophil collagenase, collagenase-2), and MMP-13 (collagenase-3) belong to the interstitial collagenase subgroup of MMPs and display the potency to degrade fibrillar interstitial collagens (types I-III) (11). In addition, MMP-14, a membrane-type MMP, is able to degrade type I collagen and contributes to collagen matrix remodeling (12, 13). These proteases, in association with others including type IV collagen degrading gelatinases (MMP-2 and MMP-9), could potentially contribute to the bronchial remodeling observed in asthma. Accordingly, significant increases of various MMPs (MMP-1, MMP-2, MMP-8, and MMP-9) have been reported in the sputum or bronchoalveolar lavage (BAL) from asthmatics (14–16). MMPs produced by inflammatory cells such as MMP-8 may be of particular importance in the pathogenesis of inflammatory disorders. MMP-8 is expressed during the myelocyte stage of neutrophil development in the bone marrow. It is stored as a latent enzyme (pro-MMP-8) within specific granules and released upon neutrophil activation (17–20). After release from granules, a significant part of the MMP-8 is associated to the membrane of neutrophils and exerts a pericellular proteolysis (21). An excess of MMP-8 secretion has been reported in BAL fluids (BALF) of human patients with bronchiectasis and has been correlated with disease severity (22, 23). In asthmatics, increased expression of...
MMP-8 mRNA has been detected in bronchial biopsies and was correlated with the intensity of the disease (24). MMP-8 could contribute to inflammatory cell trafficking and inflammation in different ways, through the cleavage of fibrillar collagens, or through the degradation or activation of protease inhibitors (α1-antitrypsin, α2-macroglobulin) and/or chemokines such as LPS-induced CXC chemokine, a neutrophil chemoattractant (25–28). However, the functions and mechanisms of action of MMP-8 in inflammatory disorders are not yet well established. Recently, unexpected inhibitory effects of MMP-8 in cancer progression have been evidenced (25, 29). Indeed, MMP-8 gene deletion in mice increased tumor development after carcinogen treatment (25), and genetic manipulation of metastatic cells to overproduce MMP-8 resulted in decreased metastatic dissemination (29). These observations suggest that MMP-8 may have multiple functions regulating protective immune functions and/or tissue infiltration.

In the present work, the key role played by MMP-8 in the processes leading to airway inflammation after allergen exposure is demonstrated, for the first time, in an experimental mouse model of asthma. Our data have therapeutic implications warning of the use of broad spectrum inhibitors in asthma therapy.

Materials and Methods
Sensitization and allergen exposure protocol
Wild-type (MMP-8+/+) and MMP-8 knockout (MMP-8−/−) mice were generated in a C57BL/6J29 background, as previously described (25). In addition, experiments, we used C57BL/6 mice from Denmark (Taconic Farms). Males of 6–8 wk old were sensitized by i.p. injection of 10 µg of OVA (Sigma-Aldrich) emulsified in aluminum hydroxide (AlumInject; Perbio) on days 1 and 8. Mice were subsequently exposed to allergens by daily inhalation of an aerosol of 1% OVA, for 30 min, generated by ultrasonic nebulizer (Devilbiss 2000), from day 21 to 27. Mice allergens by daily inhalation of an aerosol of 1% OVA, for 30 min, generated by ultrasonic nebulizer (Devilbiss 2000), from day 21 to 27. Mice were sacrificed, and a BAL was performed using 4 × 1 ml of 0.05 mM PBS-EDTA (Calbiochem), as previously described (30). Cells were recovered by gentle manual aspiration. After centrifugation of BALF (1200 rpm for 10 min, at 4°C), the supernatant was frozen at −80°C for protein assessment and the cell pellet was resuspended in 1 ml of 0.05 mM PBS-EDTA. The differential cell counts were performed on cytocentrifuged preparations (Cytospin) after staining with Diff-Quick (Dade).

Pulmonary histology and tissue processing
After BAL, the thorax was opened and the left main bronchus was clamped. The left lung was excised and frozen immediately at −80°C for protein and mRNA extraction. The right lung was infused with 4% paraformaldehyde, embedded in paraffin, and used for histology. Sections of 5-µm thickness were cut off from paraffin and were stained with H&E. The extent of peribronchial inflammation was estimated by a score calculated by quantification of peribronchial inflammatory cells, as previously described (30). A value of 0 was adjudged when no inflammation was detectable; a value of 1 when there were occasionally inflammatory cells; a value of 2 when most bronchi were surrounded by a thin layer (1–5 cells) of inflammatory cells; and a value of 3 when most bronchi were surrounded by a thick layer (>5 cells) of inflammatory cells. Because 5–7 randomly selected tissue sections per mouse were scored, inflammation scores are expressed as a mean value per mouse and can be compared between groups. After Congo red staining, the eosinophilic infiltration in the airway walls was quantified by manual count and reported to the perimeter of epithelial basement membrane defining an eosinophilic inflammatory score. Immunohistochemistry was performed on paraffin sections to detect MMP-8 and neutrophils. Slides were heated in autoclave in citrate buffer (Dako Target Retrieval Solution; DakoCytomation) and incubated with primary Ab (rabbit anti-mouse MMP-8, Abcam; rat anti-mouse neutrophils, Serotec) and secondary Ab (swine anti-rabbit HRP and rabbit anti-rat HRP; DakoCytomation). Slides were then incubated with 3-amin-9-ethylcarbazole (DakoCytomation). TUNEL (Roche) was used to study apoptosis. Sections were incubated in Xylol, dehydrated, and pretreated with 1% Triton X-100 and hydrogen peroxide (H2O2). Sections were incubated 1 h at 37°C with enzyme solution and nucleotide mixture (UTP-FITC). To use standard light microscope, slides were incubated with an anti-FITC/HRP Ab (converter POD, an anti-fluorescin antibody conjugated with horseradish peroxidase). Finally, sections were counterstained with hematoxylin and mounted. For each mouse, five different areas were analyzed in the whole lung. The percentage of neutrophils undergoing apoptosis was calculated for each mouse. Apoptosis was also studied by measuring the percentage of granulocytes displaying a caspase 3 activation. Caspase 3 was detected in situ by using a primary Ab (rabbit anti-human/mouse caspase 3 active; R&D Systems) and secondary Ab coupled with biotin (biotinylated goat anti-rabbit; DakoCytomation) and streptavidin (streptavidin/HRP; DakoCytomation). Slides were then incubated with 3-amin-9-ethylcarbazole (DakoCytomation). Five different areas were analyzed for each mouse, and

![Image](http://www.jimmunol.org/DownloadedFrom)
Page dimensions: 594.0x792.0

10% polyacrylamide gel containing gelatin at a concentration of 1 mg/ml. The same amount of sample buffer. Electrophoresis was conducted on an SDS-ratio to 28S rRNA.

Green (Molecular Probes). Quantitative RT-PCR results are expressed as a tad of 28S rRNA and 38 times for detection of MMP and TIMP terminated by 2 min at 72°C. Amplification cycle was repeated 18 times for measurement of OVA-specific serum IgE. Ninety-six-well microtiter plates were coated with 300 µl/well of an OVA solution (5 mg/L). Serum was added and, after incubation and rinsing, followed by a biotinylated polyclonal sheep anti-mouse IgE (Calbiochem) used at 1/1000. A serum pool from OVA-sensitized animals was used as an internal laboratory standard; 1 U was arbitrarily defined as 1/100 dilution of this pool.

The left lung of each animal was crushed using a Mikro-Dismembrator (Braun). For protein extraction, the crushed lung tissue was incubated overnight at 4°C in a solution containing 2 M urea, 1 M NaCl, and 50 mM Tris (pH 7.5), and subsequently centrifuged 15 min at 16,000 × g. The supernatant was stored at −80°C for zymography. Total RNA was extracted with Rneasy Mini kit (Qiagen). RNA levels and purity were assessed using a Quantitative RT-PCR products were resolved on 10% acrylamide gels and anti-detection of 28S rRNA and 38 times for detection of MMP and TIMP.

MMPs, and chemokine mRNAs were measured by RT-PCR using the GeneAmp Thermoblock rTth reverse-transcriptase PCR kit (Roche Molecular Systems). Oligonucleotides used for RT-PCR are shown in Table I. Molecular Systems). Oligonucleotides used for RT-PCR are shown in Table I. Reverse transcription was performed at 70°C for 15 min, followed by 2 min incubation at 95°C for denaturation of RNA-DNA heteroduplexes. Amplification started at 94°C for 15 s, 68°C for 20 s, and 72°C for 10 s, and terminated by 2 min at 72°C. Amplification cycle was repeated 18 times for detection of 28S rRNA and 38 times for detection of MMP and TIMP mRNA. RT-PCR products were resolved on 10% acrylamide gels and analyzed with a Fluor-S MultiImager (Bio-Rad) after staining with Syber Green (Molecular Probes). Quantitative RT-PCR results are expressed as a ratio to 28S rRNA.

To perform zymography (14), protein extracts were mixed with the same amount of sample buffer. Electrophoresis was conducted on an SDS-10% polyacrylamide gel containing gelatin at a concentration of 1 mg/ml. Gels were incubated for 30 min in 2% Triton X-100. After incubation in an activation buffer containing 100 mM CaCl2 and 100 mM NaCl at 37°C overnight, gels were rinsed and stained for 30 min in Coomassie blue. Gelatinase activity was detected as a white lysis band against a blue background. Quantitative evaluation of the gelatinolytic activity was performed by scanning gel using an imaging densitometer (Bio-Rad; Fluor-S MultiImager, Bio-Rad). Western blots were performed to quantify MMP-2 and MMP-9 was determined by the lysis band in the 72- and the 95-kDa area, respectively.

Measurements of cytokines by ELISA and Western blot (H). E–H, Representative photomicrographs of lung sections of MMP-8+/+ mice exposed to OVA (E and G) and MMP-8−/− mice exposed to OVA (F and H). Eosinophilic infiltration in the airway walls was studied by Congo red staining to evidence eosinophils in red/orange (×200) (E and F). Neutrophilic infiltration of the peribronchial area was evidenced by immunohistochemistry, as described in Materials and Methods (G and H).

Table II. Total cell numbers and cellular composition of BALF

<table>
<thead>
<tr>
<th></th>
<th>MMP-8+/+ PBS (n = 24)</th>
<th>MMP-8+/+ OVA (n = 20)</th>
<th>MMP-8−/− PBS (n = 28)</th>
<th>MMP-8−/− OVA (n = 28)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epithelial cell (×10^4/ml)</td>
<td>2.6 ± 1</td>
<td>2.3 ± 0.7</td>
<td>2.1 ± 0.5</td>
<td>2.4 ± 1.4</td>
</tr>
<tr>
<td>Eosinophils (×10^4/ml)</td>
<td>1.1 ± 0.6</td>
<td>26.7 ± 8.3^a</td>
<td>2.8 ± 1.1</td>
<td>33.6 ± 4.9^a</td>
</tr>
<tr>
<td>Neutrophils (×10^4/ml)</td>
<td>2.1 ± 0.8</td>
<td>4.3 ± 1.1</td>
<td>1.4 ± 0.4</td>
<td>14.3 ± 3.6^a</td>
</tr>
<tr>
<td>Lymphocytes (×10^4/ml)</td>
<td>6.6 ± 1.6</td>
<td>6.4 ± 1.6</td>
<td>4.1 ± 1.1</td>
<td>9.4 ± 1.8</td>
</tr>
<tr>
<td>Macrophages (×10^4/ml)</td>
<td>48.3 ± 4.2</td>
<td>33.5 ± 5.3</td>
<td>33.9 ± 5.5</td>
<td>30.7 ± 5.9</td>
</tr>
<tr>
<td>Total cells (×10^4/ml)</td>
<td>64.2 ± 6.6</td>
<td>71.1 ± 13.8</td>
<td>42.1 ± 6.1</td>
<td>90.4 ± 11.4^a</td>
</tr>
</tbody>
</table>

^a Total cell numbers and cellular composition of BALF in sensitized MMP-8+/+ mice and MMP-8−/− mice exposed to PBS or OVA aerosol. Numbers of cells were expressed as mean values ± SEM. Three independent experiments have been performed.

*p < 0.05 vs PBS-exposed mice. *p < 0.05 vs wild-type mice (exposed or not to OVA). n = total number of mice per experimental group.
Blood cell count assessment

Whole blood with heparin was obtained from mouse by cardiac puncture immediately after sacrifice. Differential cell counts were performed using an automatic hemocytometer (Bayer) and validated by performing blood smears.

Statistical analysis

Results of BAL cell count, pulmonary histology, cytokines, and mRNA levels were expressed as mean ± SEM, and the comparison between the groups was performed using Mann-Whitney U test. Mann-Whitney U test was performed using GRAPHPAD INSTAT version 3.00 for WINDOWS 95 (GraphPad: www.graphpad.com). Values of p < 0.05 were considered as significant.

Results

MMP-8 expression in the lungs of allergen-challenged mice

To determine whether MMP-8 production is modulated in the OVA mice model of asthma, we performed an immunohistochemical analysis on lung sections from C57BL/6 mice exposed either to OVA or PBS. Mice exposure to allergen led to a large increase of the number of cells positive for MMP-8 in lung tissue (p < 0.0001) (Fig. 1).

BALF

Exposure of mice to aerosolized OVA induced a significant increase in total cell counts in MMP-8−/− mice (p < 0.05). Eosinophil counts were significantly increased after allergen exposure in both MMP-8+/+ (n = 43) and MMP-8−/− (n = 48) genotypes, as compared with their nonexposed counterparts (p < 0.0001). Interestingly, BALF of MMP-8−/− mice were characterized by a 10-fold increase in neutrophil counts after allergen exposure when compared with their nonexposed counterpart (Table II). In sharp contrast, only a 2-fold enhancement of neutrophil number was induced by allergen treatment in MMP-8+/+ mice. Such an effect of MMP-8 deficiency on cell infiltration in BALF was specific to neutrophils, because other cell counts (epithelial cells, lymphocytes, macrophages) were not affected.

Histopathology of the lungs

No developmental abnormalities were observed in the lungs of MMP-8−/− mice (data not shown). The airways from MMP-8+/+ and MMP-8−/− mice exposed to sham challenge (PBS) showed normal histology (Fig. 2, A and B). After sensitization and subsequent allergen exposure, both MMP-8−/− and MMP-8+/+ displayed a significant peribronchial and perivasculat inflammatory infiltration (Fig. 2, C and D). Such an enhanced peribronchial inflammation in both genotypes was confirmed by the higher inflammation scores (p < 0.0001) (Fig. 3A).

Eosinophilic and neutrophilic tissue infiltration was studied on Congo red-stained slides (Fig. 2, E and F) and by immunohistochemistry (Fig. 2, G and H), respectively. Quantitative results were expressed as a number of cells/mm epithelial basement membrane (Fig. 3, B and C). Although the number of eosinophils was increased in both groups after allergen exposure (p < 0.0001), the enhancement was even higher in MMP-8−/− mice than in MMP-8+/+ (p < 0.05) (Fig. 3B).

The neutrophilic infiltration was increased after allergen exposure in both genotypes. Again, the enhancement of neutrophil counts in the bronchial wall was 2 times higher in MMP-8−/− when compared with MMP-8+/+ (Fig. 3C).

Blood cell counts in MMP-8+/+ and MMP-8−/− mice

To address some potential differences regarding blood inflammatory cells between MMP-8+/+ and MMP-8−/−, differential cell counts were performed, and no significant difference was found when comparing the counts of neutrophils, lymphocytes, monocytes, eosinophils, and basophils (Fig. 4A).

Assessment of sensitization to allergen

Serum levels of anti-OVA-specific IgE were detected by ELISA. Specific IgE levels were increased in the sera of allergen-exposed mice from both genotypes (p < 0.0001). However, an enhancement at higher extent was detected in the sera of MMP-8−/− mice.
as compared with MMP-8+/− (p < 0.05) (Fig. 4B). To investigate a potential Th1/Th2 imbalance in MMP-8+/− mice, we measured the levels of anti-OVA-specific IgG1 and IgG2a. IgG1 levels were significantly increased after allergen exposure in both genotypes (p < 0.05) and even more elevated in MMP-8+/− mice as compared with MMP-8+/− (p < 0.05) (Fig. 4C). Measurements of OVA-specific IgG2a did not show any difference between allergen-challenged and unchallenged mice, but levels were higher in MMP-8+/− after allergens as compared with MMP-8+/− (p < 0.01) (Fig. 4D). Total IgE levels were also studied by ELISA, and their levels were found to be increased significantly in both knock-out and wild-type mice after allergen exposure without difference between the genotypes (data not shown).

Cytokines in BALF and lung protein extracts

To further investigate the mechanisms leading to an increased inflammation and increased levels of OVA-specific IgE in MMP-8−/− mice, we measured by ELISA, Western blots, and RT-PCR a panel of relevant ILs (IL-4, IL-5, and IFN-γ) and chemokines (KC, IL-17, MIP-2, LIX, eotaxin) that may be involved in inflammatory cell recruitment.

Although IL-4 levels assessed by ELISA were increased in BALF and lung protein extracts after allergen exposure in both genotypes (p < 0.001), statistical differences were only reached in MMP-8−/− mice (p < 0.001) (Fig. 5, A and B). Allergen exposure induced a greater enhancement of IL-4 levels in BALF of MMP-8−/− mice than in wild-type mice. IL-5 and IL-17 levels in BALF or lung protein extracts were not significantly different between the groups, and IFN-γ levels were only rarely detectable in BALF (Fig. 5, C and H, respectively). Eotaxin, an eosinophil chemoattractant, was measured in BALF and lung protein extracts. Its levels were significantly increased after allergen exposure in both as well as with MMP-8+/− (Fig. 5D).

We also focused on neutrophil chemoattractants: KC, MIP-2, and LIX. Levels of KC measured by ELISA in lung protein extracts were similarly increased after allergen exposure in both genotypes (p = 0.0001 (Fig. 5E) and were rarely detectable in BALF. ELISA analysis of LIX levels in BALF revealed a tendency to increase after allergen exposure in both genotypes, but these differences did not reach statistical significance (data not shown). LIX production was also studied by Western blot analysis in BALF. Although significant increase of LIX was observed in mice exposed to allergens (p < 0.05), again no difference was detected between MMP-8−/− and MMP-8+/− mice (Fig. 5, F and G). Because MIP-2 levels were rarely detectable by ELISA, RT-PCR analysis was performed in lung tissue extracts. MIP-2 mRNA levels were increased after allergen challenge in both groups without any differences between MMP-8−/− and MMP-8+/− mice (Fig. 6).

Determination of Th2 recruitment in lung parenchyma

An anti-T1/ST2 (orphan receptor expressed by Th2 cells) immunohistochemistry was performed on slides from lungs of MMP-8+/+ (n = 10) and MMP-8−/− (n = 12) mice exposed to OVA. Numbers of lymphocyte-shaped cells positive for this staining were significantly increased in MMP-8−/− mice as compared with MMP-8+/+ (p < 0.05), indicating that Th2 recruitment is increased in the lungs from MMP-8−/− (Fig. 7).

Assessment of cell apoptosis in lung sections

TUNEL analysis and caspase 3 immunohistochemistry performed on paraflin-embedded lung sections revealed that the number of...
apoptotic neutrophils was significantly increased after allergen exposure both in MMP-8−/− and MMP-8+/+. Interestingly, the extent of neutrophil apoptosis was significantly higher in MMP-8−/− mice when compared with MMP-8+/+ in BALF. IL-5 levels measured in BALF by ELISA were not significantly different between the groups (C). Eotaxin levels measured in the lung protein extracts were increased after allergen exposure in both genotypes without difference between the groups (D). Levels of KC measured in lung protein extracts (E) were increased after OVA challenge in both groups (p = 0.0001). LIX expression was studied in BALF by Western blots (F) showing a significant increase in mice exposed to allergens (p < 0.05) without any obvious difference between MMP-8−/− and MMP-8+/+ (G). IL-17 levels were measured in lung protein extracts by ELISA, but no differences were found between the groups (H). Results are expressed as means ± SEM.

FIGURE 5. Measurements of chemokines and cytokines in the BAL and lung protein extracts 24 h after a 7-day allergen exposure. Levels of IL-4 measured in BALF (A) and lung protein extracts (B). Significant differences were observed between MMP-8−/− mice exposed to OVA aerosol and mice exposed to PBS. IL-4 levels were higher after OVA exposure in BALF of MMP-8−/− mice when compared with MMP-8+/+ in BALF. IL-5 levels measured in BALF by ELISA were not significantly different between the groups (C). Eotaxin levels measured in the lung protein extracts were increased after allergen exposure in both genotypes without difference between the groups (D). Levels of KC measured in lung protein extracts (E) were increased after OVA challenge in both groups (p = 0.0001). LIX expression was studied in BALF by Western blots (F) showing a significant increase in mice exposed to allergens (p < 0.05) without any obvious difference between MMP-8−/− and MMP-8+/+ (G). IL-17 levels were measured in lung protein extracts by ELISA, but no differences were found between the groups (H). Results are expressed as means ± SEM.
of LIX, KC, and MIP-2 expression both in MMP-8
of IL-4 in BALF. Allergen exposure was linked to increased levels
airway walls; and 3) increased levels of IgE and IgG1 in serum and
and peribronchial area; 2) an enhanced eosinophilic infiltration in
displayed: 1) an increased neutrophilic inflammation in the BALF
were rarely detectable in the samples, and levels of TIMP-1 did not
increased neutrophilic influx obtained in the lung tissue after acute
in chemically induced skin carcinomas (25) and the
in neutrophil collagenase such
MMP-8, and this protease could therefore play other roles than
neutrophil collagenase (14, 33, 34) have also been reported to produce
secondary granules that are secreted in response to a wide range of
neutrophil-attracting chemokines such as growth-related onco-
mediators would have been cleaved modulating its chemokine ac-
expression was increased after allergen exposure in both experimental
groups without any differences between MMP-8−/− and MMP-8+/+ mice. Results are expressed as means ± SEM.

FIGURE 6. MIP-2 expression in lung tissue extracts 24 h after a 7-day allergen exposure. MIP-2 expression was analyzed by RT-PCR in lung tissue extracts, and its expression was increased after allergen in both groups without any differences between MMP-8−/− and MMP-8+/+ mice. Results are expressed as means ± SEM.

FIGURE 7. Counts of T1/ST2-positive cells in the peribronchial area from MMP-8−/− (n = 10) and MMP-8+/+ (n = 12) mice exposed to OVA (six peribronchial areas/mouse). Results are expressed as mean ± SEM. Measurements were performed 24 h after a 7-day allergen exposure.

Discussion

Based on clinical data depicting increased levels of MMP-8 (neutrophil collagenase) in the sputum from asthmatics (24) and a potentially important role of neutrophils in asthma (31), we studied the MMP-8 expression after allergen exposure in mice and found MMP-8 to be significantly increased after allergens. Therefore, we decided to apply a mouse model of allergen-induced airway inflammation to recently generated MMP-8−/− mice (25). In contrast to initial expectation, we demonstrate in this study that MMP-8 deletion in mice did not impair the development of allergen-induced airway inflammation. On the contrary, when compared with allergen-exposed MMP-8−/− mice, MMP-8+/+ mice displayed: 1) an increased neutrophilic inflammation in the BALF and peribronchial area; 2) an enhanced eosinophilic infiltration in airway walls; and 3) increased levels of IgE and IgG1 in serum and of IL-4 in BALF. Allergen exposure was linked to increased levels of LIX, KC, and MMP-2 expression both in MMP-8−/− and MMP-8+/+ mice. Using the TUNEL technique and caspase 3 immunohistochemistry, we demonstrated that neutrophil apoptosis was increased by allergens, but at a lower extent in MMP-8−/− mice. Although MMP-2 and -9 activities and MMP-12 mRNA expression were increased after allergen exposure in both experimental groups, MMP-12 expression was higher in MMP-8−/− than in MMP-8+/+ mice.

The lack of inhibition of the allergen-induced inflammation by MMP-8 deletion indicates that this protease is not essential for leukocytes and in particular neutrophil migration. MMP-8 is produced during maturation of neutrophils and is mainly located in the secondary granules that are secreted in response to a wide range of stimuli (32). Nevertheless, other cell types such as macrophages and structural cells (14, 33, 34) have also been reported to produce MMP-8, and this protease could therefore play other roles than degrading interstitial collagens, as suggested by the recent study of Balbin et al. (25), showing its capacity to process chemokines such as LIX.

The increased number of neutrophils in the BAL after allergen exposure is intriguing and of great interest, as it confirms in a different context the recent observation of an increased neutrophilic influx in chemically induced skin carcinomas (25) and the increased neutrophilic influx obtained in the lung tissue after acute LPS exposure in MMP-8−/− mice (21). Our data suggest that inc...
number of cells expressing the orphan receptor T1/ST2 is increased in lung parenchyma of MMP-8⁻/⁻ exposed to OVA, confirming that Th2 cell recruitment is increased in the lungs from MMP-8⁻/⁻ in the context of allergenic stimulation. Very interestingly, a recent study by McMillan et al. (40), although using an exposure protocol based on high concentrations of allergens different from ours, demonstrated such an increased Th2 cell recruitment in the BALF of mice knockout for the MMP-9 gene. Taken together, those data clearly suggest that there exists a mutual interplay between the occurrence of Th2 inflammation and MMPs, those latter playing a crucial role in its control.

The increased levels of pro- and activated MMP-9 found in the lung tissue from mice exposed to allergens when compared with sham-challenged mice confirm our previous observations in mice and humans (14, 15, 30, 41). Furthermore, these data suggest that the bronchial morphological changes observed in asthma could be at least in part explained by an increase of the net MMP load in the lung of individuals exposed to allergens. In line with MMP-9, we also describe in this work increased levels of MMP-2 to be present in the lung parenchyma of mice after allergen exposure. MMP-2 could therefore take part in the increased smooth muscle mass described in a model similar to ours (33), because this protease has been reported to be mitogenic for smooth muscle cells in cell culture (34). In accordance with our previous report (30), MMP-12 levels were increased after allergen in both MMP-8⁺/⁺ and MMP-8⁻/⁻. However, interestingly, MMP-12 levels found in MMP-8⁻/⁻ were significantly higher than in MMP-8⁺/⁺, suggesting an eventual compensatory mechanism of the MMP family following MMP-8 deletion.

In conclusion, our data demonstrate, in the context of allergic asthma, the anti-inflammatory effect of MMP-8 and suggest an implication of MMP-8 in the cascade of events leading to neutrophil apoptosis. As potential therapeutic issues have been proposed with MMP inhibitors, the present study describing an increased neutrophilic inflammation in MMP-8⁻/⁻ warns against the use of nonspecific MMP inhibition. In this context, other authors have reported that MMP-2⁻/⁻ mice display increased numbers of various inflammatory cells in the alveola due to a lack of egression of those cells (42). Taken together, these studies suggest that MMP inhibition should be selective and target specific MMPs, such as MMP-9 (30), for the therapy of asthma.

Acknowledgments

We thank Fabienne Perin-Rasquin, Cécile Caulier, and Fabrice Olivier for their excellent and essential technical assistance, and Romain Pauwels (deceased) for fruitful discussions.
Disclosures

The authors have no financial conflict of interest.

References