An Intact Phosphocholine Binding Site Is Necessary for Transgenic Rabbit C-Reactive Protein to Protect Mice against Challenge with Platelet-Activating Factor

Steven Black, Augusta Wilson and David Samols

J Immunol 2005; 175:1192-1196; doi: 10.4049/jimmunol.175.2.1192

http://www.jimmunol.org/content/175/2/1192

Why The JI?

- **Rapid Reviews! 30 days** from submission to initial decision
- **No Triage!** Every submission reviewed by practicing scientists
- **Speedy Publication!** 4 weeks from acceptance to publication

*average

References

This article cites **43 articles**, 22 of which you can access for free at:

http://www.jimmunol.org/content/175/2/1192.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at:

http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:

http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:

http://jimmunol.org/alerts
An Intact Phosphocholine Binding Site Is Necessary for Transgenic Rabbit C-Reactive Protein to Protect Mice against Challenge with Platelet-Activating Factor

Steven Black, Augusta Wilson, and David Samols

C-reactive protein (CRP), an acute phase protein in humans and rabbits, is part of the innate immune system. The role of CRP in host defense has been thought to be largely due to its ability to bind phosphocholine, activate complement, and interact with IgGRs (FcγRs). We have shown previously that transgenic rabbit CRP (rbCRP) protects mice from lethal challenges with platelet-activating factor (PAF). To investigate the mechanism of this protection, we created additional lines of transgenic mice that express either wild-type rbCRP, a variant of rbCRP with altered complement activation activity (Y175A), or a variant of rbCRP unable to bind phosphocholine (F66Y/E81K). In the current study, these lines were challenged with a single injection of PAF and their survival monitored. Mice expressing wild-type and Y175A rbCRP were protected against challenge by PAF whereas mice expressing F66Y/E81K rbCRP were not. Treatment with cobra venom factor did not affect survival, confirming the results with the Y175A rbCRP variant and indicating that complement activation was not required to mediate protection. Both wild-type rbCRP and Y175A rbCRP were capable of binding PAF in vitro whereas F66Y/E81K rbCRP was not. Although other interpretations are possible, our results suggest that the protective effect of rbCRP against PAF is due to sequestration of PAF.

express either wild-type rbCRP, a variant of rbCRP incapable of binding to PCh (F66Y/E81K), or a variant of rbCRP with altered complement activation activity (Y175A). In contrast to humans, where plasma levels of CRP can reach levels >200 μg/ml, plasma levels of mouse CRP rarely exceed 2 μg/ml following inflammatory stimuli (30), making the mouse a good model in which to study the effects of transgenic CRP in vivo. In the present study, transgenic mice expressing rbCRP were challenged with PAF. We found that an intact PCh binding site was necessary for rbCRP to protect mice challenged with a lethal dose of PAF. In contrast, complement activation was not required for protection. The simplest explanation for these findings is that rbCRP inhibits the effects of PAF by binding directly to the PCh moiety of PAF, preventing binding of PAF to its receptor.

Materials and Methods

rbCRP expression in transgenic mice

All animals used in this study were maintained according to institutional guidelines. Expression of transgenic rbCRP was controlled by the rat cytosolic phospho(enol)pyruvate carboxykinase (PEPCK) promoter as described previously (31). The PEPCK promoter responds to gluconeogenic signals in hepatocytes and is repressed by carbohydrate-rich diets but induced by fat or protein-rich diets. All animals used in these studies were homozygous for the transgene and backcrossed into the C57BL/6 (B6) background six generations. Blood was drawn via a retro-orbital bleed from mice once or twice a day for 14 days. Approximately 50 μl of whole blood were drawn each time. Blood drawn on days 0 and 1 were from mice fed standard chow. Starting on day 1 following the blood draw, mice were fed Custom McGrane high-carbohydrate diet for 5 days (32). During this time period, blood was drawn once per day. On day 6, the mice were switched to an isocaloric protein-rich diet (32) and maintained on this diet through the course of the experiment. Blood was drawn once or twice a day up to day 14. Serum from each blood sample was then used to measure rbCRP levels as described below.

rbCRP assays

Serum samples were obtained from mice via a retro-orbital bleeding 1 h before challenge with PAF. rbCRP levels in mouse sera were measured as described previously (10). Briefly, PCh-BSA was prepared according to a previously published method (33). Microtiter wells were coated with 100 μl of PCh-BSA at 10 μg/ml in TBS (pH 7.2) and incubated for 1 h at room temperature. Each well was blocked with 1% BSA in TBS (300 μg/ml) for 45 min at room temperature. rbCRP samples and standards were added at appropriate concentrations in a calcium-containing buffer (TBS with 5 mM CaCl2, 0.1% BSA, and 0.01% Igepal) and incubated overnight at 4°C. rbCRP purified from the serum of a rabbit was used to construct a standard curve. A rbCRP-specific goat polyclonal Ab (G2P) was used to detect bound rbCRP. Microtiter wells were developed with a HRP-conjugated rabbit anti-goat IgG followed by use of a peroxidase substrate kit (Bio-Rad), as per the manufacturer’s instructions. Color development was measured at 405 nm in a microplate reader (Molecular Devices). After each step, the plate was washed four times using the PAF-binding buffer.

Results

Expression of rbCRP is induced by dietary manipulation

As previously described, three lines of transgenic mice expressing either wild-type rbCRP, F66Y/E81K rbCRP, or Y175A rbCRP were generated (10) and backcrossed six generations into the B6 background. Using the rat cytosolic PEPCK promoter involved in gluconeogenesis, hepatic expression of the transgene was induced by dietary manipulation. rbCRP expression was inducible in all three lines of transgenic mice to similar levels. Fig. 1 shows a typical pattern of circulating rbCRP following dietary induction in three mice. Transgenic mice on normal chow had a constitutive level of rbCRP expression of 10–30 μg/ml. On day 1, the diet was changed to an isocaloric carbohydrate-rich diet that inhibits expression of the transgene from the PEPCK promoter. Forty-eight hours after such a diet change, rbCRP expression levels were typically <10 μg/ml. On day 6, the animals were provided an isocaloric high-protein diet. Transgenic rbCRP expression levels peaked 24–48 h after a carbohydrate-rich to a protein-rich diet change.

Challenge of mice with PAF

PAF (Sigma-Aldrich) diluted in 0.9% sterile saline was injected i.v. into the tail vein of mice at a concentration of 35–60 μg/kg. The appropriate concentration of PAF was determined for each individual experiment using mice expressing high and low levels of wild-type rbCRP. This dose was then applied to animals expressing variant rbCRP. Animals were monitored for 2 h with lethality typically occurring in <1 h. For all experiments, animals expressing low levels of rbCRP were maintained on the carbohydrate-rich diet, and high rbCRP expression was induced by a shift to the protein-rich diet 24–30 h before challenge. Mice treated with cobra venom factor (CVF) (Quidel) were given a single i.v. injection of CVF (30 μg diluted in sterile 0.9% NaCl) 24 h before challenge with PAF. Results were analyzed using the χ² test with Yates’ correction and considered significant if the p values were <0.05.

Detection of serum C3 by rocket immunoelectrophoresis

Rocket immunoelectrophoresis (36) was used to estimate the amount of C3 in mouse sera. Immunoelectrophoresis was performed on GelBond Film (Cambrex) covered with 9 ml of 1% agarose in Tris-boric acid buffer (pH 8.6) containing 40 μl of rabbit anti-human C3c (DakoCytomation), an Ab known to cross-react with mouse C3c. A field strength of 200 V was applied for 3 h. Precipitin peaks were stained with Coomassie brilliant blue. The amount of C3 depletion was estimated by comparing the height of the “rocket” of a serial dilution of serum from a mouse before injection with CVF with the “rocket” height of serum from the same mouse 24 h after injection of CVF.

Detection of rbCRP binding to PAF

Binding of rbCRP to PAF was demonstrated using a solid phase binding assay. Microtiter wells were coated with a HRP-conjugated rabbit anti-goat IgG followed by use of a peroxidase substrate kit (Bio-Rad), as per the manufacturer’s instructions. Color development was measured at 405 nm in a microplate reader (Molecular Devices). After each step, the plate was washed four times using the PAF-binding buffer.

FIGURE 1. Short-term effect of diet on circulating levels of rbCRP in transgenic mice. Mice were provided normal chow up to day 1, a carbohydrate-rich diet (CHO) from days 1 to 6 and a protein-rich diet from days 6 to 14. A representative mouse from each transgenic line is shown. Serum rbCRP levels were measured as described in Materials and Methods. (•, On days 7 and 8, the concentration of F66Y/E81K rbCRP was above the detectable limit of 200 μg/ml using radial immunodiffusion).
After the diet change to levels in the range of 150–225 µg/ml and returned to the baseline levels 2–3 days later. Animals continuously maintained on the carbohydrate-rich diet typically had rbCRP levels < 10 µg/ml. All three lines of transgenic mice showed a similar pattern of induction.

rbCRP expressed in transgenic mice requires an intact PCh binding site to protect against lethal challenge by PAF

Transgenic mice expressing wild-type, F66Y/E81K, or Y175A rbCRP were challenged with a single i.v. injection of PAF. Each line of mice was divided randomly into two groups. One group was maintained on the carbohydrate-rich diet and expressed low levels of rbCRP (<20 µg/ml). The other group was fed the carbohydrate-rich diet for 4–5 days, at which time the diet was changed to the protein-rich diet to induce high levels of rbCRP expression (>100 µg/ml) 24 h before being challenged with PAF.

As shown in Fig. 2, mice expressing high levels of wild-type and Y175A transgenic rbCRP were significantly more likely to survive a lethal challenge with PAF than were littermates expressing low levels of rbCRP (p = 0.03 and p = 0.011, respectively). In contrast, survival of transgenic mice expressing high levels of F66Y/E81K, the variant incapable of binding PCh, did not differ from that observed in littermates expressing only low levels of F66Y/E81K rbCRP. Survival of the F66Y/E81K mice, regardless of CRP expression levels, was comparable to that observed in mice expressing low levels of wild-type rbCRP. B6 mice (n = 8) were also challenged with similar concentrations of PAF; no animals survived.

Protection of rbCRP-expressing mice does not involve complement

In a series of solid phase-binding assays, Y175A rbCRP bound to PCh was incapable of activating complement but could activate complement when bound to polycations or directly adsorbed to a solid phase (10). To more definitively rule out the possibility that complement activation by rbCRP was not playing a role, transgenic mice expressing high levels of wild-type rbCRP were treated with CVF 24 h before challenge with PAF to deplete C3. Rocket immunoelectrophoresis was used to demonstrate the depletion of C3 in these animals (data not shown). Equal amounts of serum from each mouse, obtained before and 24 h after injection of CVF, were subjected to this technique. Twenty-four hours after treatment with CVF, there was a dramatic decrease in rocket size, estimated to be 5% of control C3 levels. Transgenic mice expressing high levels of wild-type rbCRP (>100 µg/ml) and treated with CVF survived challenge with PAF to a similar degree as did those animals expressing high levels of wild-type rbCRP (>100 µg/ml) not treated with CVF (Fig. 3). These findings, along with the observation (Fig. 2) that high levels of Y175A rbCRP protected mice from a lethal challenge with PAF, indicate that complement activation was not required for rbCRP-mediated protection from lethal challenges of PAF.

F66Y/E81K rbCRP is incapable of binding PAF in vitro

PAF contains PCh, and it has been reported previously that CRP is capable of binding PAF (26, 28). We confirmed this binding in a direct manner using a solid phase-binding assay. In this assay, PAF was used to directly coat a solid phase. rbCRP was added to PAF-containing wells and bound rbCRP detected by an Ab specific for rbCRP (G2P). Both wild-type and Y175A rbCRP bound PAF in a dose-dependent manner with similar avidities, but F66Y/E81K demonstrated little binding to PAF (Fig. 4).

Discussion

We have shown previously that transgenic wild-type rbCRP protects mice from lethal challenge by PAF (17). In the present study, we extended these studies to determine whether the PCh binding or the complement-activating properties of CRP contribute to this observed protection. We found that transgenic mice expressing variant rbCRP (F66Y/E81K) incapable of binding PCh are not protected from a lethal challenge of PAF, presumably due to inability to bind the PCh moiety of PAF. Both transgenic mice expressing a variant rbCRP (Y175A) with altered complement activation activity and transgenic mice expressing wild-type rbCRP and treated with CVF were still protected from lethal challenge with PAF, demonstrating that activation of complement is not required for protection from PAF challenge.

Undoubtedly PAF-mediated mortality in mice, although rapid, results in the generation of numerous CRP ligands. We cannot rule...
that a CRP-PAF interaction may contribute to the ability of CRP to function as a mediator of LPS toxicity is PAF (19, 20), it is tempting to speculate that CRP functions as a partial protection from LPS-induced mortality. Because one mechanism by which the bacteria increase their adherence to and invasion of host epithelial cells (41, 42), CRP inhibited adherence of bacteria expressing PCh and their subsequent invasion but had no effect on bacteria without PCh (40).

CRP binding to PCh of PAF may not be the only means through which activation of the PAFR is blunted. The ability of CRP to bind PCh on the surface of necrotic and apoptotic cells may provide a general mechanism to limit the inflammatory response generated by signaling through the PAFR. The PAFR shows a strong preference for the sn-1 ether bond, the sn-2 acetyl residue, and the choline head group of PAF (43). There are a number of PAF-like lipids that are also capable of interacting with the PAFR, including oxidized phosphatidylcholine (reviewed in Ref. 43). In fact, it has been reported that CRP is capable of binding the PCh moiety in oxidized phosphatidylcholine but is unable to bind nonoxidized phosphatidylcholine (7). CRP binding to PCh of oxidized phosphatidylcholine may help limit the damage caused by these oxidatively modified phospholipids.

Although our results suggest that the PCh binding site is important in this model, other aspects of CRP biology may also be involved. It has been shown that CRP prevented binding of PAF to platelets, leading to the speculation that CRP may bind directly to PAFR (27). An alternate explanation may be CRP binding to FcyRs. This seems more likely because transgenic animals expressing F66Y/E81K still showed a significant but minimal effect on bacteria without PCh (40).

The use of these transgenic animals expressing variants of rbCRP will allow us to further examine the importance of these two fundamental properties of CRP, PCh binding and complement activation, in a variety of inflammatory models, including protection from bacterial species, both those expressing PCh and those which do not.

Disclosures
The authors have no financial conflict of interest.

References

