Leukotriene B4 Receptor-1 Is Essential for Allergen-Mediated Recruitment of CD8+ T Cells and Airway Hyperresponsiveness

Nobuaki Miyahara, Katsuyuki Takeda, Satoko Miyahara, Christian Taube, Anthony Joetham, Toshiyuki Koya, Shigeki Matsubara, Azzeddine Dakhama, Andrew M. Tager, Andrew D. Luster and Erwin W. Gelfand

http://www.jimmunol.org/content/174/8/4979

References This article cites 43 articles, 15 of which you can access for free at:

http://www.jimmunol.org/content/174/8/4979.full#ref-list-1

Subscription Information about subscribing to *The Journal of Immunology* is online at:

http://jimmunol.org/subscription

Permissions Submit copyright permission requests at:

http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts Receive free email-alerts when new articles cite this article. Sign up at:

http://jimmunol.org/alerts
Leukotriene B4 Receptor-1 Is Essential for Allergen-Mediated Recruitment of CD8$^+$ T Cells and Airway Hyperresponsiveness

Nobuaki Miyahara, Katsuyuki Takeda, Satoko Miyahara, Christian Taube, Anthony Joetham, Toshiyuki Koya, Shigeki Matsubara, Azzeddine Dakhama, Andrew M. Tager, Andrew D. Luster, and Erwin W. Gelfand

Recent studies in both human and rodents have indicated that in addition to CD4$^+$ T cells, CD8$^+$ T cells play an important role in allergic inflammation. We previously demonstrated that allergen-sensitized and -challenged CD8-deficient (CD8$^{-/-}$) mice develop significantly lower airway hyperresponsiveness (AHR), eosinophilic inflammation, and IL-13 levels in bronchoalveolar lavage fluid compared with wild-type mice, and that all these responses were restored by adoptive transfer of in vivo-primed CD8$^+$ T cells or in vitro-generated effector CD8$^+$ T cells (T$_{Eff}$). Recently, leukotriene B4 and its high affinity receptor, BLT1, have been shown to mediate in vitro-generated T$_{Eff}$ recruitment into inflamed tissues. In this study we investigated whether BLT1 is essential for the development of CD8$^+$ T cell-mediated allergic AHR and inflammation. Adoptive transfer of in vivo-primed BLT1$^{+/+}$, but not BLT1$^{+-}$, CD8$^+$ T cells into sensitized and challenged CD8$^{-/-}$ mice restored AHR, eosinophilic inflammation, and IL-13 levels. Moreover, when adaptively transferred into sensitized CD8$^{-/-}$ mice, in vitro-generated BLT1$^{+/+}$, but not BLT1$^{+-}$, T$_{Eff}$ accumulated in the lung and mediated these altered airway responses to allergen challenge. These data are the first to show both a functional and an essential role for BLT1 in allergen-mediated CD8$^+$ T$_{Eff}$ recruitment into the lung and development of AHR and airway inflammation. The Journal of Immunology, 2005, 174: 4979–4984.

Allergic asthma is a complex syndrome that has been characterized by airway obstruction, airway inflammation, and airway hyperresponsiveness (AHR)3 (1, 2). Ag-specific memory T cells, especially CD4$^+$ T cells, have been considered pivotal in the development of AHR and eosinophilic inflammation (1–4) through the production of cytokines, especially IL-13 (5, 6). However, there is now increasing evidence for the role of CD8$^+$ T cells in these responses as well. Increased numbers of CD8$^+$ T cells have been shown in the lungs of asthmatic patients (7) and in animal models of allergic asthma (8). In addition, CD8$^+$ T cells in the lung are a source of IL-13 and may be required for the full development of allergen-induced AHR and inflammation (9). Moreover, in vitro-generated Ag-specific effector CD8$^+$ T cells (T$_{Eff}$) contribute to these responses through their migration into lung tissue and local production of IL-13 in sensitized and challenged mice (10).

Leukotriene B4 (LTB4) is an arachidonic acid-derived proinflammatory lipid, rapidly generated from innate immune cells (11, 12). LTB4, interacting through a specific G protein-coupled cell surface receptor, BLT1 (13, 14), leads to granulocyte and macrophage accumulation at sites of inflammation (15, 16). Because BLT1 is expressed by T$_{Eff}$, the LTB4-BLT1 pathway may be essential for effector CD8$^+$ T cell movement to sites of acute inflammation (17, 18). However, its role in the development of allergen-induced AHR and inflammation has not been defined.

In the present study we investigated the requirement for BLT1 expression on CD8$^+$ T cells and Ag-specific T$_{Eff}$ in the development of allergen-induced AHR and airway inflammation. We show that BLT1-deficient (BLT1$^{+-}$) CD8$^+$ T cells or BLT1$^{+-}$ T$_{Eff}$ are not capable of restoring these responses in CD8$^{-/-}$ mice. The absence of BLT1 resulted in the reduced accumulation of CD8$^+$ T cells in the lungs and decreased IL-13 production in sensitized and challenged CD8$^{-/-}$ mice. These data demonstrate that BLT1 is essential for allergen-mediated CD8$^+$ T cell recruitment to the lung and induction of eosinophilic airway inflammation and AHR.

Materials and Methods

Animals

Homozygous CD8$^{-/-}$ mice, generated by targeting the CD8 α-chain gene in C57BL/6 mice (19), OT-1 mice (C57BL/6 strain) expressing a transgenic TCR that is specific for OVA$_{257-264}$ (SIINFEKL) peptide (20), and wild-type (WT) C57BL/6 mice were purchased from The Jackson Laboratory. BLT1$^{+-}$ mice, F$_1$ hybrids of C57BL/6 and 129Sv/J genetic background (21), were backcrossed into the C57BL/6 genetic background for nine generations. BLT1-deficient OT-1 mice were generated by mating BLT1$^{+-}$ mice with OT-1 mice. These mice were housed under specific pathogen-free conditions and maintained on an OVA-free diet in the Biological Resources Center at the National Jewish Medical and Research Center. Male and female mice, 6–12 wk of age, were used in these experiments. Controls were matched with the deficient mice with regard to age and gender in each experimental group. All experimental animals used in...
this study were under a protocol approved by the institutional animal care and use committee of the National Jewish Medical and Research Center.

Sensitization and airway challenge

CD8\(^{-/-}\) and WT mice were assigned to control (C) and treatment groups (S/C) based on the following treatments: 1) airway challenge with OVA nebulization alone (three times; C group), and 2) i.p. sensitization with OVA and OVA airway challenge (S/C). Mice were sensitized by i.p. injection of 20 \(\mu\)g of OVA (grade V; Sigma-Aldrich) emulsified in 2.25 mg of alum (AlumNject; Pierce) on days 1 and 14. Mice were subsequently challenged via the airways by inhalation exposure to aerosols of OVA (1% in saline) for 20 min on days 28, 29, and 30. OVA aerosols were produced by an ultrasonic nebulizer (particle size, 1–5 \(\mu\)m; De Vilbiss). On day 32, airway function was measured as described below, followed by collection of samples for further analyses.

Purification of CD8\(^{+}\) T cells

Spleens of BLT1\(^{-/-}\) mice or BLT1\(^{+/+}\) mice, which were sensitized twice (days 1 and 14) with OVA plus alum, were removed 14 days after the last sensitization (day 28), and purification of CD8\(^{+}\) T cells was performed by negative selection using MACS (Miltenyi Biotec) as previously described (9). To assess purification, cells were incubated with allopseudocytinin-conjugated anti-CD3, FITC-conjugated anti-CD4, anti-CD8, or anti-B220 Abs; and PE-conjugated anti-CD11c, anti-mouse NK1.1, anti-\(\gamma\)-TCR, or anti-\(\alpha\)-\(\beta\) TCR (BD Pharmingen), then analyzed by flow cytometry (FACSCalibur; BD Biosciences). The proportion of the transferred cells that stained for CD3\(^{+}\) CD8\(^{+}\) from BLT1\(^{-/-}\) and BLT1\(^{+/+}\) mice exceeded 93%. They were \(>99\%\) \(\alpha\beta\)-CD8\(^{+}\) T cells, with \(<0.5\%\) of cells being \(\gamma\delta\)-CD8\(^{+}\) T cells in preparations from both groups. Contamination by CD4\(^{+}\) cells, CD8\(^{+}\) cells, CD11c\(^{+}\) cells, or NK1.1\(^{+}\) cells in transferred cells was, in total, \(<0.5\%\).

Effector CD8\(^{+}\) T cell generation

Differentiation of T\(_{Eeff}\) cells in vitro was conducted as previously described (10). Lymph node and spleen cells collected from BLT1\(^{-/-}\) and BLT1\(^{+/+}\) recipients were cultured with 1 \(\mu\)g/ml SIINFEKL peptide. After culture for 2 days, cells were washed and cultured with IL-2 (20 ng/ml). After 7 days, it was determined that the cultures contained \(>99\%\) \(\alpha\beta\)-CD8\(^{+}\) T cells. CD4\(^{+}\) cells, CD11c\(^{+}\) cells, NK1.1\(^{+}\) cells, or \(\gamma\delta\)-CD8\(^{+}\) cells were \(<0.1\%\). The cells were \(>90\%\) CD8\(^{+}\) effector memory cell phenotype, as shown by the CD122\(^{hi}\)/CD44\(^{hi}\)/CD62L\(^{lo}\) cell surface phenotype. T\(_{Eeff}\) derived through this protocol showed phenotypic and functional characteristics of effector memory CD8\(^{+}\) T cells in vivo (22, 23).

Adoptive transfer recipient mice

Recipient CD8\(^{-/-}\) mice were sensitized twice with OVA plus alum on days 1 and 14. OVA-primed CD8\(^{+}\) T cells (5 \(\times\) 10\(^{6}\)) from BLT1\(^{-/-}\) or BLT1\(^{+/+}\) mice were administered i.v. via the tail vein to OVA-sensitized CD8\(^{-/-}\) mice 14 days after the last sensitization (day 28). In vitro-generated CD8\(^{+}\) T\(_{Eeff}\) cells (5 \(\times\) 10\(^{6}\)) from BLT1\(^{-/-}\) or BLT1\(^{+/+}\) mice were transferred in the same way. After transfer, the mice were exposed to three allergen challenges via the airways on days 28, 29, and 30. Assays were conducted on day 32.

Assessment of airway function

Airway function was assessed as previously described by measuring changes in lung resistance (RL) in response to increasing doses of inhaled methacholine (24). Data are expressed as the percentage of change from baseline RL values obtained after inhalation of saline.

Bronchoalveolar lavage (BAL)

Immediately after assessment of AHR, lungs were lavaged via the tracheal tube with HBSS. Total leukocyte numbers were counted by cell counter (Coulter). Cytospin slides were stained with Leukostat (Fisher Diagnostics) and differentiated by standard hematological procedures.

Measurement of cytokines

Cytokine levels in the BAL fluid and cell culture supernatants were measured by ELISA as previously described (25). IFN-\(\gamma\), IL-4, IL-5 (BD Pharmingen), and IL-13 (R&D Systems) ELISAs were performed according to the manufacturer’s directions. The limits of detection were 4 pg/ml for IL-4, IL-5, and IL-13 and 10 pg/ml for IFN-\(\gamma\).

Cell isolation

Mononuclear cells (MNC) from spleen and peripheral lymph node (PBLN) were purified by Ficoll-Hypaque gradient centrifugation (Organon Teknika) (9). Lung cells were isolated as previously described using collagenase digestion (26). Cells were resuspended in HBSS, and MNC were purified by Ficoll-Hypaque gradient centrifugation.

Flow cytometry

After purification, 1 \(\times\) 10\(^6\) cells were incubated with allopseudocytinin-conjugated anti-CD3 and FITC-conjugated anti-CD8 Abs (BD Pharmingen), then analyzed by flow cytometry (FACSCalibur; BD Biosystems) as previously described (9). The number of CD8\(^{+}\) T cells per lung was derived by multiplying the percentage of stained cells by the total number of lung cells isolated. Intracytoplasmic cytokine staining for IFN-\(\gamma\) (BD Pharmingen) and IL-13 (R&D Systems) was performed as previously described (9). The number of cytokine-producing CD8\(^{+}\) T cells per lung was calculated from the percentage of cytokine-producing cells and the number of CD8\(^{+}\) T cells isolated from the lung.

Statistical analysis

Values for all measurements are expressed as the mean ± SEM. ANOVA was used to determine the levels of difference between all groups. Comparisons for all pairs were performed by unpaired two-tailed Student’s \(t\) test. Significance levels were set at \(p < 0.05\).

Results

In vivo-primed CD8\(^{+}\) T cells from BLT1\(^{-/-}\), but not BLT1\(^{+/+}\), mice fully restore AHR in CD8\(^{-/-}\) mice

Fig. 1A shows the changes in RL in response to increasing doses of inhaled methacholine for both WT and CD8\(^{-/-}\) mice. OVA sensitization and airway challenge led to the development of increased AHR in WT mice, illustrated by significant increases in RL, as previously described in this model (23). OVA-sensitized and -challenged CD8\(^{+}\) mice developed small increases in RL above nonsensitized and OVA-challenged control mice, but the levels were significantly lower than those in OVA-sensitized and -challenged WT mice (9). To address whether the expression of BLT1 on CD8\(^{+}\) T cells is involved in the regulation of allergen-induced AHR, inflammation and cytokine responses, CD8\(^{+}\) T cells from BLT1\(^{-/-}\) and BT1\(^{+/+}\) mice were injected into CD8\(^{-/-}\) mice. Recipient CD8\(^{-/-}\) mice were sensitized with OVA on days 1 and 14. On day 28, 2 h before beginning the OVA challenges, 5 \(\times\) 10\(^{6}\) CD8\(^{+}\) T cells from BLT1\(^{-/-}\) or BLT1\(^{+/+}\) mice were transferred via i.v. injection into the tail vein. As shown in Fig. 1A, reconstitution of CD8\(^{-/-}\) mice with Ag-primed CD8\(^{+}\) T cells from BLT1\(^{-/-}\) mice fully restored the development of AHR to levels comparable to those seen in WT mice. In contrast, transfer of OVA-sensitized CD8\(^{+}\) T cells from BLT1\(^{-/-}\) mice failed to restore AHR.

In vivo primed CD8\(^{+}\) T cells from BLT1\(^{-/-}\), but not BLT1\(^{+/+}\), mediate allergen-induced eosinophilic airway inflammation

Previous studies indicated that CD8\(^{-/-}\) mice failed to develop OVA-induced eosinophil accumulation in BAL, a response that was restored after adoptive transfer of Ag-primed CD8\(^{+}\) T cells (9). After sensitization and allergen challenge, the numbers of eosinophils in the CD8\(^{-/-}\) mice were significantly lower than those in WT mice (Fig. 1B). Transfer of BLT1\(^{-/-}\) CD8\(^{+}\) T cells fully restored the number of eosinophils in BAL fluid, whereas BLT1\(^{-/-}\) CD8\(^{-/-}\) T cell transfer failed to do so.

Cytokine levels in BAL fluid

OVA sensitization and challenge did not result in significant differences between WT and CD8\(^{-/-}\) mice in the levels of IL-4, IL-5, or IFN-\(\gamma\) in BAL fluid (9). However, after sensitization and challenge, the levels of IL-13 were significantly lower in BAL fluids.
We previously showed that transfer of CD8$^+$ T cells from BLT1-deficient mice fails to restore the development of AHR and inflammation. OVA-sensitized CD8$^{-/-}$ mice (recipient mice) received 5 x 10^6 CD8$^+$ T cells i.v. via the tail vein 2 h before the first airway challenge with aerosolized OVA. Recipient mice were comprised of two groups. In one group, mice received CD8$^+$ T cells from spleens of OVA-sensitized, BLT1-sufficient mice (BLT1$^{+/-}$ CD8$^+$ T group; n = 8). In the other group, mice received CD8$^+$ T cells from OVA-sensitized, BLT1-deficient mice (BLT1$^{-/-}$ CD8$^+$ T group; n = 8). WT mice and CD8$^+$ T cells receiving no cells are also shown (challenged-only groups: WT C and CD8$^{-/-}$ C; sensitized and challenged groups, WT S/C and CD8$^{-/-}$ S/C; n = 12 in each group). A. AHR was monitored by measuring RL as described in Materials and Methods. B, Cell composition in BAL fluid after transfer of CD8$^+$ T cells. Groups are the same as in A. Total, total cell counts; Mac, macrophages; Lym, lymphocytes; Neu, neutrophils; Eos, eosinophils. C. Levels of IL-13 in BAL fluid after transfer of BLT1$^{+/-}$ CD8$^+$ T cells. Groups are the same as in A. Cytokine levels were measured in supernatants by ELISA, as described in Materials and Methods. D, Numbers of CD8$^+$ T cells in the lung, BAL, PBLN, and spleen in CD8$^{-/-}$ mice after transfer of CD8$^+$ T cells from BLT1$^{+/-}$ or BLT1$^{-/-}$ mice. Lung, PBLN, and spleen MNC and BAL cells were isolated and stained with anti-CD3 and anti-CD8, and the numbers were calculated as described in Materials and Methods (n = 8 in each group). The results for each group are expressed as the mean ± SEM. * Significant differences (p < 0.05) are indicated between the BLT1$^{-/-}$ CD8$^+$ T group and the CD8$^{-/-}$ S/C group vs the WT S/C and WT BLT1$^{+/-}$ CD8$^+$ T groups. # Significant differences (p < 0.05) are indicated between the BLT1$^{-/-}$ CD8$^+$ T group and the CD8$^{-/-}$ S/C group vs the WT C and CD8$^{-/-}$ C. ** Significant differences (p < 0.05) are indicated compared with CD8$^{+/-}$ CD8$^+$ T.

Migration of BLT1$^{+/-}$ and BLT1$^{-/-}$ CD8$^+$ T cells

We next determined whether transferred, in vivo-primed CD8$^+$ T cells from BLT1$^{+/-}$, but not BLT1$^{-/-}$, restored the levels of IL-13 in BAL fluid to those seen in WT mice.

Migration of transferred T_{Eff} cells into lung

The accumulation of adoptively transferred T_{Eff} cells in the lungs of CD8$^{-/-}$ mice was determined 48 h after the last challenge. Transferred BLT1$^{+/-}$ T_{Eff} cells (identifed as CD3$^+$ CD8$^+$) amounted to 11.0 ± 2.5% of the total lung MNC after OVA sensitization and challenge (Fig. 3A), whereas transferred BLT1$^{-/-}$ T_{Eff} cells were found at a much lower percentage (2.0 ± 0.3% of total lung MNC). A similar pattern was observed in BAL fluid (Fig. 3A). More than 95% of the BLT1$^{+/-}$ T_{Eff} and BLT1$^{-/-}$ T_{Eff} in lung and BAL displayed an effector memory phenotype: CD122^high/CD44^high/CD62^low (22). Fig. 3B summarizes the numbers of transferred T_{Eff} detected in the lungs, PBLN, BAL, and spleen of recipient CD8$^{-/-}$ mice. Lower numbers of BLT1$^{-/-}$ T_{Eff} were detected in BAL and lung, whereas higher numbers of transferred BLT1$^{-/-}$ T_{Eff} cells were recovered from PBLN.
pressed IL-13. After in vitro culture and just before transfer, there was inflammation. CD8+ T cells were detected in 33.3% of BAL fluid from BLT1+/+ recipients. The numbers of eosinophils in BAL fluid after transfer of either BLT1+/+ or BLT1−/− mice i.v. via the tail vein 2 h before the first airway challenge were measured. AHR was monitored by measuring RL as described in Materials and Methods. The results for each group are expressed as the mean ± SEM. * Significant differences (p < 0.05) between BLT1+/+ T Eff cells and WT mice after sensitization and challenge (BLT1+/+ T Eff S/C) and WT mice after sensitization and challenge (WT S/C) vs BLT1−/− T Eff recipient mice. Similarly, the numbers of IL-4- and IL-5-producing CD4 T cells in the lungs of BLT1−/− T Eff recipient mice were not different compared with those in BLT1+/+ T Eff recipient mice. The data demonstrate that in addition to the reduced recruitment, a smaller percentage of the transferred BLT1−/− T Eff cells was capable of IL-13 production after airway allergen challenge of sensitized recipients. Overall, the numbers of IL-13-producing BLT1−/− T Eff cells were significantly lower than the numbers of IL-13-producing BLT1+/+ T Eff cells (Fig. 4, B and C). By contrast, the percentage of IFN-γ-producing cells did not change. These data illustrate that in addition to its role in cell trafficking to the lung, the functional activation of T Eff and IL-13 production may be dependent in part on the expression of BLT1.

Discussion

There is now increasing evidence that CD8+ T cells contribute to the development of allergic disease (7–10), but their function in allergic airway disease, especially how they are recruited and activated in the lung, is not well defined. LTB4 has been shown to be a potent chemoattractant for effector CD8+ T cells, and LTB4 production by activated leukocytes, such as neutrophils, mast cells, and macrophages, may be important in the recruitment of T Eff cells to sites of inflammation (17, 18, 27, 28). BLT1, the high affinity receptor for LTB4, has been induced substantially on CD8+ T Eff, with less expression on CD8+ T CM (17). LTB4 triggers BLT1-dependent chemotaxis of T Eff, but not naive T cells or T CM (17, 27).
suggesting that the LTB₄-BLT₁ interaction is a potent nonchemokine pathway for effector CD₈⁺ T cell accumulation.

In the present study we investigated the role of this LTB₄-BLT₁ pathway in effector CD₈⁺ T cell function in a mouse model of allergen-induced AHR and airway inflammation. We have reported that CD₈⁺ T cells from Ag-primed donors or by transfer of in vitro-generated CD₈⁺ T cells from BLT₁⁺/− mice after transfer of BLT₁⁺/−. T EFF, A. Lung MNC were isolated and stimulated with PMA and ionomycin, then cells were fixed, permeabilized, and stained with anti-mouse IL-13 Ab as described in Materials and Methods. CD₃⁺ CD₈⁺ cells were gated and analyzed for intracellular detection of IL-13 protein. Quadrants were set based on isotype control staining. The data shown are representative of two similar experiments (n = 8 in each group). B, Percentages of cytokine-producing CD₈⁺ T cells in the lungs of CD₈⁺ mice after transfer of BLT₁⁺/− and BLT₁⁺/−. T EFF. Groups are the same as in A. C, Absolute numbers of cytokine-producing CD₈⁺ T cells in the lungs of CD₈⁺ mice after transfer of BLT₁⁺/− and BLT₁⁺/−. T EFF. The numbers were calculated as described in Materials and Methods. Groups are the same as in A.

These two deficiencies probably explain why transfer of CD₈⁺ T cells and T EFF cells from BLT₁⁺/− mice enhanced IL-13 levels in BAL fluid and restored AHR, whereas BLT₁⁺/− T cells did not. Furthermore, we demonstrated that although numbers of IL-13-producing BLT₁⁺/− T EFF in the lung after transfer were significantly higher than those of BLT₁⁺/− T EFF, the numbers of IL-13-producing BLT₁⁺/− T EFF in vitro before transfer were not different from those of BLT₁⁺/− T EFF. These data suggest that BLT₁⁺/− T EFF responded in the lung after sensitization and challenge and acquired effector function (IL-13 production), whereas BLT₁⁺/− T EFF failed to do so. These data demonstrate for the first time, in an in vivo model, that migration/accumulation as well as the functional activation of T EFF in vivo are at least in part dependent on the LTB₄-BLT₁ pathway. Together, the data indicate a critical role for BLT₁-effector CD₈⁺ T cells in the full development of AHR and airway inflammation. In contrast, CD₄⁺ T cell numbers and cytokine production were not affected by the absence of BLT₁.

T EFF have been reported to produce IFN-γ in vitro (22, 29). However, after adoptive transfer, T EFF in the lung displayed a Th2 phenotype (10). After in vitro stimulation with IL-4, cytotoxic CD₈⁺ T cells can be polarized to Th2-type cytokine-producing cells (30–32). Similarly, virus-specific CD₈⁺ T cells may convert into IL-5-producing cells in mice sensitized to OVA plus alum, followed by challenge with virus peptide (33). Thus, the phenotype of even predominant Th1-type cytokine-producing CD₈⁺ T cells may be redirected toward Th2-type cytokine production, a plasticity previously emphasized in CD₄⁺ T cells (34).

IL-13 plays a central role in the development of AHR (6, 7). We showed that lung CD₈⁺ T cells are a source of IL-13, and reconstitution of CD₈⁺ mice with IL-13−/−/CD₈⁺ T cells failed to restore AHR, confirming that CD₈⁺ T cells can contribute to the development of AHR and airway inflammation through IL-13 production (9). LTB₄ is known to augment T cell cytokine secretion in vitro (35–39). In the present study we showed that IL-13 production from CD₈⁺ T cells may require BLT₁ expression on effector CD₈⁺ T cells. Interestingly, airway responses induced by rIL-13 may also require an intact LTB₄ pathway in vivo (40). Because CD₈⁺ T EFF are a source of IL-13 after Ag challenge, this production of IL-13 may further activate LTB₄ production in the lung and serve to amplify or enhance the accumulation and activation of TC2-type effector CD₈⁺ T cells.

Tager et al. (18) reported that BLT₁ participates in T cell trafficking into the BAL, but not lung tissue, at an early phase after challenge of sensitized mice. In contrast, T EFF did not require this receptor for trafficking into the airway after adoptive transfer and airway challenge of naive (nonsensitized) recipients (18). In contrast, using sensitized, as opposed to naive, recipient mice, we show that migration of transferred BLT₁⁺/− T EFF into lung as well as BAL was significantly impaired compared with that of BLT₁⁺/− T EFF. In this adoptive transfer model, the recipient mice were sensitized to OVA (plus alum) before OVA challenge. LTB₄ production in the lungs of sensitized and challenged recipients should be significantly higher than that of challenged-only recipients (28), and these increased levels of LTB₄ may play a pivotal role in enhancing the recruitment of transferred BLT₁⁺/− T EFF into the lung.

Different members of the chemokine family are known to be subset-selective chemoattractants for T cells (41). For example, it has been shown that CCL2 and CCL5 may be important in the recruitment of CD₈⁺ T cells (42). T EFF were reported to migrate in response to CCL5 as well as LTB₄ in vitro (27). In our transfer experiments we demonstrated that the migration of both BLT₁⁺/−CD₈⁺ T cells and BLT₁⁺/−CD₈⁺ T EFF into the lung was significantly impaired compared with that of BLT₁⁺/− cells; this impairment in the T EFF was more obvious than that in CD₈⁺ T cells.
In the latter case, only small numbers of Ag-specific CD8 T cells are probably generated compared with T Eff. These results indicate that although the LTB4-BLT1 pathway regulates CD8 T cell recruitment, it is essential for trafficking of T Eff to sites of airway inflammation in vivo. LTB4-dependent signals contribute at least one essential link to a chain of molecular events that may be required for efficient recruitment of T Eff.

Several cellular constituents of the innate immune system are capable of generating LTB4 (12, 13). Mast cells are a major source of lipid-derived mediators, and activation of mast cells through FceRI stimulates rapid degranulation and release of LTB4 (43). LTB4 produced by mast cells induces chemotaxis of T Eff in vitro (27); therefore, after sensitization and challenge with Ag, production of LTB4 from mast cells is probably a major contributor to T Eff recruitment to inflamed tissues. LTB4 production from cells other than mast cells, such as neutrophils and macrophages (12, 13), may similarly be capable of recruiting T Eff to the lung in this model.

In summary, we have identified a critical role for BLT1 expression on effector CD8 T cells in the development of allergen-induced AHR and airway inflammation. In vivo, BLT1 expression on effector CD8 T cells may be required for their migration and effector function and the full development of airway eosinophilia and AHR. The T Eff-BLT1 pathway may constitute a novel therapeutic target in bronchial asthma.

Acknowledgments
We thank L. N. Cunningham and D. Nabighian (National Jewish Medical and Research Center) for their assistance.

Disclosures
The authors have no financial conflict of interest.

References
ized antigen-specific CD8 effector populations: reciprocal action of interleukin (IL)-4 and IL-12 in promoting type 2 versus type 1 cytokine profiles. J. Exp. Med. 180:1375.