Increased Blood Myeloid Dendritic Cells and Dendritic Cell-Poietins in Langerhans Cell Histiocytosis

Alexandre Rolland, Lydie Guyon, Michelle Gill, Yi-Hong Cai, Jacques Banchereau, Kenneth McClain and A. Karolina Palucka

doi: 10.4049/jimmunol.174.5.3067
http://www.jimmunol.org/content/174/5/3067

References

This article cites 34 articles, 20 of which you can access for free at:
http://www.jimmunol.org/content/174/5/3067.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Increased Blood Myeloid Dendritic Cells and Dendritic Cell-Poietins in Langerhans Cell Histiocytosis

Alexandre Rolland, Lydie Guyon, Michelle Gill, Yi-Hong Cai, Jacques Banchereau, Kenneth McClain, and A. Karolina Palucka

Langerhans cell histiocytosis (LCH), previously known as histiocytosis X, is a reactive proliferative disease of unknown pathogenesis. Current therapies are based on nonspecific immunosuppression. Because multiple APCs, including Langerhans cells and macrophages, are involved in the lesion formation, we surmised that LCH is a disease of myeloid blood precursors. We found that lin−HLA-DR+CD11c+ precursors of dendritic cells, able to give rise to either Langerhans cells or macrophages, are significantly elevated (p = 0.004) in the blood of LCH patients. The analysis of serum cytokines in 24 patients demonstrated significantly higher levels of hemopoietic cytokines such as fms-like tyrosine kinase ligand (FLT3-L, a dendritic cell-mobilizing factor), and M-CSF (4-fold). Higher levels of these cytokines correlated with patients having more extensive disease. Serum levels of FLT3-L and M-CSF were highest in high risk patients with extensive skin and/or multisystem involvement. Finally, patients with bone lesions had relatively higher levels of M-CSF and of stem cell factor. Thus, early hemopoietic cytokines such as FLT3-L, stem cell factor, and M-CSF might be relevant in LCH pathogenesis and might be considered as novel therapeutic targets.

Materials and Methods

Patient characteristics
Peripheral blood specimens and clinical information from 24 patients with LCH (23 pediatric and 1 adult patient) were obtained after receiving written consent on a protocol approved by the local committee for use of human subjects in research (IRB no. H-6927). All LCH patients were treated at the Texas Children’s Cancer Center and evaluated by K. McClain. The status of their disease and time of specimen relative to treatments are given in Table I. This pilot study was done using archival, retrospective samples. Serum samples from 21 patients and PBMC samples from 10 patients were available for analysis. In some of the patients, blood specimens and clinical information from 24 patients with LCH (23 pediatric and 1 adult patient) were obtained after receiving written consent on a protocol approved by the local committee for use of human subjects in research (IRB no. H-6927). All LCH patients were treated at the Texas Children’s Cancer Center and evaluated by K. McClain. The status of their disease and time of specimen relative to treatments are given in Table I. This pilot study was done using archival, retrospective samples. Serum samples from 21 patients and PBMC samples from 10 patients were available for analysis. In some of the patients, blood could be collected at different time points in the course of disease (Table I). Controls were either adult HVs (n = 19) or children visiting the clinic for the reasons other than autoimmunity or infectious disease (n = 15; IRB no. 0199017).

Quantification of blood DC precursors by flow cytometry
PBMCs were isolated by Ficoll and frozen in 10% DMSO. Thawed PBMCs were analyzed in batches by flow cytometry using the following fluorochrome-conjugated anti-human Abs: LINEAGE-FITC mixture (containing CD3, CD14, CD16, CD19, CD20, and CD56), CD123-PE, HLA-DR-PerCP, and CD11c-APC. Samples were acquired on a FACS-Calibur and analyzed with CellQuest software (BD Biosciences). mDC and pDC subsets were defined by simultaneous lack of lineage markers, HLA-DR expression, and CD11c or CD123 positivity, respectively.

Copyright © 2005 by The American Association of Immunologists, Inc.
0022-1767/05/502.00
Table I. Patient characteristics and serum cytokine levels

<table>
<thead>
<tr>
<th>Patient</th>
<th>Time from Orig. Dx<sup>a</sup></th>
<th>Dx Type</th>
<th>Dx Status</th>
<th>ON/OFF Rx</th>
<th>Chemo Cytokine Concentration (pg/ml)</th>
<th>FLT3-L</th>
<th>M-CSF</th>
<th>SCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 yr</td>
<td>Pitu.</td>
<td>Stable</td>
<td>OFF</td>
<td></td>
<td>84.5</td>
<td>1356</td>
<td>626</td>
</tr>
<tr>
<td>2</td>
<td>1.5 yr</td>
<td>B/SK R</td>
<td></td>
<td>OFF</td>
<td></td>
<td>207</td>
<td>1965</td>
<td>2000</td>
</tr>
<tr>
<td>3</td>
<td>7 yr</td>
<td>B/LN R</td>
<td></td>
<td>ON</td>
<td></td>
<td>99.5</td>
<td>1108</td>
<td>1047</td>
</tr>
<tr>
<td>4</td>
<td>9 yr</td>
<td>B/SK R</td>
<td></td>
<td>ON</td>
<td></td>
<td>125</td>
<td>523</td>
<td>512</td>
</tr>
<tr>
<td>5</td>
<td>3 yr</td>
<td>MSD P</td>
<td></td>
<td>V/P</td>
<td></td>
<td>85</td>
<td>1071</td>
<td>498</td>
</tr>
<tr>
<td>6</td>
<td>7 yr</td>
<td>MFB R</td>
<td></td>
<td>OFF</td>
<td></td>
<td>308</td>
<td>368</td>
<td>831</td>
</tr>
<tr>
<td>7</td>
<td>0.75 yr</td>
<td>MSD P</td>
<td></td>
<td>OFF</td>
<td></td>
<td>13</td>
<td>4544</td>
<td>473</td>
</tr>
<tr>
<td>8A</td>
<td>1.25 yr</td>
<td>MSD R</td>
<td></td>
<td>OFF</td>
<td></td>
<td>95</td>
<td>1722</td>
<td>646</td>
</tr>
<tr>
<td>8B</td>
<td>1.5 yr</td>
<td>MSD P</td>
<td></td>
<td>ON</td>
<td></td>
<td>52</td>
<td>1344</td>
<td>276</td>
</tr>
<tr>
<td>8C</td>
<td>2 yr</td>
<td>MSD R</td>
<td></td>
<td>ON</td>
<td></td>
<td>13</td>
<td>109</td>
<td>132</td>
</tr>
<tr>
<td>9A</td>
<td>6 yr</td>
<td>MFB R</td>
<td></td>
<td>ON</td>
<td></td>
<td>68</td>
<td>803</td>
<td>239</td>
</tr>
<tr>
<td>9B</td>
<td>7.5 yr</td>
<td>B R</td>
<td></td>
<td>ON</td>
<td></td>
<td>138</td>
<td>258</td>
<td>247</td>
</tr>
<tr>
<td>9C</td>
<td>7.75 yr</td>
<td>B/LN R</td>
<td></td>
<td>ON</td>
<td></td>
<td>301</td>
<td>603</td>
<td>372</td>
</tr>
<tr>
<td>9D</td>
<td>7.9 yr</td>
<td>B R</td>
<td></td>
<td>ON</td>
<td></td>
<td>404</td>
<td>570</td>
<td>284</td>
</tr>
<tr>
<td>10</td>
<td>7 yr</td>
<td>B R</td>
<td></td>
<td>ON</td>
<td></td>
<td>20</td>
<td>382</td>
<td>287</td>
</tr>
<tr>
<td>11A</td>
<td>0.75 yr</td>
<td>MSD P</td>
<td></td>
<td>ON</td>
<td></td>
<td>16</td>
<td>2071</td>
<td>249</td>
</tr>
<tr>
<td>11B</td>
<td>1.2 yr</td>
<td>MSD Pitu.</td>
<td></td>
<td>ON</td>
<td></td>
<td>28</td>
<td>139</td>
<td>366</td>
</tr>
<tr>
<td>12</td>
<td>2.5 yr</td>
<td>B R</td>
<td></td>
<td>OFF</td>
<td></td>
<td>42</td>
<td>864</td>
<td>2000</td>
</tr>
<tr>
<td>13</td>
<td>7 yr</td>
<td>B R</td>
<td></td>
<td>OFF</td>
<td></td>
<td>37</td>
<td>950</td>
<td>552</td>
</tr>
<tr>
<td>14A</td>
<td>3.8 yr</td>
<td>DI R</td>
<td></td>
<td>OFF</td>
<td></td>
<td>91</td>
<td>1681</td>
<td>261</td>
</tr>
<tr>
<td>14B</td>
<td>10.3 yr</td>
<td>B R</td>
<td></td>
<td>OFF</td>
<td></td>
<td>56</td>
<td>614</td>
<td>379</td>
</tr>
<tr>
<td>15</td>
<td>2 mo</td>
<td>MFB N</td>
<td></td>
<td>ON</td>
<td></td>
<td>37</td>
<td>416</td>
<td>327</td>
</tr>
<tr>
<td>16</td>
<td>2 yr</td>
<td>B R</td>
<td></td>
<td>OFF</td>
<td></td>
<td>59</td>
<td>586</td>
<td>299</td>
</tr>
<tr>
<td>17A</td>
<td>1.2 yr</td>
<td>MSD P</td>
<td></td>
<td>ON</td>
<td></td>
<td>147</td>
<td>1385</td>
<td>757</td>
</tr>
<tr>
<td>17B</td>
<td>2 yr</td>
<td>MSD P</td>
<td></td>
<td>ON</td>
<td></td>
<td>121</td>
<td>742</td>
<td>693</td>
</tr>
<tr>
<td>17C</td>
<td>2.2 yr</td>
<td>MSD O</td>
<td></td>
<td>ON</td>
<td></td>
<td>128</td>
<td>128</td>
<td>118</td>
</tr>
<tr>
<td>18</td>
<td>1 yr</td>
<td>MSD R</td>
<td></td>
<td>ON</td>
<td></td>
<td>150</td>
<td>3036</td>
<td>421</td>
</tr>
<tr>
<td>19</td>
<td>3 mo</td>
<td>B N</td>
<td></td>
<td>OFF</td>
<td></td>
<td>94</td>
<td>333</td>
<td>218</td>
</tr>
<tr>
<td>20</td>
<td>6 yr</td>
<td>B/SK R</td>
<td></td>
<td>OFF</td>
<td></td>
<td>93</td>
<td>826</td>
<td>686</td>
</tr>
<tr>
<td>21A</td>
<td>2.75 yr</td>
<td>B/SK R</td>
<td></td>
<td>OFF</td>
<td></td>
<td>197</td>
<td>774</td>
<td>508</td>
</tr>
<tr>
<td>21B</td>
<td>3.75 yr</td>
<td>B/SK H</td>
<td></td>
<td>ON</td>
<td></td>
<td>135</td>
<td>491</td>
<td>330</td>
</tr>
</tbody>
</table>

^a Dx, diagnosis disease type and status at diagnosis, treatment status at the time of serum analysis. Disease type: B, bone; Pitu, pituitary; SK, skin; MFB, multifocal bone; DI, diabetes insipidus; MSD, multisystem disease. Disease status: Rx, treatment; N, new; P, persistent; R, recurrent; O, no evidence of disease; H, healing. Chemotherapy: (Chemo), MP, mercaptopurine oral; NM, nitrogen mustard topical; V/P, velban i.v.; and prednisone oral, Vc, vincristine i.v.; AR = cytarabine i.v.; CSA, cyclosporine oral; M, methotrexate i.v.; VP, VP-16 (etoposide) i.v.; TH, thalidomide oral. A, B, and C: consecutive serum samples from the same patient.

Quantitation of serum FLT3-L, M-CSF, and stem cell factor (SCF)

Quantitation was conducted with ELISA using respective immunoassay kits (R&D Systems). Standards and undiluted serum samples were run in duplicate wells for each immunoassay. Serum samples were pipetted into the wells of the microplate (precoated with specific mAbs). After washing, HRP-linked specific polyclonal Abs were added to the wells. After another wash, a substrate solution consisting of both hydrogen peroxide and tetramethylbenzidine was added to the wells. This reaction was then stopped by sulfuric acid. The OD was then measured at 450 nm with a microplate reader (with the correction wavelength set at 540 nm). A four-parameter logistic standard curve was generated from the standards, and mean concentrations were then calculated in picograms per milliliter.

Results

LCH patients show increased blood mDCs

Given the predominant LC and MΦ phenotype in LCH lesions, we surmised that the major alterations in LCH may be at the level of circulating myeloid DC precursors. To this end, we have analyzed the frequency of DC subsets in the blood in a cohort of seven LCH patients. pDCs and mDCs were identified in whole blood as lin[−] HLA-DR<sup+++</sup> cells expressing either CD123 or CD11c<sup+</sup>, respectively (Fig. 1a). We found increased frequency of lin[−] HLA-DR<sup+++</sup>CD11c<sup+</sup> cells expressing either CD123 or CD11c<sup+</sup>, respectively (Fig. 1a). We found increased frequency of lin[−] HLA-DR<sup+++</sup>CD11c<sup+</sup> cells expressing either CD123 or CD11c<sup+</sup>, respectively (Fig. 1a). We found increased frequency of lin[−] HLA-DR<sup+++</sup>CD11c<sup+</sup> cells expressing either CD123 or CD11c<sup+</sup>, respectively (Fig. 1a). We found increased frequency of lin[−] HLA-DR<sup+++</sup>CD11c<sup+</sup> cells expressing either CD123 or CD11c<sup+</sup>, respectively (Fig. 1a).

LCH patients show increased serum levels of FLT3-L

We have previously shown that FLT3 ligand (FLT3-L) mobilizes both DC subsets upon repeated administration (15). Thus, increased serum levels of FLT3-L could explain increased numbers of circulating DCs. Indeed, LCH patients showed significantly elevated (p < 0.05) serum levels of FLT3-L as compared with control cohorts, either pediatric or adult HVs (Fig. 2 and Table I). The median serum concentration of FLT3-L in samples from LCH patients was 91 pg/ml (range, 1–404; n = 31). Adult and pediatric controls showed a median of 5 pg/ml (range: 0 –153; n = 19) and 20 pg/ml (range: 0–153; n = 15), respectively. When compared with the median of pediatric and/or adult controls, 11 samples from LCH patients showed >2-fold increased serum concentration of FLT3-L. Thus, increased FLT3-L may mobilize blood mDCs leading to increased influx of these cells into LCH lesions.

LCH patients show increased serum levels of M-CSF

Because LCH lesions are also characterized by the infiltration of MΦ and eosinophils, we have analyzed serum levels of M-CSF and SCF, two cytokines involved in the mobilization and differentiation of these cells. As shown in Fig. 3 and Table I, LCH patients displayed significantly higher levels of serum M-CSF (p < 0.0001) than did healthy adult controls with median serum concentration of 803 pg/ml (range, 20–4544; n = 31) and 268 pg/ml (range, 97–560; n = 19), respectively. When compared with the median of adult controls, 22 samples from LCH patients showed >2-fold increased serum concentration of M-CSF.
concentration was not significantly affected (data not shown). Altogether, these results suggest that early hemopoietic cytokines, such as FLT3-L and M-CSF, which are involved in DC/MΦ differentiation, may play a role in LCH etiopathogenesis.

Serum levels of FLT3-L, M-CSF, and SCF correlate with disease activity

We next analyzed whether serum cytokines would correlate with clinical status and disease activity. Indeed, in the cohort of patients in whom serial specimens could be analyzed (patients 8, 9, 11, 14, 17, and 21), a decline in levels of all three cytokines was noted when the LCH responded to therapy (Table I). Moreover, the appearance of new lesions was accompanied by elevations of each cytokine (patients 8 and 9). When patients were categorized according to the type of disease (single or multiple bone lesions, bone and skin or lymph node, or multisystem LCH), several patterns of cytokine expression were evident (Fig. 4). Thus, M-CSF and SCF levels were lower in patients with bone disease only, whether in single or multiple lesions. However, M-CSF levels were markedly increased in patients who, in addition to bone disease, also showed skin or lymph node involvement (Fig. 4). These patients also showed markedly increased levels of FLT3-L. Patients with multisystem LCH were the most ill, having large livers

FIGURE 1. LCH patients show increased mDCs in the blood. Analysis of blood DC subsets: a, FACS dot plots demonstrating the distribution of blood DC subsets in a HV (top panels) and patient LCH patient (bottom panel). Percentage of lin− HLA-DR−CD11c+ mDCs and lin− HLA-DR−CD123+ pDCs. b, Percentage (ordinate, log₁₀ scale, median) of lin− HLA-DR−CD11c+ mDCs and lin− HLA-DR−CD123+ pDCs in cohorts of pediatric controls (n = 55), adult controls (n = 8), and LCH patients (n = 10). Two-tailed nonparametric Mann-Whitney U test.
Discussion

LCH includes a wide range of clinical presentations from a single system involvement such as the skin or bone lesions to multifocal disease involving liver, lungs, bone marrow, and the CNS. Currently, the disease is widely accepted to be a reactive process rather than a malignancy, although there is a clonal proliferation of the disease involving liver, lungs, bone marrow, and spleens in addition to bone and skin lesions. These patients had highest M-CSF levels, most particularly when they were near death (Fig. 4, patients 7, 8, 11, and 18). SCF levels were not clearly associated with disease status in the multisystem disease group.

SCF levels were not clearly associated with disease status in the multisystem disease group. Levels of SCF (n = 4), bone lesion and skin or lymph node (LN) involvement (n = 5), multifocal disease (MBF, n = 4), and multisystem disease (MSD, n = 7). Kruskall-Wallis multiple group analysis.

FIGURE 4. LCH patients with extensive disease show higher levels of FLT3-L and M-CSF. Serum levels of FLT3-L (a) and M-CSF (b) in LCH patients grouped according to disease extension including single bone lesion (bone, n = 4), bone lesion and skin or lymph node (LN) involvement (n = 5), multifocal disease (MBF, n = 4), and multisystem disease (MSD, n = 7). SCF levels were not clearly associated with disease status in the multisystem disease group.

SCF levels were not clearly associated with disease status in the multisystem disease group.

References

