Phosphatidylinositol 3-Kinase Regulates Thymic Exit

Susannah D. Barbee and Jose Alberola-Ila

J Immunol 2005; 174:1230-1238; doi: 10.4049/jimmunol.174.3.1230
http://www.jimmunol.org/content/174/3/1230

References
This article cites 51 articles, 31 of which you can access for free at:
http://www.jimmunol.org/content/174/3/1230.full#ref-list-1

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Phosphatidylinositol 3-Kinase Regulates Thymic Exit

Susannah D. Barbee and Jose Alberola-Ila

To understand the role of PI3K during T cell development, we generated transgenic mice expressing the N terminus of the PI3K catalytic subunit (p110_{ABD}; ABD, adaptor binding domain) in thymocytes. Expression of p110_{ABD} activates endogenous p110 and results in the accumulation of mature single-positive CD3^{hi}CD8^{low} thymocytes. This is mostly due to a defect in emigration of those cells, as shown by the delayed appearance of peripheral T cells in neonatal transgenic mice and by competitive adoptive transfer experiments. Although the mechanisms underlying these effects of PI3K are not yet clear, our results show an important role for PI3K activity in the regulation of mature thymocyte exit to the periphery.

p65P110 transgene and that CD4 and CD8 thymocyte exits are inhibited by p110γ deficiency (13). We thus sought to further delineate the role of class IA P110 in thymocyte egress.

To understand the role of P110 during T cell development, we have generated several lines of transgenic mice, referred to as p110^{ABD} (ABD, adaptor binding domain), that overexpress an N-terminal fragment of p110, containing the p85 adaptor-binding domain, in thymocytes. This construct induced the constitutive activation of P110, as measured by the activity of Akt, and its expression in the thymus yielded increased numbers of the more mature thymic subpopulations, CD^{3^{high}}HS^{Alow} SP thymocytes. p110^{ABD} markedly delayed the appearance of mature peripheral T cells in competitive adoptive transfer recipients as well as in neonatal mice.

Materials and Methods

Generation of p110^{ABD} transgenic mice

The p110^{ABD} construct, consisting of aa 1–109 of p110α, was obtained from J. Downward (Imperial Cancer Research Fund, London, U.K.). The construct was cloned into the BamHI site of the p1017 vector (14), and the NotI fragment was purified and injected into C57BL/6 × DBA/2JF1, zygote pronuclei. Founder mice were identified by Southern blotting of genomic DNA probed with a human growth hormone fragment and were subsequently backcrossed with C57BL/6 mice (The Jackson Laboratory).

Flow cytometric analyses

For Ca²⁺⁺ flux analyses, primary thymocytes (10⁶/ml) were labeled with Indo-1 (2 μg/ml in HBSS and 1% FBS; Molecular Probes) for 30 min at 37°C. Cells were centrifuged and then stained with azide-free anti-CD8-fluorescein isothiocyanate and anti-CD4-PE for 20 min at room temperature. Samples were then diluted to 5 × 10⁵ cells/ml and incubated for ≥5 min at 37°C before analysis. Anti-CD3 Ab was added after 30 s, and goat anti-hamster Ab was added at 5 min. Maximal Ca²⁺ flux was measured after stimulation with 1–2 μg/ml ionomycin, and calibrations were performed with Calcium Calibration Buffer Kit 1 (Molecular Probes). The pre- and poststimulation Ca²⁺ levels corresponded to those previously reported as determined by comparison with a calibration standard (data not shown) (15).

All Abs used were obtained from BD Pharmingen, and analyses were performed using a FACSCalibur (BD Biosciences), with the exception of anti-Akt Ab (Stressgen), goat anti-p85 (Z-8, Santa Cruz Biotechnology), and streptavidin (Pierce) and then biotinylated anti-CD3 Abs (BD Pharmingen). Western blots were performed as previously described (16). The following primary Abs were used: rabbit anti-p85α Z-8, rabbit anti-p110α H-201, goat anti-p110α C-17, rabbit anti-p110α N-20 (Santa Cruz Biotechnology), rabbit anti-p85α (Upstate Biotechnology), and mouse anti-c-Myc 9E10.

Competitive adoptive bone marrow transfer

Bone marrow from C57BL/6 Ly5.1 and p110^{ABD} mice was depleted of CD3⁺ cells by MACS (Miltenyi Biotec), mixed at a 1:1 ratio, and injected into recipient Thy1.1 mice that had been lethally irradiated with two doses 3–4 h apart. Mice were maintained on oral antibiotics from 3 days before transfer until the time of analysis, at which point animals were euthanized, and the thymi, spleens, and mesenteric lymph nodes were analyzed by flow cytometry.

Results

The p110^{ABD} transgene binds to endogenous p85 and induces constitutive P110 activity in thymocytes

We generated several lines of mice that express the p110^{ABD} transgene, consisting of aa 1–108 of bovine class IA catalytic subunit p110α. This ABD mediates the association of p110α with p85 adaptor subunits. Transgene expression is driven by the ick proximal promoter, which directs expression to thymocytes (Fig. 1A) (14), and the 9E10 c-Myc epitope was included at the N terminus for Ab recognition.

We could easily communoprecipitate p85α with p110^{ABD} via recognition of the Myc tag by the 9E10 Ab (Fig. 1D), but we observed decreased levels of endogenous full-length p110α (Fig. 1C). Because monomeric p110α has been demonstrated to have a shorter half-life than heterodimeric p85/p110 in vitro (17), this suggests that p110^{ABD}-Mediated sequestration of p85 subunits allows endogenous p110α to exist as an unstable monomer (Fig. 1B). Monomeric p110 subunits have constitutive lipid kinase activity, and indeed, we observed the constitutive activation of Akt, a well-known downstream effector of P110, in thymocytes of mice expressing the p110^{ABD} transgene (18). As shown in Fig. 1E by an in vitro kinase assay of Akt immunoprecipitates, unstimulated p110^{ABD} thymocytes displayed the same maximal level of Akt activity that was induced in nontransgenic thymocytes after 2 min of stimulation with plate-bound anti-CD3 Ab.

P110 also activates Akt-independent pathways downstream of Ag receptors. PH domain-containing Tec kinases (and Itk, in particular) have been shown to regulate Ca²⁺ mobilization via PLCγ and its lipid products (19, 20). The control of PLCγ is complex (reviewed in Refs. 21 and 22), but P110 has been described as a positive regulator (23). Therefore, we examined whether p110^{ABD} influenced calcium mobilization after TCR ligation. We used the Ca²⁺-binding intracellular dye Indo-I in conjunction with fluorochrome-conjugated Abs to CD4 and CD8 to monitor changes in the intracellular calcium concentration in DP thymocytes from nontransgenic littermate controls (NLC) and p110^{ABD} mice in response to CD3 cross-linking at different concentrations. Fig. 1F shows the results of two representative experiments. The expression of p110^{ABD} in DP thymocytes strongly potentiated their Ca²⁺ flux responses to low doses of anti-CD3 mAb without modifying the maximal response. Thus, constitutive activation of P110 improved the ability of DP to flux calcium in response to low intensity stimuli, allowing maximal Ca²⁺ flux responses to suboptimal anti-CD3 Ab concentrations. In contrast, other signal transduction pathways downstream from the TCR, such as the Ras/MAPK cascade, were not affected by expression of the p110^{ABD} transgene, suggesting that its effect is specific for P110-regulated pathways.

The p110^{ABD} mice exhibit increased numbers of mature SP thymocytes

The thymi of p110^{ABD} animals had normal cellularity, but significantly increased percentages and total numbers of the more mature thymic subpopulations, e.g., CD^{3high}CD4 and CD8 SP thymocytes. Fig. 2A shows representative examples of transgenic and NLC thymus from three lines of mice, demonstrating that each of these populations was nearly doubled in p110^{ABD} animals, with a slight, concomitant decrease in the DP compartment. The increase in mature SP T cells in the thymus as a result of p110^{ABD} expression clearly indicates that the level of P110 activity can affect T cell development. In contrast, the percentage of DN cells and the proportion of CD4⁺ and CD8⁺ thymocytes was nearly doubled in p110^{ABD} animals, with a striking preference for the CD4 SP lineage. These data are summarized in Fig. 2 at the 7.5% level of significance. In contrast, the percentage of DN cells and the proportion of CD4⁺ and CD8⁺ thymocytes was nearly doubled in p110^{ABD} animals, with a striking preference for the CD4 SP lineage.
class I-restricted TCR transgenic mice expressing p110\textsubscript{ABD} (manuscript in preparation).

A variety of mechanisms could account for increased SP populations in the thymus. PI3K activity could improve DP survival, making it easier for the developing cells to express a good TCR and be positively selected; it could improve positively selecting signals, rescuing cells whose TCR react with very low affinity with self-MHC-peptide; it could inhibit negative selection, allowing cells that would normally be deleted to mature; or it could alter emigration of mature thymocytes to the periphery. Although we did not observe any differences in the intracellular location of SP thymocytes or alterations in the expression of CD62L (data not shown), we found that SP thymocytes of p110\textsubscript{ABD} animals exhibited a significantly higher fraction of the most mature SP

FIGURE 1. The expression of p110\textsubscript{ABD} induces constitutive Akt activity and potentiates TCR-induced Ca2+ flux. A, Diagram of the transgenic construct used to generate p110\textsubscript{ABD} mice. B, Model of p110\textsubscript{ABD} function. In normal cells the adaptor p85 is bound to WT p110 kinase. In thymocytes from p110\textsubscript{ABD} transgenic mice, the ABD from p110 competes with the full-length endogenous p110 for the adaptor p85. Free p110 is catalytically active and unstable. C, Western blot analysis to detect expression levels of WT, full-length p110\textsubscript{α} in thymocytes from NLC and p110\textsubscript{ABD} transgenic mice. D, p85\textsubscript{α} can be coimmunoprecipitated with p110\textsubscript{ABD} via the N-terminal c-Myc tag of the transgenic protein by the 9E10 Ab. Immunoprecipitations were performed with 3 \times 10^7 thymocytes/lane. E, In vitro kinase assay of Akt immunoprecipitates from NLC and p110\textsubscript{ABD} thymocytes, unstimulated or stimulated with plate-bound anti-CD3 (5 mg/ml) for 2 or 5 min. F, Thymocytes from NLC and p110\textsubscript{ABD} animals were loaded with Indo-1 and stained with CD4 and CD8, then stimulated with different concentrations of anti-CD3 plus cross-linker (goat anti-hamster; 5.0 \mu g/ml). The graphs show the mean ratio of Indo-1 fluorescence at 395 and 500 nm for DP thymocytes. Two representative experiments of five are shown. Gray arrow indicates addition of anti-CD3 at different concentrations at 30 s; black arrow indicates addition of 5.0 \mu g/ml goat anti-hamster at 5 min.
FIGURE 2. Mature, CD3high and HSAlow SP thymocyte populations are increased in p110ABD mice. A, Flow cytometric analysis of thymocytes from 8-wk-old mice from three p110ABD transgenic lines: A19516, A19416, and A19415. Thymocytes were stained with CD8-FITC, CD4-PE, and CD3-allophyocyanin. Shown are CD4/CD8 dot plots and a CD3 histogram. The percentage of cells in each region is indicated. The total number of cells per thymus ($\times 10^6$) is indicated in the upper right corner of the CD4/CD8 dot plot. The gray histogram represents NLC, and the empty black line indicates p110ABD. The percentages of cells in the CD3high gate are represented as control/transgenic. B, The CD4 SP vs CD8 SP ratio of CD3high thymocytes is unaltered by p110ABD expression. Cells were stained, and histograms are represented as described in A. C, p110ABD SP thymocytes are preferentially HSAlow compared with NLC. Thymocytes were stained with CD8-FITC, HSA-PE, CD4-CyChrome, and CD3-allophyocyanin.
The expression of p110ABD delays the appearance of peripheral T lymphocytes

In adult p110ABD mice, peripheral T numbers are the same as in NLC animals (data not shown). However, steady state numbers do not rule out changes in the kinetics or rate of development. Thus, we examined the thymic and peripheral phenotypes of neonatal animals. As shown in Fig. 3A, the total thymus size increased at the same rate in both NLC and p110ABD animals. Likewise, the accumulation of TCRβ^{high} SP thymocytes did not occur until after the first month of life. However, αβ T cells appeared in the spleen (Fig. 3B) and mesenteric lymph nodes (data not shown) more slowly in p110ABD animals compared with NLC. The delay in peripheral colonization was observed in both CD4 and CD8 sub-populations of T cells. In contrast, B cell development and colonization were unchanged.

To verify that this difference is also present in adult thymic development rather than being a phenomenon specific to fetal thymopoiesis, we devised a competitive adoptive transfer scheme to compare the emigration kinetics of wild-type (WT) and p110_{ABD} thymocytes. We injected a 1:1 mixture of mature T cell-depleted bone marrow cells from nontransgenic Ly5.1 Thy1.2 C57BL/6 animals and Ly5.2 Thy1.2 p110_{ABD} animals into lethally irradiated Ly5.2 Thy1.1 recipients. At subsequent time points of analysis, the two transferred populations and host cells were discriminated via Ly5.1 and Thy1.1 expression (Fig. 4A, top row). The efficiency of the engraftment of the two donor populations varied from animal to animal, but within each animal we could compare the development of B6- and p110_{ABD}-derived lymphocytes. As shown in Fig. 4A, thymic colonization occurred at the same rate without any reproducible accumulation of p110_{ABD} SP cells compared with wild-type cells. Likewise, B cells efficiently developed from precursors of both genotypes and colonized the spleen (Fig. 4B) and mesenteric lymph nodes (data not shown) at the same rate. In marked contrast, there was a significant delay in the appearance of p110_{ABD}-derived mature αβ T cells in the periphery; WT T cells were readily observable by 3 wk post-transfer, whereas p110_{ABD} T cells did not appear until after 6 wk. Even by 4 mo post-transfer, the ratio of p110_{ABD} T cells to B cells had not reached the same value as in WT-derived cells. This imbalance in the T:B cell ratio was observable even in animals in which the p110_{ABD} cells engrafted better than nontransgenic cells (see 6 wk point in Fig. 4B). The paucity of p110_{ABD}-derived T cells was not due to an impairment in cell survival, because NLC and p110_{ABD} splenic T cells exhibited the same viability in in vitro survival assays (data not shown). The p110_{ABD} thymocytes did mature into competent T cells that could exit and survive normally in the periphery; the exit was simply delayed.

The competitive adoptive transfer experiments, in conjunction with the neonatal observations, conclusively demonstrate an important role for PI3K in regulating the emigration of mature thymocytes into the periphery.

Discussion

Class I PI3Ks are involved in both the regulation of mature T and B cell function and the development of T and B cells (7, 25). Studies using PI3K knockout mice have demonstrated that alterations in both the adaptor (p85α, p55α, and p50α) (9, 10) and catalytic (p110δ) (11) subunits of PI3K, profoundly inhibit B cell development. However these studies did not reveal any defects in T cell development. PI3K subunit redundancy, suggested by the residual PI3K activity that can be observed in T cells in some of these knockout mice, may account for these results. Alternatively, PI3K activity may not be as important for the development of T cells as it is for B cells.

We have used an alternative approach, transgenic expression of a gain-of-function mutant (p110_{ABD}) in thymocytes, to analyze the role of PI3K at the transition between immature DP and mature SP thymocytes. This system allows for modification of the pathway exclusively in developing thymocytes, which may be important.
FIGURE 4. p110_{ABD} thymocyte egress is delayed relative to that in WT cells in competitive adoptive transfers. A, Thymic development of WT and p110_{ABD}-derived cells is reconstituted by 3 wk in lethally irradiated recipients. A 1:1 mixture of T cell-depleted bone marrow from WT Ly5.1 Thy1.2 and p110_{ABD} Ly5.2 Thy1.2 mice was injected into Ly5.2 Thy1.1 recipient mice. At the indicated time points post-transfer, animals were killed, and the thymocytes were stained with Thy1.1-FITC, Ly5.1-PE, CD4-CyChrome, and CD8-allophycocyanin. Shown are representative animals from groups of two to five recipients. B, Although WT-derived T cells appear in the periphery of recipient mice by 3 wk post-transfer, p110_{ABD}-derived T cells do not exit the thymus until after 6 wk. Even at 4 mo, T cells account for a smaller fraction of p110_{ABD}-derived cells than of nontransgenic-derived cells. Splenocytes were stained with Thy1.1-FITC, Ly5.1-PE, B220-CyChrome, and TCRβ-allophycocyanin.
given that PI3K activity affects the survival and function of APCs (26–28). Furthermore, the activation levels achieved with our construct are comparable to those induced in normal thymocytes by triggering the TCR/CD3 complex. Our results show that thymocyte-specific overexpression of the ABD of p110α induces constitutive PI3K activity, as measured by induction of Ag-independent Akt activity and by potentiation of TCR-induced calcium mobilization. Phenotypically, the thymi of p110ABD transgenic mice show an accumulation of mature CD3ε−/HSA+ SP thymocytes. Our results demonstrate that this is at least in part due to a significant delay in their emigration to the periphery.

In vitro expression of p110 in the absence of the adaptor p85 or overexpression of p110 in excess of p85 in cell lines results in constitutive p110 kinase activity, although the half-life of p110 is decreased in these circumstances (17). Therefore, it has been proposed that the association of p85 with p110 inhibits its catalytic activity while increasing its half-life (17, 29). We propose that the p110ABD transgene functions as a gain-of-function mutant by sequestering p85, relieving its repression of endogenous full-length p110α. The ability of our p110ABD construct to immunoprecipitate p85 and the decreased levels of endogenous p110α (suggesting a shorter protein half-life) indicate that some fraction of endogenous full-length p110α and perhaps other p110 isoforms are present as catalytically active monomers in resting p110ABD thymocytes. The constitutive activation of Akt in resting p110ABD thymocytes agrees with this interpretation. Furthermore, the activation levels achieved with our construct are comparable to those induced in normal thymocytes by triggering the TCR/CD3 complex.

T cells deficient in Tec kinases have alterations in PLCγ activity and calcium mobilization (30). Thus, PI3K may contribute to the modulation of intracellular calcium levels during T cell development by regulating the activation of Tec kinases. This hypothesis is supported by the p110ABD-induced potentiation of calcium flux responses to TCR ligation. Because Rlk lacks the PH domains required for membrane localization mediated by PI3K metabolites (31), Itk is likely to mediate Tec family functions in thymocytes downstream of PI3K.

The expression of p110ABD results in an increase in the percentage and total numbers of mature SP T cells in the thymus, clearly indicating that the levels of activity of PI3K can affect T cell development. Intriguingly, unlike others who observed preferential development to the CD4 SP fate in mice with constitutive PI3K activity, we found that both SP populations were increased ~2-fold by p110ABD expression, and the CD4 vs CD8 ratio of CD3high thymocytes was the same as that in NLC mice. The profound delays observed in the colonization of the periphery by p110ABD thymic emigrants clearly indicates a role for PI3K in the control of SP thymocyte maturation and exit. Previous experiments suggested that an activating PI3K transgene (p65PI3K) increased the emigration of CD4, but not CD8, thymocytes to the periphery (13), in direct contradiction of our observations. It is unclear how these results can be reconciled, although the timing and/or intensity of the effect on PI3K activity may account for the differences. Thymocytes have been shown to respond differently to low vs high concentrations of at least one chemokine, CXCL12/stromal cell-derived factor-1 (32), whose receptor (CXCR4) can activate Tec kinases in thymocytes and mature T lymphocytes (33, 34). Perhaps such a concentration-dependent switch also applies to the PI3K activity induced by the emigration signal.

The different stages of thymocyte development are very strictly correlated with specific zones within the thymus. Many groups have attempted to characterize the complex interplay of chemokine and chemokine receptor expression that guide thymocyte movement from zone to zone. These movements are clearly regulated in part by Gα subunits, because PTX expression in the thymus blocks migration across the corticomедullary junction and into the periphery, resulting in the accumulation of functionally mature SP cells in the cortex. However, Ca2+ flux responses to chemokine ligands are unaffected by the expression of PTX, indicating that not all chemotactic signals are PTX sensitive. The potentiated Ca2+ flux responses of p110ABD thymocytes and the defect in periphery colonization suggest that PI3K is one such PTX-resistant chemotactic signal, consistent with its proposed role downstream of the Gβγ heterodimer. Akt is rapidly activated downstream of PI3K after chemokine treatment, followed by a lower level of sustained activation. This activity requires sustained PI3K activity because it is sensitive to wortmannin treatment poststimulation. Furthermore, multiple classes of PI3Ks have been implicated in both Akt and Tec kinase activation downstream of chemokine receptors; the primary peak response is probably mediated by class IA PI3Kγ, whereas the secondary sustained activity is induced via class IB p85/p110 heterodimers.

Despite the clear role of PTX-sensitive (and probably chemokine-mediated) signals in thymic egress, the molecular identities of the receptors involved are not clear. Two candidates have been proposed according to the model of active chemotraction into the periphery: CCR7 and sphingosine-1-phosphate (S1P1). CCR7 expression is up-regulated in postselection thymocytes by combined Ras/ERK and Ca2+ signals; this is accompanied by the acquisition of responsiveness to CCL19 and CCL21 in vitro (35, 36). However CCR7−/− mice do not have a clear thymic exit phenotype (37). Likewise, the spontaneous mutant paucity of lymph node T cells (philp), which lacks all hematopoietic CCL19 and CCL21 expression, does not display any thymic phenotype that suggests a defect in the release of mature, naïve T cells from the thymus (38–40). More recently, studies of the immune-suppressant drug FTY720 have indicated that sphingosine lipid signaling may play an important role in multiple stages of lymphocyte trafficking (41). In vivo, FTY720 is metabolized into a S1P analog capable of binding the receptors S1P1 (edg1), S1P3 (edg3), and S1P5 (edg5). S1P1 expression is initially induced after positive selection and is progressively up-regulated during SP thymocyte maturation, and a small percentage (2–4%) of late-stage (CD62Lhigh) SP thymocytes migrate in vitro in response to S1P (42). S1P1 agonist treatment induces the maturation of SP thymocytes to a CD62Lhigh stage, but prevents exit from the thymus (43). In contrast, S1P1−/− SP thymocytes are predominantly CD62Lhigh and HSAlow, but fail to fully down-regulate CD69 expression, a final maturation step that appears to be required for thymic egress, because these mice exhibit a profound defect in thymocyte emigration (42, 44). T cell homing to peripheral lymphoid tissues is normal, because S1P1−/− thymocytes transferred i.v. colonize the lymph nodes and Peyer’s patches of WT host animals (42). We have found no evidence for the involvement of either CCR7 or S1P1 in the emigration defect of p110ABD animals; p110ABD thymocytes express both CCR7 and S1P1 normally, and the in vitro chemotactic responses of SP thymocytes to CCL21 and S1P are not reproducibly altered (data not shown).

Given the positive role of PI3K activity in chemotaxis in multiple systems, we should expect to observe enhanced chemotactic responses in p110ABD thymocytes. How do we interpret the defect in p110ABD thymocyte egress in light of these results? To make sense of our findings, we must consider work performed in the slime mold Dictostelium by Meili et al. (45). Abundant evidence indicates that PI3K and Akt are critical regulators of Dictostelium chemotaxis (reviewed in Ref. 45). One of the most striking features of chemotactic responses is the ability of cells to convert...
shallow extracellular gradients into steep intracellular gradients of signaling molecules via the highly controlled accumulation of PtdIns(3,4,5)P3 at the leading edge of the cell (46). This polarization requires the coordinated function of PI3K at the leading edge and phosphatase and tensin homologue at the sides and rear (46). Consequently, Akt is rapidly and transiently recruited to the leading edge of the cell (47). In resting cells, an Akt PH domain-GFP fusion protein is evenly distributed throughout the cytoplasm (47). Quickly following stimulation with chemotractant, Akt returns to the cytoplasm, a phenomenon referred to as adaptation, by which the cell essentially resets. Chemotaxing cells are thus ready to reorient themselves at each chemotaxis step. This dynamic, highly localized accumulation of Akt appears to be required for cells to respond to directional cues. Efficient chemotaxis requires strictly regulated membrane localization of PI3K products and effectors (47). p110α expression may impair thymocyte migration by interfering with the proper spatial organization of the cell membrane. By uncoupling endogenous p110α from adapter subunits, p110α/H11032 induces unregulated accumulation of PtdIns(3,4,5)P3 in the cell membrane. This can be observed by the constitutive activation of Akt in p110α/H11032 thymocytes. This could result in uniform membrane distribution of active Akt that, in turn, inhibits the ability of the thymocyte to properly respond to chemotactic signals.

Alterations of the activity of PI3K and its effectors in thymocytes have also been linked to changes in positive selection (13, 48–51). However, in light of our current results, we think that assessment of its possible role in this process will require a more detailed analysis, because in steady state thymus it is difficult to distinguish between increases in the percentages of SP thymocytes due to improved positive selection and those due to delayed exit into the periphery.

In summary, overexpression of the AB domain of p110α in thymocytes induces increased PI3K activity, as measured by the constitutive activity of downstream effector Akt and the potentiation of Ca2+ flux responses to TCR ligation. The increased PI3K activity results in the accumulation of mature SP CD3high thymocytes, specifically those in the late HSAlow stage. This accumulation is due to the proper spatial organization of the cell membrane. By uncoupling endogenous p110α from adapter subunits, p110α/H11032 induces unregulated accumulation of PtdIns(3,4,5)P3 in the cell membrane. This can be observed by the constitutive activation of Akt in p110α/H11032 thymocytes. This could result in uniform membrane distribution of active Akt that, in turn, inhibits the ability of the thymocyte to properly respond to chemotactic signals.

Acknowledgments

We thank S. Kovats for critically reading the manuscript, K. Forbush for the transgenic injections, R. Diamond for help with the intracellular calcium experiments, C. Beel and C. Wang for technical assistance, and B. Kennedy and the technical personnel at the Caltech Transgenic Mouse Core Facility for mouse husbandry.

References

