Cutting Edge: Identification of Hepatitis C Virus-Specific CD8+ T Cells Restricted by Donor HLA Alleles following Liver Transplantation

Hugo R. Rosen, David J. Hinrichs, Rachel L. Leistikow, Glenda Callender, Anne M. Wertheimer, Michael I. Nishimura and David M. Lewinsohn

J Immunol 2004; 173:5355-5359; doi: 10.4049/jimmunol.173.9.5355
http://www.jimmunol.org/content/173/9/5355

References

This article cites 19 articles, 4 of which you can access for free at: http://www.jimmunol.org/content/173/9/5355.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at: http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts
CUTTING EDGE

Cutting Edge: Identification of Hepatitis C Virus-Specific CD8+ T Cells Restricted by Donor HLA Alleles following Liver Transplantation

Hugo R. Rosen, David J. Hinrichs, Rachel L. Leistikow, Glenda Callender, Anne M. Wertheimer, Michael I. Nishimura, and David M. Lewinsohn

By necessity, human liver transplantation is performed across HLA barriers. As a result, intracellular infection of the allograft presents a unique immunologic challenge for the recipient’s immune system. In this study, we describe the presence of HLA-A2-restricted, hepatitis C virus (HCV)-specific CD8+ T cells in liver transplant recipients in whom the allograft is HLA-A2 positive and the recipient is HLA-A2 negative. These memory-effector T cells are recipient derived and recognize HCV peptide uniquely in the context of HLA-A2. Furthermore, these cells were absent before the transplant, suggesting that the allograft is capable of selectively expanding naive CD8+ T cells. The in vitro specificity to donor HLA allele-restricted CD8+ T cells suggests that these cells may function to control HCV spread in the allograft. The Journal of Immunology, 2004, 173: 5355–5359.

Hepatitis C virus (HCV) causes chronic infection and liver injury in the majority of exposed individuals through pathogenic mechanisms that remain incompletely understood, although considerable evidence shows that the vigor and breadth of HCV-specific T cell responses correlate with viral clearance, recovery, and self-limited disease. Liver disease related to HCV infection is the single leading indication for liver transplantation worldwide, and its significance as a clinical problem cannot be overstated. HCV infection significantly diminishes patient and allograft survival following liver transplantation. Liver transplantation for HCV-related liver failure is invariably followed by acute infection of the allograft. The rapid decrease in HCV viral load noted immediately after graft perfusion, followed by a marked increase (~20-fold) in circulating viral titers by the first post-operative month suggest the massive uptake of HCV virions and establishment of competent replication within the allograft. A recent immunohistochemical analysis demonstrated frequent contact between CD8+ T cells and HCV-positive hepatocytes following liver transplantation. However, the characteristics of the virus-specific T cell response following liver transplantation have not been defined; in particular, it is unknown how the HCV-specific repertoire is shaped by donor allele(s).

Moreover, liver transplantation is performed with no regard to specific matching of donor-recipient MHC alleles, and this may serve as a barrier to the development of protective (i.e., antiviral) cell-mediated immunity directed against infected cells within the allograft. Although incompletely understood, the immune recognition of the HCV-infected allograft may be essential in the containment of infection. CD8+ T cells are the primary effector lymphocytes for provision of protective immunity against intracellular pathogen infection of parenchymal cells and are effective because of their ability to recognize infected cells as the combination of pathogen-derived peptides in the peptide-binding grooves of MHC class I molecules on the surface of cells. While incompletely understood, the immune recognition of the HCV-infected allograft may be essential in the containment of infection; however, the HLA incompatibility between donor and recipient may serve as a barrier to the development of protective immunity. Recognition of the allograft could occur either via recipient-derived T cells or via those derived from the donor. For the recipient-derived T cells, recognition could occur either through use of shared HLA molecules, or could occur through the expansion of recipient-derived T cells that are uniquely restricted by the HLA molecules of the donor liver. Little is known about the relative contribution of those cells uniquely restricted by the donor liver.

In a mouse model of tumor immunity, Sadovnikova and Stauss have demonstrated that CTLs uniquely restricted by the MHC of the allotumor can mediate antitumor activity against melanoma and lymphoma. In the current report, we test the hypothesis that receipt of an allograft results in the development of a
unique population of recipient-derived cells capable of recognizing intracellular infection of HCV in the context of the donor HLA molecule. Using HCV-specific, HLA-A2 tetramers, we demonstrate that receipt of the allograft results in expansion of HLA-A2-specific CD8+ T cells in HLA-A2-negative recipients. By cloning these cells, we demonstrate that they are incapable of recognizing HCV peptide in the context of any of the recipient HLA molecules. Consequently, developing a comprehensive understanding of protective immunity to HCV will require an assessment of both recipient and allograft-restricted CTL.

Materials and Methods

Patients

All patients received orthotopic liver transplantation for HCV genotype 1-related liver failure, and were immunosuppressed with tacrolimus and prednisone; three of the five patients additionally received azathioprine, and one received mycophenolate mofetil. Antiviral therapy with IFN-α and ribavirin was given to patient 1 (3 mo to 5 yr posttransplant) and patient 2 (13–17 mo posttransplant).

Cell separation and culture

PBMC were isolated from whole blood using cellular preparation tubes (BD Biosciences, Franklin Lakes, NJ).

Tetramers

PE-labeled HLA-A*02 tetramers that had been folded around known HCV-immunodominant peptides (core131–140 (ADLMGYIPLV), NS31073–1081 (CINGVWCTV), NS52600–2609 (ALYDVTTLK)), respectively, in a total volume of 250 μl per well of RPMI 1640 plus 10% HS were plated at limiting dilution (5, 10, and 100 cells/well). After a minimum of 2 h at 37°C, tetramer-positive cells were separated from PBMCs using a positive-selection strategy and MACS superparamagnetic beads as per manufacturer’s instructions. As previously described (9), the limit of detection was determined to be 0.06% by using the HIV gag tetramer, as well as cells from HLA-A2-negative and HLA-A2-negative patients who had not undergone transplantation.

Cloning of tetramer-positive cells

Cells were separated and stained as described above, with the exception that cells were not fixed before being sorted by flow cytometry on a FACS Vantage (BD Biosciences). One hundred fifty to 5000 CD8+ T cells were collected and allowed to rest in RPMI 1640 plus 10% human serum (HS) plus IL-2 (0.75 ng/ml). After a minimum of 2 h at 37°C, tetramer-positive cells were plated at limiting dilution (5, 10, and 100 cells/well) and cultured with 8 × 104 and 1.6 × 105 irradiated allogeneic PBMC and lymphoblastoid cell line (LCL), respectively, in a total volume of 250 μl per well of RPMI 1640 plus 10% HS with purified anti-CD3 (0.03 μg/ml) for 2 days. After 2 days, cultures were supplemented with IL-2 (1.25 ng/ml). Plates were incubated for 2 wk at 37°C and 5% CO2. Wells showing growth after 2 wk were transferred to wells showing growth after 2 wk were transferred to T-25 flasks and restimulated with 25 × 105 and 5 × 105 irradiated allogeneic PBMC and LCL, respectively, in a total volume of 30 ml of RPMI 1640 plus 10% HS with anti-CD3 (0.03 μg/ml). After 2 days, cultures were supplemented with IL-2. Cultures were rinsed of anti-CD3 Ab after 5 days and fed with medium exchange and supplemented with IL-2 every other day thereafter until day 14 when cells were analyzed by FACS.

ELISPOT assay

IFN-γ ELISPOT assay as previously described by our group (9) was performed with cloned T cells and LCLs expressing different class I alleles to demonstrate HLA restriction.

Retroviral vectors, cell lines, and supernatant production

A SAMEN retroviral vector was used (10). cos (monkey kidney tumor, HLA-A2 negative), cosA2 (HLA-A2 positive), Mel24–25 (human melanoma, HLA-A2 negative), Mel24 (HLA-A2 positive), RCC 1764 (human renal cell carcinoma, HLA-A2 negative), and RCC UOK 131 (HLA-A2 positive) were transduced with either empty retroviral vector or with retroviral vector containing the HCV minigene that encodes NS5A1400–1415 peptide. IFN-γ secretion (mean ± SD) was assessed by ELISA (Pierce, Rockford, IL). Luminex assay was used to measure additional cytokines and chemokines.

HLA typing

HLA typing was performed using PCR amplification with sequence-specific primers (11). HLA haplotypes (A2* or A2*) were further confirmed by staining PBMCs with mAbs MA2.1 (BD Biosciences). Abs used in these experiments included the following: anti-CD3-allophycocyanin, anti-CD3-FITC, anti-CD8-PerCP, anti-CD8-allophycocyanin, anti-CD25-FITC, anti-CD28-FITC, anti-CD38-FITC, anti-CD45RO-FITC, anti-CD45RA-PE, anti-CD69-FITC, anti-HLADR-PerCP, anti-CCR5-FITC, anti-CCR7-PE, anti-IFN-γ-FITC, anti-HLADP-PerCP, anti-CCR5-PE, anti-IFN-γ-FITC, anti-IL-4-FITC, anti-BCL2-FITC (BD Biosciences), anti-IL-14-allophycocyanin, anti-IL-10-alleophycocyanin, and anti-TNF-α-FITC (BD Pharmingen, San Diego, CA). All flow cytometry data were analyzed with CellQuest program (BD Biosciences).

Cytotoxicity assay

HCV-specific cytotoxicity was determined by the recently described fluorometric assessment of T lymphocyte Ag-specific lysis assay using dual staining (PKH-26 and CFSE), which is at least as sensitive as the standard 51Cr release assay (12).

FIGURE 1. Enumeration of HCV-specific and HIV gag-specific tetramer-positive CD8+ T cells 4 years after liver transplantation in patient 1.
Results and Discussion

To determine whether or not HCV-specific CD8$^+$ T cells restricted by donor HLA alleles were generated after liver transplantation, we studied patients in whom the donor was HLA-A2 positive, and the recipient was HLA-A2 negative. HLA-A2 was selected as the restricting allele, because a large number of HCV HLA-A2 binding peptides have been described as targets of HCV-specific CTLs (13). Fig. 1 shows class I tetramer results from patient 1 (donor A2, A24; recipient A3, A30) 4 years after liver transplantation when he was HCV RNA negative in the serum because of antiviral therapy following development of severe histologic recurrence (14). Both NS3$^{1073-1}$ and NS3$^{1406-1415}$-specific CD8$^+$ T cells were detectable, whereas core, NS5B-specific, and HIV gag-specific T cells were not...
detectable by tetramer analysis. To generate sufficient numbers of cells for phenotypic and functional analysis, tetramer-positive cells were sorted and cloned using limiting dilution and a rapid expansion protocol as described in Materials and Methods. Although NS31073-specific CD8+ T cells were most frequent, this epitope (CVNGVCWTV) recently (15) has been shown to have cross-reactivity with the influenza A IV neuraminidase epitope; therefore, we cloned NS31406-specific CD8+ T cells. Phenotyping characterized these cells as CD45RO+RA memory cells with typically high expression level of activation markers CD38 and CD69. The absence of CD62L (L-selectin) and CCR7, essential for lymphocyte migration to lymph nodes, indicates these CTLs are highly differentiated long-lived effector populations that can enter peripheral tissues to mediate inflammatory reactions or cytotoxicity (16). Stimulation with the mitogen PMA-ionomycin revealed that these cells produced intracellular IFN-γ and TNF-α, but not IL-4 or IL-10.

To determine whether the T cells were of host or recipient origin, fluorescence in situ hybridization was used. Because donor (female) and recipient (male) were gender mismatched, it was possible to resolve this question by sorting on the tetramer-positive cells and demonstrating that all of the cells expressed the Y chromosome and were therefore recipient derived (Fig. 2). Moreover, analysis of genomic DNA from these clones by PCR amplification with sequence-specific primers revealed that the clone was positive for A3 and A30, but not A2 (data not shown), providing independent confirmation that they were of recipient origin.

Having demonstrated that these tetramer-binding CD8+ T cells were of recipient origin, we sought to determine whether or not the cells were uniquely HLA-A2 restricted, or had cross-reactivity to other HLA molecules. To investigate the HLA restriction of these tetramer-specific T cells, assays were performed with cloned T cells and allogeneic LCLs expressing the A2 allele or the A3 allele, LCLs expressing all of the other donor HLA I alleles, or LCLs derived from the recipient cocultured with cognate or irrelevant HCV peptide. These analyses confirmed that these CD8+ T cells are peptide specific and uniquely restricted by the HLA-A2 allele (Fig. 3A and data not shown). Moreover, as shown in Fig. 3B, these CTLs had cytotoxic activity in the presence of HLA-A2 LCLs but not syngeneic (recipient-derived) LCLs.

In order for these CTLs to be relevant in vivo, i.e., mediate anti-HCV-specific function within the allograft, they would need to recognize processed Ag presented by dendritic cells, hepatocytes, or liver sinusoidal endothelial cells (17). To this end, we constructed retroviral vectors containing a minigene encoding the NS31406 peptide, and then transduced a variety of cell lines with the vector plus HCV minigene, as well as an empty retroviral vector (Fig. 3C). Multiplex analysis of these supernatants demonstrated production of IFN-γ, TNF-α, IL-2, GM-CSF, and MCP-1α, but not IL-4, IL-5, IL-7, IL-10, or IL-13 in the presence of the HCV peptide and cell line expressing HLA-A2. Taken together, our results demonstrate for the first time the presence of recipient-derived, HCV-specific CD8+ T cells that are selected and restricted by donor alleles following liver transplantation; these cells are memory, long-term effector cells that recognize endogenously processed Ag.

We next sought to determine the time course over which these CD8+ T cells emerged in four HLA-disparate recipients with PBMC serially collected before and at multiple time points after transplantation. As shown in Fig. 4, patient 2 demonstrated novel HLA-A2-specific responses at 20 mo post-liver transplantation. Similar to the results derived from patient 1, analysis of cloned NS31073-specific CTLs from patient 2 confirmed that they were of recipient origin (A31, B40, B51) and restricted by donor HLA-A2 when tested in an ELISPOT assay.

In summary, our study shows the de novo acquisition of recipient-derived, HCV-specific CD8+ T cells that are restricted by donor HLA alleles. Functionally, these CTL meet all traditional criteria for an adaptive HLA-Ia-restricted immune response in that T cell recognition occurs uniquely in the presence of HLA-A2 and the HCV peptide, and the response is clonally expanded following liver transplantation. Thus, our data are consistent with the hypothesis that the HCV-infected allograft is capable of stimulating and expanding naive CD8+ T cells. Presuming normal thymic selection of T cells based on their restriction to self-HLA molecules, the mechanisms by which the allograft can shape the T cell repertoire remain incompletely understood; nonetheless, we acknowledge a cross-reactive memory response as a formal possibility (18).

Considering the inflammatory milieu of the HCV-infected allograft (19) coupled with the high viral load (and presumably robust display of viral peptides on hepatocytes), it is possible that direct, extralymphoid presentation drives the differentiation and maturation of naive recipient-derived CD8 T cells. Alternatively, we would hypothesize that the microenvironment
(e.g., lymphoid aggregates in the portal tracts or secondary lymphoid tissues) in which this immune response was initiated would contain dendritic cells that take up HCV-infected hepatocytes. Irrespective of the precise ontology of these CD8+ T cells, their presence reveals the intrinsic plasticity (20) of the TCR that allows binding and recognition of HCV peptides on HLA-disparate APCs. Importantly, these CTLs were not simply alloreactive, because they did not bind irrelevant HLA-A2 tetramers that contained HIV gag peptide and did not respond when cocultured in an ELISPOT assay with HLA-A2-expressing LCLs alone (without cognate peptide) or with LCLs expressing the other donor alleles. The in vitro specificity of these donor HLA allele-restricted CTLs suggests that these CTL clones could be exploited for adoptive immunotherapy in liver transplant patients who develop severe recurrence of HCV infection within their allografts by specifically targeting infected donor organ tissues without triggering generalized alloimmunity against recipient tissues.

References