Cutting Edge: Heterozygote Advantage in Autoimmune Disease: Hierarchy of Protection/Susceptibility Conferred by HLA and Killer Ig-Like Receptor Combinations in Psoriatic Arthritis

George W. Nelson, Maureen P. Martin, Dafna Gladman, Judith Wade, John Trowsdale and Mary Carrington

J Immunol 2004; 173:4273-4276; doi: 10.4049/jimmunol.173.7.4273

http://www.jimmunol.org/content/173/7/4273

References
This article cites 10 articles, 4 of which you can access for free at:
http://www.jimmunol.org/content/173/7/4273.full#ref-list-1

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Cutting Edge: Heterozygote Advantage in Autoimmune Disease: Hierarchy of Protection/Susceptibility Conferred by HLA and Killer Ig-Like Receptor Combinations in Psoriatic Arthritis

George W. Nelson, Maureen P. Martin, Dafna Gladman, Judith Wade, John Trowsdale, and Mary Carrington

Functionally relevant combinations of HLA and killer Ig-like receptor (KIR) genotypes influence resistance to several diseases in humans. Analysis of genetic data from such studies is challenging because it involves multiple linked and unlinked loci that exert their influence in an epistatic manner. We previously reported that subjects with certain activating receptors were susceptible to developing psoriatic arthritis (PsA), an effect that was strongest when HLA ligands for corresponding homologous inhibitory receptors were missing. In this study, we present a novel model in which susceptibility to PsA is determined by the overall balance of activating and inhibitory composite KIR-HLA genotypes. This model fits our knowledge of clonal NK cell expression of KIR and regulation of NK cell activity better than does the previous model, as reflected in a robust trend for increasing susceptibility to PsA with more activating genotypes. These data emphasize the remarkable influence of KIR/HLA combinations on this disease. The Journal of Immunology, 2004, 173: 4273–4276.

Several human diseases have been shown to associate with variability at the killer Ig-like receptor (KIR) gene cluster, supporting a model whereby disease morbidity/mortality generates and maintains diversity at this locus (1–3). Although haplotypes containing multiple activating KIR may mediate protective NK cell responses against infectious disease (2) and enhance beneficial maternal-fetal interactions, these same haplotypes may predispose to autoimmune pathogenesis. Indeed, activating KIR, in particular KIR2DS1 and KIR2DS2, have been associated with autoimmune disorders (2, 3).

KIR2DS1 and KIR2DS2 show 98% sequence similarity to KIR2DL1 and KIR2DL2/3. KIR2DL2 and KIR2DL3 are alleles of the same gene and their products recognize the same HLA ligands, respectively, in their extracellular domains, but the inhibitory KIR2DL bind HLA-Cw group 1 ligands (HLA-Cw group 2 for KIR2DL1 and HLA-Cw group 1 for KIR2DL2/3) with significantly greater affinity than do the activating KIR2DS (4). Despite its low affinity, KIR2DS binding to HLA class I is likely to be functionally relevant under various circumstances. Genes encoding KIR2DL1 and KIR2DL2/3 are present in virtually all individuals, unlike their activating counterparts, KIR2DS1 and KIR2DS2, which are present in ~35% and 56% of European Americans, respectively.

We recently reported a strong association of KIR2DS1 and/or KIR2DS2 with development of psoriatic arthritis (PsA) (2). The effect was exacerbated in the absence of ligands for the corresponding inhibitory NK cell receptors, KIR2DL1 and KIR2DL2/3, respectively (odds ratio 3.2, 95% confidence interval 1.8–5.5, p = 3 × 10−4), compared with subjects lacking both KIR2DS1 and KIR2DS2. For example, individuals with KIR2DS1 were most strongly associated with PsA when the HLA-Cw group 2 ligands for KIR2DL1 were absent; the same was true of KIR2DS2 when HLA-Cw group 1 ligands for KIR2DL2/3 were absent. We concluded that the presence of an activating KIR was particularly detrimental when ligand for the corresponding inhibitory KIR was missing, in which case an inhibitory signal would not quench a potentially harmful activating signal.

We reconsidered the model tested in this study because theoretically, any inhibitory KIR-HLA ligand combination should be able to provide counteracting inhibition. The function of NK cells is regulated by positive and negative signals transmitted through paired activating and inhibitory receptors (5, 6). In vivo, NK cells are under the constitutive dominance of inhibitory receptors for self MHC class I ligands (7, 8). Thus, effector...
functions occur only when activating signals are able to overcome inhibitory signaling. This is achieved either by a predominance of activating receptor:ligand interactions or a lack of inhibitory receptor:ligand interactions (9). KIR are clonally expressed on NK cells in a stochastic manner such that each NK cell clone expresses only a portion of the genes within the genetic profile (8, 10). This predicts that, depending on the genotype, a given individual could have a relatively high frequency of NK cells that are: 1) primarily under the control of inhibitory receptors (most inhibition); 2) controlled by inhibitory and activating receptors fairly equally (relatively neutral); or 3) primarily under the control of activating receptors (most activation). In a similar vein, individuals who are missing ligands for some inhibitory receptors (as is the case among HLA-Cw group 1 or 2 homozygotes) will have fewer NK cells under inhibitory control than individuals who have all ligands present. Thus, an activating KIR, such as KIR2DS1, might be detrimental in terms of developing PsA if the ligand for either KIR2DL1 or KIR2DL2/3 is missing (i.e., homozygotes for either group of HLA-Cw ligands). Based on this reasoning, we propose a novel model that appropriately fits our understanding of KIR expression and function, and that shows more robust statistical support for the role of KIR in susceptibility to PsA than does our previous model.

Materials and Methods

The study population and methodology are as previously described (2). The trends for increasing susceptibility to PsA for combined KIR-HLA genotypes, under the two models, were evaluated by the Mantel-Haenzel test (SAS PROC FREQ; SAS Institute, Cary, NC). Analysis comparing the effect of multiple factors on PsA used logistic regression (SAS PROC LOGISTIC; Cary Institute).

Results and Discussion

We recently reported a strong association between KIR genotypes conferring NK cell activation and the development of PsA (2). Based on the model used in the analyses, we proposed that KIR2DS1 and KIR2DS2 (both activating receptors with unknown high affinity ligands) increase the risk of developing PsA, particularly when HLA class I ligands for the corresponding inhibitory KIR (KIR2DL1 and KIR2DL2/3, respectively) were missing. However, based on further considerations (see Introduction), we now hypothesize that susceptibility to PsA increases progressively with increasing levels of KIR-mediated activation of NK cells, a phenomenon that increases both with the presence of certain activating KIR and with the absence of ligand for inhibitory KIR. The absence of ligand for inhibitory KIR occurs when individuals are homozygous for either HLA-Cw group 1 (ligands for KIR2DL2/3) or group 2 (ligands for KIR2DL1). Therefore, we tested for effects of HLA-Cw
The primary difference between the old and new models is the hypothesis regarding the interaction between activating and inhibitory KIRs. In the old model, the most susceptible group under the new model because an individual who lacks a ligand for both activating and inhibitory receptors. In contrast, some individuals in the most susceptible group under the new model because an individual who lacks a ligand for either KIR2DL1 or KIR2DL2/3 (one of the defining characteristics of the most susceptible group in the old model) are necessarily homozygous for HLA-Cw group 2, because Cw group heterozygotes necessarily carry the ligand for both inhibitory receptors. In contrast, some individuals in the most susceptible group under the new model were not included in the most susceptible group under the old model. Specifically, under the old model, some individuals who were homozygous for HLA-Cw group were classified in an intermediate group. These included: 1) those who had KIR2DS1 in the absence of KIR2DS2 and were homozygous for Cw group 2 (i.e., the ligand for the corresponding KIR2DL1); and 2) those who had KIR2DS2 in the absence of KIR2DS1 and were homozygous for Cw group 1 (i.e., the ligand for the corresponding KIR2DL2/3). These individuals are classified under the most susceptible group in the new model, because they are homozygous for a Cw group and positive for KIR2DS1 and/or KIR2DS2. Thus, the level of susceptibility of these particular genotypes allows direct determination of the model that best fits the genotypic data. As shown in Fig. 1B, individuals who are homozygous for Cw group are at increased risk of developing PsA regardless of whether ligand for corresponding inhibitory KIR is present or absent (compare the top three sets of bars, where yellow represents individuals susceptible in the old model, and where yellow and red combined represent individuals susceptible in the new model). All three sets of homozygous individuals show very similar levels of susceptibility to one another, but they are distinct from groups who are heterozygous for Cw group (blue bars). These data fit the prediction of the new but not the old model.

The primary difference between the old and new models is the hypothesis regarding the interaction between activating and inhibitory KIRs. In the old model, the most susceptible group under the new model because an individual who lacks a ligand for both activating and inhibitory receptors. In contrast, some individuals in the most susceptible group under the new model were not included in the most susceptible group under the old model. Specifically, under the old model, some individuals who were homozygous for HLA-Cw group were classified in an intermediate group. These included: 1) those who had KIR2DS1 in the absence of KIR2DS2 and were homozygous for Cw group 2 (i.e., the ligand for the corresponding KIR2DL1); and 2) those who had KIR2DS2 in the absence of KIR2DS1 and were homozygous for Cw group 1 (i.e., the ligand for the corresponding KIR2DL2/3). These individuals are classified under the most susceptible group in the new model, because they are homozygous for a Cw group and positive for KIR2DS1 and/or KIR2DS2. Thus, the level of susceptibility of these particular genotypes allows direct determination of the model that best fits the genotypic data. As shown in Fig. 1B, individuals who are homozygous for Cw group are at increased risk of developing PsA regardless of whether ligand for corresponding inhibitory KIR is present or absent (compare the top three sets of bars, where yellow represents individuals susceptible in the old model, and where yellow and red combined represent individuals susceptible in the new model). All three sets of homozygous individuals show very similar levels of susceptibility to one another, but they are distinct from groups who are heterozygous for Cw group (blue bars). These data fit the prediction of the new but not the old model.
inhibitory receptors. In the old model (Fig. 2A), the assumption was made that only a corresponding inhibitory receptor could quench the activity of an activating receptor. Therefore, activation mediated by KIR2DL1, for example, could be quenched by KIR2DS1, for example, could be quenched by activated KIR2DS1, for example, could be quenched by activated KIR2DS1, for example, could be quenched by activating receptor. Therefore, activated KIR2DS1, for example, could be quenched by activated KIR2DS1, for example, could be quenched by activating receptor. Therefore, activated KIR2DS1, for example, could be quenched by activated KIR2DS1.

We further tested five explanatory factors (HLA-B*27, HLA-Cw*0602, presence of KIR2DS1 and/or KIR2DS2, presence of KIR2DS1 and/or KIR2DS2 in the absence of HLA-Cw group ligand for the corresponding inhibitory KIR, and HLA-Cw group homozygosity) in a multiple logistic regression (Table I). The presence of KIR2DS1 and/or KIR2DS2 is highly significantly associated with susceptibility to PsA, as are the established factors HLA-B*27 and HLA-Cw*0602 ($p \leq 0.0001$). HLA-Cw group homozygosity is also significantly associated with increased risk of developing PsA ($p = 0.005$), but the presence of KIR2DS1 or KIR2DS2 in the absence of HLA-Cw group ligand for corresponding inhibitory KIR showed no association ($p = 0.80$) in the multiple regression analysis. We also considered the possibility that, like heterozygosity for HLA-Cw group 1 and 2, HLA-B Bw4, the ligand for KIR3DL1, may provide additional protection among individuals with KIR3DL1. However, multiple logistic regression analysis indicated no protective effect of HLA-B Bw4 among homozygotes for Cw group, heterozygotes for Cw group, or all subjects combined. Thus, protective inhibitory effects against PsA appear to be restricted to KIR2DL-mediated inhibition. In light of our current understanding of KIR expression and function, a model proposing that a combination of KIR2DS1 and/or KIR2DS2 plus HLA-Cw ligand group homozygosity (a situation where the inhibitory signal is diminished) confers susceptibility to PsA is clearly favored.

It is essential to continually pursue plausible models for data pertaining to complex genetic loci (such as HLA and KIR) in human diseases. If logical intelligent models are used in data analysis, the genetic studies will be an invaluable tool for directing future biological studies. One general model is unlikely to fit data derived from different types of diseases, and as our understanding of KIR biology advances, we must reconsider and possibly modify our genetic models. This approach will serve to strengthen and clarify the genetic effects of these polymorphic loci on human disease.

References