Immunoproteasomes Down-Regulate Presentation of a Subdominant T Cell Epitope from Lymphocytic Choriomeningitis Virus

Michael Basler, Nikolay Youhnovski, Maries van den Broek, Michael Przybylski and Marcus Groettrup

J Immunol 2004; 173:3925-3934; doi: 10.4049/jimmunol.173.6.3925

http://www.jimmunol.org/content/173/6/3925

References

This article cites 49 articles, 30 of which you can access for free at: http://www.jimmunol.org/content/173/6/3925.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at: http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts
Immunoproteasomes Down-Regulate Presentation of a Subdominant T Cell Epitope from Lymphocytic Choriomeningitis Virus

Michael Basler,* Nikolay Youhnovski,† Maries van den Broek,‡ Michael Przybylski,† and Marcus Groettrup²*

The cytotoxic T cell response to pathogens is usually directed against a few immunodominant epitopes, while other potential epitopes are either subdominant or not used at all. In C57BL/6 mice, the acute cytotoxic T cell response against lymphocytic choriomeningitis virus is directed against immunodominant epitopes derived from the glycoprotein (gp33–41) and the nucleoprotein (NP396–404), while the gp276–286 epitope remains subdominant. Despite extensive investigations, the reason for this hierarchy between epitopes is not clear. In this study, we show that the treatment of cells with IFN-γ enhanced the presentation of gp33–41, whereas presentation of the gp276–286 epitope from the same glycoprotein was markedly reduced. Because proteasomes are crucially involved in epitope generation and because IFN-γ treatment in vitro and lymphocytic choriomeningitis virus infection in vivo lead to a gradual replacement of constitutive proteasomes by immunoproteasomes, we investigated the role of proteasome composition on epitope hierarchy. Overexpression of the active site subunits of immunoproteasomes LMP2, LMP7, and MECL-1 as well as overexpression of LMP2 alone suppressed the presentation of the gp276–286 epitope. The ability to generate gp276–286-specific CTLs was enhanced in LMP2- and LMP7-deficient mice, and macrophages from these mice showed an elevated presentation of this epitope. In vitro digests demonstrated that fragmentation by immunoproteasomes, but not constitutive proteasomes led to a preferential destruction of the gp276 epitope. Taken together, we show that LMP2 and LMP7 can at least in part determine subdominance and shape the epitope hierarchy of CTL responses in vivo. The Journal of Immunology, 2004, 173: 3925–3934.

The infection of the mouse with lymphocytic choriomeningitis virus (LCMV) is a frequently used model of viral infection, and also, the phenomenon of immunodominance has been thoroughly investigated (2, 8, 9–12). In C57BL/6 mice, this response is dominated by CTLs specific for the H-2Db-restricted epitopes gp33–41, nucleoprotein 396–404 (NP396–404), and the subdominant epitope gp276–286. The reasons for gp276 subdominance have been thoroughly investigated in the past (11). One contributing factor to the subdominance of gp276 could be that the amount of gp276 epitopes that was eluted from 10⁷ LCMV-infected MC7 fibroblasts (0.16 ng) was about twice as low as that of NP396 (0.3 ng) and 12-fold lower than gp33 (2.0 ng). This amount corresponded to 92 H-2Db-bound gp276 epitopes per MC7 cell, which is in a range in which it could become limiting for the recognition by gp276-specific CTLs (13, 14). It hence appears that the intracellular processing of the gp276 epitope is less efficient than processing of the gp33 epitope derived from the same glycoprotein. Because the proteasome is involved in the processing of both epitopes (15), we decided to further investigate its impact on the establishment of the epitope hierarchy.

The proteasome is the main protease in the cytoplasm and the nucleus that generates the C termini of most peptide ligands of MHC class I molecules (16, 17). The proteolytic core complex of the proteasome system is the 20S proteasome, which is constructed like a cylinder of four stacked rings. The outer two rings consist of seven different α-type subunits that bind to regulatory complexes of the 20S core particle, whereas the two inner rings are made up of seven different subunits of the β-type. Three of the β-subunits,
designated δ (β1), MB1 (β5), and MC14 (Z, β2), bear the active centers of the 20S proteasome. Upon stimulation of cells with the inflammatory cytokine IFN-γ, these constitutively expressed subunits are replaced by inducible subunits named LMP2 (β1i), LMP7 (β5i), and MECL-1 (β2i) during the de novo assembly of 20S proteasomes. This subunit exchange alters the cleavage pattern of the proteasome (16), which can lead to an enhancement of Ag presentation (18–21). However, for a few epitopes from human tumors, the induction of immunoproteasomes was found to negatively affect their presentation (22). Although gene-targeted mice deficient for LMP2 (23) and LMP7 (24) have been generated almost a decade ago, the impact of these two subunits on the hierarchy of epitopes has been barely investigated, except for a recent study by Chen et al. (25), which shows that in LMP2−/− mice the CTL response to influenza virus follows a different hierarchy than in wild-type mice. This effect was due both to differences in the CTL precursor frequency as well as to changes in epitope presentation.

Another IFN-γ-inducible complex, which affects epitope generation and therefore has the potential to shape epitope hierarchies, is the 11S regulator of the proteasome (26) (also called PA28 (27)). PA28 consists of two different subunits, α and β, which form a heptamer ring that binds to the 20S or 26S proteasome and affects their peptidolytic properties (28). Overexpression of PA28β has been shown to enhance the presentation of a number of epitopes (29–32), and, conversely, PA28 deficiency in PA28β−/− or PA28αβ−/− mice interferes with epitope presentation in several cases (33, 34).

In this study, we investigated whether the composition of proteasome active site subunits and PA28 could be involved in determining immunodominance and subdominance in the LCMV system. The finding that the IFN-γ treatment of MC57 fibroblasts enhanced gp33 presentation, but down-regulated the presentation of gp276 inspired our work. With the help of transfectants and knockout mice, we could indeed show that immunoproteasomes negatively affect gp276 processing and presentation in vitro and the generation of gp276-specific CTLs in vivo. Our data are discussed with respect to so far elusive changes of epitope hierarchy in acute vs persistent LCMV infection and in relation to different Ag presentation by fibroblasts as opposed to dendritic cells.

Materials and Methods

Mice and viruses

C57BL/6 mice (H-2b) were purchased from the animal facility of University of Constance. LMP2−/− (23) and LMP7−/− (24) gene-targeted mice were provided by J. Monaco (Department of Molecular Genetics, Cincinnati, OH) and C. Chiba (Department of Molecular Oncology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan) (34). All knockout mice were backcrossed onto the C57BL/6 background for at least 10 generations. Mice were kept in a specific pathogen-free facility and used at 6–10 wk of age. LCMV-WE was originally obtained from F. Lehmann-Hartmann (Institute of Immunology, Hamburg, Germany) and propagated on the fibroblast line L929. Recombinant vaccinia virus (rVV) encoding the LCMV glycoprotein (rVVg2) was obtained from D. Bishop (Institute of Virology, Oxford, U.K.) and was propagated on BSC40 cells. Mice were infected with 200 PFU of LCMV-WE i.v. or with 2 × 106 PFU of VVg2 i.p., and the specific CTL response was analyzed at day 8 or 6 after infection, respectively.

Cell lines

MC57 (H-2b) is a C57BL/6-derived methylcholanthrene-induced fibrosarcoma cell line (35). MCGP (H-2c) is a MC57-derived transfected expressing the LCMV glycoprotein. B8 is a BALB/c-derived fibroblast line (H-2d) obtained by SV40 infection in vitro (28). B27M6 and B27M2 are triple transfectants of B8 cells expressing murine LMP2, LMP7, and MECL-1; BPαβ13 is a double transfected of B8 cells expressing murine PA28α and PA28β (19); BC2P6 is a transfected of B8 cells expressing murine LMP2 (28); B7H6 is a transfected of B8 cells expressing murine LMP7 (28), Hyb33 and Hyb276 are T cell hybridomas specific for gp33−41/H-2Kb or gp276−286/H-2Dd, respectively (15). All cells were grown in IMDM supplemented with 2 mM glutamine, 10% FCS, and 100 U/ml penicillin/streptomycin. Selection drugs were required for MCGP (0.8 mg/ml G418, B27M6Db (0.5 mg/ml G418, 3 μg/ml puromycin, 0.4 mg/ml hygromycin B, B7H6Db and BC2P6Db (0.5 mg/ml G418, 0.4 mg/ml hygromycin B, 5 μg/ml blasticidin), B8D5 (5 μg/ml blasticidin), B7H6Db and BC2P6Db (3 μg/ml puromycin, 0.4 mg/ml hygromycin B), and Hyb33 and Hyb276 (1X hypoxanthine thymidine, 0.5 mg/ml hygromycin B).

Synthetic peptides

The synthetic peptides gp33−41 (KAVYNFATC) and gp276−286 (SQVENPPGYYCVLY) were obtained from Echaz Microcollections (Tubingen, Germany). The 25-mer peptide used for proteasome digestion encompassing LCMV-glycoprotein residues 271−295 (TLSSDSSGVEDPGGYCLTKWMLAAE) was synthesized by solid-phase peptide synthesis on a NovaSyn TGA resin (0.21 mmol/g) by Fmoc/tBu chemistry, using a semiautomated Economy Peptide Synthesizer EPS-221 (Abimed, Germany) above, with the H-2Dd peptide H9251/H9252 on a C18 column (GROM-SIL, 120 ODS-4 HE, 10 μm, 250 × 20 mm; Grom, Herrenberg-Kayh, Germany) using as mobile phases: eluent A (0.1% trifluoroacetic acid in water) and eluent B (80% ACN, 0.1% trifluoroacetic acid in water). The following gradient was applied: 0 min, 10% eluent B; 45 min, 90% eluent B.

Antibodies

KL-25 is a mouse mAb reactive with the LCMV glycoprotein (36). The mAb H915 (BD Pharmingen, San Diego, CA) reacts with the H-2Dd MHC class I molecule.

Flow cytometry

A number of 5 × 105 infected and noninfected B8Db, B27M6Db, B27M2Db, B7H6Db, BC2P6Db, and BPαβ13Db cells in 100 μl of PBS + 2% FCS were incubated in a round-bottom 96-well plate on ice for 20 min with 1 μg of mAb KL25, washed twice, and subsequently stained by a FITC-conjugated sheep anti-mouse Ig (Silenus, Victoria, Australia) for another 20 min on ice. Samples were washed twice and analyzed on a FACScan flow cytometer (BD Biosciences, Mountain View, CA). To check transfected B8Db, B27M6Db, B27M2Db, B7H6Db, BC2P6Db, and BPαβ13Db cells for H-2Dd expression, the staining was performed, as described above, with the H-2Db-specific mAb H9251/H9252.

For Vβ staining splenocytes from uninfected or LCMV (8 days postinfection with 200 PFU of LCMV-WE i.v.)-infected C57BL/6, LMP2−/−, and LMP7−/− mice were treated with 1.66% NH4Cl (w/v), washed twice, and incubated for 30 min with biotin-conjugated anti-Vβ1/8.2, anti-Vβ9, or anti-Vβ10 (BD Pharmingen) Abs on ice. Samples were washed twice and incubated for another 30 min with streptavidin-conjugated FITC and Cy5-conjugated mouse anti-CD4 (BD Pharmingen). After two washes, cells were acquired with the FACScan flow cytometer (BD Biosciences, Mountain View, CA) and analyzed with the FlowJo software (Tree Star, San Carlos, CA). Differences between groups were assessed by unpaired t test (www.graphpad.com). Values of p < 0.05 are considered to be statistically significant.

Transfections

B8, B27M6, and BPαβ13 were transfected with an expression plasmid encoding H-2Dd (a kind gift from F. Momburg, Heidelberg, Germany). Cells were plated to 80% confluence and were transfected by the standard calcium phosphate coprecipitation method with 10 μg of H-2Dd plasmid and 2 μg of a blasticidin resistance vector pCDNA6/TR (Invitrogen Life Technologies, Karlsruhe, Germany). Two days after transfection, cells were plated in 96-well plates under cloning conditions and selected with 5 μg/ml blasticidin (Invitrogen Life Technologies). Because of instability of blasticidin, the selection medium was replaced every 4 days. Blasticidin-resistant cells were tested for H-2Dd expression by FACS analysis, and positive cells were subcloned to obtain monoclonal cells.

B27M2, BC2P6, and B7H6 cells were stably transfected with H-2Dd plasmid and either hygromycin or puromycin resistance plasmids, according to the manufacturer’s protocol (FuGENE 6; Roche, Basel, Switzerland). Clonal and selection drug-resistant cells were tested for H-2Dd expression by flow cytometry.

LacZ assay

For the lacZ assay, 5 × 104 LCMVgp33−41/H-2Kb or LCMVgp276−286/H-2Dd-specific T cell hybridomas (15) were cocultured overnight with

Downloaded from http://www.jimmunol.org/ by guest on June 6, 2017
2.5 × 10^6 stimulator cells in 96-well plates. As stimulator cells, MCGP, B8Db, B27M6Db, B27M2Db, BC2P6Db, B7H6Db, and PBo713Db, or thiglycolate-elicted peritoneal macrophages from C57BL/6, LMP2/−/−, or LMP7/−/− mice were used. MCGP cells were treated for 3 days with 60 U/ml murine rIFN-γ (Roche) to allow a complete replacement of constitutive immunoproteasomes (19). The LMP7−/− mice were generated by us and used as detailed elsewhere (15).

Restimulation and cytolytic assay

B6, LMP2/−/−, and LMP7/−/− mice were infected with 2 × 10^6 V5V2 I.p. Six days later, 4 × 10^6 splenocytes were cocultured with 2 × 10^6 peptide-loaded (gp33–41 or gp276–286) irradiated (2000 rad) syngeneic splenocytes in 2 ml of IMDM supplemented with 10% FCS, penicillin/streptomycin, 2-ME, and 10% Con A supernatant (Con A-induced rat spleen cell culture supernatant) in 24-well plates. After 6 days of culture, a standard 51 Cr release assay with peptide (gp33–41 or gp276–286)-loaded (10^5) M or unloaded MC57 cells was performed. In brief, target cells were incubated with Na_2CrO_4 ± peptide for 90 min. Three-fold dilutions of the restimulated cultures were tested for cytotoxic activity using 10^3 51Cr-labeled MC57 as targets in a 5-h chromium release assay. The percentage of specific lysis was calculated as follows: percentage of specific release = (experimental release−spontaneous release) / (maximal release−spontaneous release) × 100%. The spontaneous lysis was below 15%; the lysis of unloaded targets was below 10%.

Intracellular staining for IFN-γ

A total of 2 × 10^6 splenocytes was incubated in round-bottom 96-well plates with 10^−7 M of the specific peptide in 100 μl of 10% IMDM for 2 h at 37°C. Then brefeldin A (10 μg/ml) was added, and the incubation was continued for another 4 h. Cells were incubated for 20 min at 4°C with Cy5-conjugated mouse anti-CD8 (clone 53-6.7; BD Pharmingen). Following fixation with 4% paraformaldehyde at 4°C for 5 min, the cells were incubated overnight with fluorescein-conjugated mouse anti-IFN-γ (clone XMG1.2; BD Pharmingen) in PBS containing 2% FCS and 0.1% (w/v) saponin (Sigma-Aldrich, St. Louis, MO). Samples were washed twice, acquired with the use of FACScan flow cytometer (Becton Dickinson), and analyzed by the FlowJo software (Tree Star).

Metabolic labeling, immunoprecipitation, and two-dimensional gel electrophoresis

A total of 10^7 thiglycolate-elicted peritoneal macrophages from BALB/c mice was starved in cysteine/methionine-free RPMI 1640, 10% diazylated FCS for 1 h at 37°C and labeled with 0.2 μCi/ml Met-[35S]-label (Hartmann Analytic, Germany) for 8 h to allow full maturation of the proteasome. Cells were washed with PBS, harvested, and lysed for 30 min on ice in 20 mM Tris/HCl, pH 7.5, 150 mM NaCl, 1 mM MgCl_2, and 2% Triton X-100. The lysate was preclariﬁed for 1 h with protein A-Sepharose CL-4B (Amersham Biosciences, Uppsala, Sweden), followed by overnight immunoprecipitation with an anti-proteasome serum bound to protein A-Sepharose 4C. The precipitates were washed four times with NET-10 (650 mM NaCl, 5 mM EDTA, 50 mM Tris-HCl, 0.5% Triton X-100, 0.05% Na_2OAc, and 1 μg/ml OVA) and twice with NET-T (150 mM NaCl, 5 mM EDTA, 50 mM Tris-HCl, 0.5% Triton X-100, 0.05% Na_2OAc), and separated by nonequilibrium pH-gradient gel electrophoresis/SDS-PAGE, as previously described (28), and visualized by autoradiography on a Fuji BAS1500 radiomager.

Purification of 20S proteasome

The lysis of organ tissue, the puriﬁcation of 20S proteasomes from liver, and the quantiﬁcation of the 20S proteasome from uninfected and LCMV-infected (8 days postinfection with 200 PFU of LCMV-WE i.v.) C57BL/6, LMP2/−/−, and LMP7/−/− mouse livers were performed, as previously described (28).

Proteasomal fragmentation of polypeptide and mass spectrometric analysis of peptide products

Digestions of the 25-mer polypeptide spanning LCMV-WE glycoprotein residues 271–295 with puriﬁed 20S proteasomes were performed for indi- cated time periods exactly as previously described (19). HPLC-electrospray ionization mass spectrometry (ESI-MS) analysis was performed on a Q-ToF mass spectrometer (Applied Biosystems, Concord, Canada) equipped with TurboSpray Ion Source (Applied Biosystems) and Agilent (Palo Alto, CA) 1100 HPLC system (Autosampler G1313A, Binary Pump G1312A, on-line vacuum degasser G1322A), ACCURATE flow-splitter AC-100-VAR with 0.3 mm i.d, splitter capillary CAL-100-0.3 (LC Pack-
Comparison of gp33 and gp276 presentation by LCMV-infected macrophages from C57BL/6, LMP2 \(-/-\), and LMP7 \(-/-\) mice

To confirm this effect of immunoproteasomes in an independent system and to discriminate whether LMP2 or LMP7 contributes to down-regulation of gp276 presentation, we examined Ag presentation by LCMV-infected thioglycolate-elicted peritoneal macrophages from LMP2 \(-/-\) and LMP7 \(-/-\) gene-targeted as well as C57BL/6 control mice. The peritoneal macrophages were infected in vitro for 20 h with LCMV-WE and analyzed for gp33 and gp276 presentation with the respective T cell hybridomas (Fig. 3) using peptide-pulsed MC57 cells as specificity controls (lanes 1 and 2) and uninfected peritoneal macrophages from C57BL/6, LMP2 \(-/-\), and LMP7 \(-/-\) mice as negative controls (lanes 3–5). Although no difference in gp33 presentation was found between C57BL/6 and LMP2 \(-/-\) macrophages, gp33 presentation was reduced by \(~50\%\) in LCMV-WE-infected macrophages from LMP7 \(-/-\) mice. This result suggests that the induction of LMP7, but not of LMP2, contributes to the IFN-\(\gamma\)-dependent enhancement of gp33 presentation (Fig. 1A). The presentation of gp276, in contrast, seems to benefit from the deficiency of LMP7 and to a minor extent from LMP2 as macrophages from the respective knockout mice stimulated gp276-specific hybridomas better than macrophages from the wild-type control. This result is consistent with the aforementioned reduction in gp276 presentation caused by immunoproteasome overexpression (Fig. 2B).

To address to which extent LMP2 and LMP7 are expressed in thioglycolate-elicted peritoneal macrophages, these cells were metabolically labeled with \([^{35}\text{S}]\text{Met/Cys}\). The proteasomes were immunoprecipitated and the subunit composition was analyzed by nonequilibrium pH-gradient gel electrophoresis/SDS-PAGE. LMP7 (bearing 15 Met/Cys in the primary structure) was prominently expressed in thioglycolate-elicted peritoneal macrophages, as evidenced by the intensity of the LMP7 spots, and the virtually complete replacement of the homologous subunit MB-1 (bearing 9 Met/Cys) with B8 Db cells. Whereas PA28\(\alpha\beta\) overexpression had only a minor effect (Fig. 2, A and C). This result, which was confirmed with independent clones, strongly suggested that the induction of immunoproteasomes is at least in part responsible for the IFN-\(\gamma\)-mediated down-regulation of gp276.

To investigate the effect of LMP2 only and LMP7 only, we stably supertransfected the well-characterized cell lines BC2P6 (B8 cell-overexpressing LMP2) and B7H6 (B8 cell-overexpressing LMP7) (28) with an expression construct encoding the H-2Db restriction element (Fig. 2, C and D). These clones were infected with LCMV, and the presentation of gp276 was examined with gp276/H-2Db-specific hybridomas. Cells overexpressing LMP7 showed no altered presentation of gp276 compared with the parental cells (Fig. 2C). In contrast, LMP2 overexpression reduced gp276 presentation \(~4\)-fold, which indicates that the reduced presentation of gp276 in LMP2/LMP7/MECL-1 cells (Fig. 2, A and C) is mainly due to LMP2.

The generation of gp276-specific CTLs is improved in LMP2 \(-/-\) and LMP7 \(-/-\) mice

To investigate how LMP2 and LMP7 would affect the CTL response to gp33, gp276, and NP396 in vivo, we first infected LMP2 \(-/-\), LMP7 \(-/-\), and PA28\(\alpha\beta\) \(-/-\) knockout as well as C57BL/6 control mice with LCMV. However, standard \(^{51}\text{Cr}\) release assays performed on day 8 postinfection with peptide-loaded target cells did not detect significant differences between these mice strains irrespective of whether we infected with LCMV-WE or LCMV-Armstrong (data not shown). Moreover, virus titers in the spleen obtained on day 4 postinfection were not different in control and knockout mice (Table I). These results are not unexpected given that LCMV replicates very fast in numerous mouse tissues to high titers and overwhelms the organism with viral Ags. Hence, we turned to infection of these mice with rVVG2. VV replicates much slower in mice, and therefore produces a lower amount of Ag. Splenocytes from rVVG2-infected mice were harvested on day 6 after infection, and the CTLs were restimulated in vitro for another 6 days before they were used as effectors in a chromium release assay. As shown in Fig. 4A, the lysis of targets loaded with the gp276 peptide by LMP2 \(-/-\) and LMP7 \(-/-\) effectors was much higher (40–75\%) as compared with CTLs from C57BL/6 mice (15–25\%). This indicates that, in agreement with
our in vitro data, the gp276 epitope became immunodominant in the absence of either LMP2 or LMP7. The lysis of gp33-loaded targets varied between 20 and 40% for all mice, thus indicating that the replacement of constitutive proteasomes by immunoproteasomes did not significantly affect the generation of gp33-specific CTLs. Even with this more sensitive in vivo system, we failed to detect any differences between PA28α and β (BPrβ13Db); B8Db are recipient cells only transfected for H-2D^β. The y-axis represents absorbance of enzymatically converted chromogen at 570 nm in lacZ assays. The values are the means of three replicate cultures; shown is a representative experiment of three experiments with similar outcome. Error bars represent SDs. B and D, To verify that H-2D^β cell surface expression was roughly equivalent in the different transfectants, a flow cytometric analysis was performed before every assay. C, Comparison of the presentation of gp276 epitope by stable cell lines transfected with H-2D^β (B8Db) as well as LMP2/LMP7/MECL-1 (B27M2Db), LMP7, or LMP2. The stimulator cells were infected with LCMV-WE in vitro 24 h before incubation with the gp276-specific hybridoma. The y-axis represents absorbance of enzymatically converted chromogen at 570 nm in lacZ assays. Two independent clones are shown for each transfection construct. The values are the means of three replicate cultures; shown is a representative experiment of three experiments with similar outcome. Error bars represent SDs.

To confirm the observed enhancement in the generation of gp276-specific CTLs in LMP2- and LMP7-deficient mice, we performed double stainings of splenocytes from LMP2^{−/−}, LMP7^{−/−}, and C57BL/6 control mice for CD8 on the cell surface and for the intracellular content of IFN-γ (intracellular cytokine staining) on day 7 after infection with rVVG2. Also with this ex vivo assay, we observed that the generation of gp276-specific precursors was clearly enhanced in LMP2^{−/−} and LMP7^{−/−} mice (Fig. 4, B and C). In contrast, there was no difference in the
The generation of Vβ10b-specific CTLs is impaired in LCMV-infected LMP2- and LMP7-deficient mice

To investigate whether the improved generation of gp276-specific CTLs in LMP2- and LMP7-deficient mice is due to an altered CTL repertoire, splenocytes from naive and LCMV-WE-infected (8 days postinfection with 200 PFU of LCMV-WE) C57BL/6, LMP2−/−, and LMP7−/− mice were stained with different TCR-Vβ8-specific Abs (Fig. 5). There was a significant difference (2% less) of Vβ8.1/8.2-specific CD8-positive cells in naive LMP2-deficient mice compared with C57BL/6 and LMP7-deficient mice. After LCMV infection, no difference could be detected for Vβ8. Naïve LMP7−/− mice showed a slight, but significant difference for Vβ9-specific CTLs, which was abolished after LCMV infection. It has been shown that T cell lines specific for gp276 were using exclusively the Vβ10 variable segment for their TCRs (38). Naïve LMP2−/− and LMP7−/− mice showed no difference for Vβ10 usage compared with C57BL/6. In contrast, after LCMV infection, the extent of CTLs using Vβ10 was significantly increased in C57BL/6 mice compared with LMP2- and LMP7-deficient mice.

In vitro fragmentation of the gp271–295 polypeptide by immunoproteasomes and constitutive proteasomes as well as LMP2- and LMP7-deficient proteasomes

Given that the generation of the gp276 epitope is dependent on proteasome activity (19), we hypothesized that gp276 presentation is adversely affected by LMP2 and LMP7 because constitutive proteasomes and immunoproteasomes fragment precursor polypeptides of gp276 in a different way. To test this hypothesis, we investigated how immunoproteasomes and constitutive 20S proteasomes fragment the 25-mer precursor polypeptide covering residues 271–295 of the LCMV-WE glycoprotein (NH₂-TLSDSSGVEDPGGYCLTKWMILAAE-COOH), which contains the underlined 11-meric gp276 epitope bearing an aspartate in position 10b. Given our previous finding that LCMV infection results in a virtually complete replacement of constitutive proteasomes by immunoproteasomes in vivo (39) (data not shown), the separation of the produced fragments after 8 h of in vitro digest by HPLC shows that constitutive proteasomes and immunoproteasomes fragment the 25-mer polypeptide in a different manner, and these differences in the HPLC profiles were confirmed in several independent experiments (Fig. 6B). The fragmentation was not observed in the presence of the proteasome inhibitor lactacystin, suggesting that 20S proteasomes were not contaminated by other proteases (data not shown). The time period of 8 h was chosen because the 25-mer substrate eluting late in the gradient is still by far the predominant peptide and the relative intensities of emerging peaks remained the same over a
The digestion period of up to 8 h. A further fragmentation of primary fragments was therefore unlikely to occur.

To obtain at least semiquantitative information on how the 25-mer precursor was differentially fragmented by constitutive proteasomes and immunoproteasomes, the fragments of the same digest as shown in Fig. 6 were analyzed by ESI-MS. A comparison of the peak intensities of ion currents from selected fragments, which could be unambiguously identified by their mass, revealed that the 11-mer epitope (residues 276–286) as well as a putative 12-mer precursor of the latter (residues 275–286) were made in greater quantity by constitutive proteasomes, whereas fragments that resulted from cleavages within the epitope (residues 280–291 and 281–289) were produced in greater amounts by immunoproteasomes (Fig. 6C). These data are in accordance with our Ag presentation assays, as they suggest that immunoproteasomes preferentially destroy the gp276 epitope and their precursors, whereas constitutive proteasomes are able to proteolytically generate these peptides in greater amounts.

FIGURE 5. Analysis of Vβ variable segments of TCRs from C57BL/6, LMP2−/−, and LMP7−/− mice. Splenocytes from naive or LCMV-infected (8 days postinfection with 200 PFU of LCMV-WE i.v.) mice were stained for CD8 and Vβ1.2/8, Vβ9, or Vβ10b, and analyzed by flow cytometry. Values are the means of 7 (naive) or 12 (infected) mice from two independent experiments. Values of p were determined by unpaired t test and are considered to be statistically significant when p < 0.05.
To address the effect of LMP2 only and LMP7 only, 20S proteasome was isolated from liver of LCMV-infected LMP2- and LMP7-deficient mice. Two-dimensional gels confirmed that the two other immunoproteasome subunits were induced (data not shown). Analysis of how the 25 mer was fragmented was obtained exactly as in Fig. 6C. The LCMV-derived epitope gp276–286 and its putative precursor gp275–286 were produced in larger amounts by LMP2- and LMP7-deficient immunoproteasome compared with normal immunoproteasome (Fig. 6D), which is in accordance with the results obtained in Fig. 4, in which LMP2- and LMP7-deficient mice elicited a stronger CTL response against gp276 than wild-type mice.

Discussion

Immunodominance is an inherent and frequently observed phenomenon associated with T cell responses to viruses and other pathogens. The reason that CTLs are emerging in great numbers to only one or a few epitopes while CTLs to other potential epitopes are virtually not detectable has been profoundly investigated in the LCMV system, but the phenomenon remains poorly understood (2, 8, 9–12). Recently, it has been shown that the immunodominance of an antiviral CTL response can be shaped by the kinetics of viral protein expression (40). Nevertheless, it is still not clear why gp276 is a subdominant epitope in C57BL/6 mice after infection with LCMV. The affinity of gp276 for the peptide-binding groove of H-2D^b seems superior to that of gp33 because a ~10-fold lower concentration of gp276 was required to achieve optimal lysis (10, 11). Also, the recognition and elimination of LCMV-infected target cells by gp276-specific CTLs seem to be more efficacious compared with gp33-specific CTLs, as evidenced by adoptive transfer experiments, thus indicating that the binding of the gp276-specific TCRs to H-2D^b/gp276 complexes on the surface of LCMV-infected cells is not a limitation (11). A factor that was shown to be a determinant of immunodominance at least in influenza infection is the availability of specific CTLs in the repertoire of peripheral T cell specificities (3, 25). T cell lines specific for gp276 were strongly biased for the usage of V_α4 and V_β10 variable segments for their TCRs (38), but it has not been investigated whether this bias imposes a limit on the availability of gp276-specific T cells in the repertoire.

Finally, gp33, gp276, and NP396 epitopes were eluted from H-2D^b proteins of LCMV-infected MC57 fibroblast cells, and the approximate number of epitopes per cell was determined. The calculated numbers were 1080 for gp33, 92 for gp276, and 162 for NP396, which implies that the copies of gp276 and NP396 expressed by LCMV-infected MC57 fibroblast cells, and the approximate number of epitopes per cell was determined. The calculated numbers were 1080 for gp33, 92 for gp276, and 162 for NP396, which implies that the copies of gp276 and NP396 expressed by LCMV-infected MC57 fibroblast cells, and the approximate number of epitopes per cell was determined. The calculated numbers were 1080 for gp33, 92 for gp276, and 162 for NP396, which implies that the copies of gp276 and NP396 expressed by LCMV-infected MC57 fibroblast cells, and the approximate number of epitopes per cell was determined. The calculated numbers were 1080 for gp33, 92 for gp276, and 162 for NP396, which implies that the copies of gp276 and NP396 expressed by LCMV-infected MC57 fibroblast cells, and the approximate number of epitopes per cell was determined. The calculated numbers were 1080 for gp33, 92 for gp276, and 162 for NP396, which implies that the copies of gp276 and NP396 expressed by LCMV-infected MC57 fibroblast cells, and the approximate number of epitopes per cell was determined. The calculated numbers were 1080 for gp33, 92 for gp276, and 162 for NP396, which implies that the copies of gp276 and NP396 expressed by LCMV-infected MC57 fibroblast cells, and the approximate number of epitopes per cell was determined. The calculated numbers were 1080 for gp33, 92 for gp276, and 162 for NP396, which implies that the copies of gp276 and NP396 expressed by LCMV-infected MC57 fibroblast cells, and the approximate number of epitopes per cell was determined. The calculated numbers were 1080 for gp33, 92 for gp276, and 162 for NP396, which implies that the copies of gp276 and NP396 expressed by LCMV-infected MC57 fibroblast cells, and the approximate number of epitopes per cell was determined. The calculated numbers were...
Hence, we set out to investigate immunoproteasomes as determinants of epitope hierarchy in the LCMV system. Our finding that IFN-γ treatment of MC57 cells resulted in enhanced gp33 presentation, whereas gp276 presentation was reduced (Fig. 1), inspired us to perform the experiments described in this work. An in vivo correlate to this finding has recently been reported by Rodriguez et al. (43), who showed that gp276-specific CTLs are much more prominent in IFN-γ-deficient mice, but the gp33-specific CTL response was improved in these mice as well. Another interesting phenomenon was reported by Butz and Bevan (44). They noted that when CTLs from LCMV-infected C57BL/6 mice were weekly restimulated in vitro by LCMV-infected MC57 cells, gp276-specific CTLs outgrew gp33- and NP396-specific cells within 3 wk. However, when the restimulation was performed with the dendritic cell line JawsII, gp276-specific CTLs waned, and gp33- as well as NP396-specific CTLs predominated. Given that IFN-γ stimulation leads to an almost complete replacement of constitutive proteasomes by immunoproteasomes in mouse fibroblasts within 3 days and that dendritic cells constitutively express higher amounts of immunoproteasomes than fibroblasts, we hypothesized that immunoproteasomes may be responsible for both phenomena by down-regulating gp276 peptide presentation. This hypothesis turned out to be correct, as we have shown by two independent approaches. First, we demonstrated that the overexpression of the active site subunits of immunoproteasomes LMP2, LMP7, and MECL-1 in triple transfectants caused a 2- to 4-fold down-regulation of gp276 presentation in T cell hybridoma lacZ assays (Fig. 2, A and C). Second, we showed that LCMV-infected peritoneal macrophages from LMP7−/− mice and to a minor extent from LMP2−/− were better stimulators of gp276-specific T cell hybridomas than C57BL/6 wild-type macrophages. LMP2- and LMP7-overexpressing cells indicated that mostly LMP2 is responsible for the down-regulation of gp276 in LMP2, LMP7, and MECL-1 triple transfectant (Fig. 2C). Comparing the fragmentation of a gp276-containing polypeptide by constitutive proteasomes and immunoproteasomes in vitro suggests that immunoproteasomes produce less gp276 precursors and destroy the gp276 epitope more frequently than constitutive proteasomes through cleavages within the epitope (Fig. 6).

Taken together, it appears that the expression of LMP2 and LMP7 negatively affects the generation of the gp276 epitope. It is, however, not possible to assign this effect to one of the subunits exclusively because their incorporation into the proteasome is to some extent interdependent. We have analyzed the subunit composition of 20S proteasomes purified from livers of LCMV-infected LMP2−/− and LMP7−/− as well as C57BL/6 wild-type mice on Comassie-stained two-dimensional gels and found that LMP7 incorporation fully occurs in LMP2−/− mice in accordance with previous data (45–47). However, because the incorporation of the subunit MECL-1 barely occurs when LMP2 is missing, the effects observed in LMP2−/− mice could also be caused by a lack of MECL-1. In contrast, we found that the incorporation of LMP2 and MECL-1 in livers of LCMV-infected LMP7−/− mice occurs only to an extent of ∼50%, which means that the more prominent enhancement of gp276 presentation in LMP7-deficient macrophages may at least in part be attributed to a reduction in LMP2 and MECL-1 incorporation (data not shown).

One consequence of our finding is that the number of 92 gp276 epitopes that Gallimore et al. (11) calculated to be presented by a single LCMV-infected MC57 cell will probably be much lower in cells containing immunoproteasomes, which almost completely replace constitutive proteasomes during LCMV infection in vivo. It is therefore not unexpected that the further down-regulation of gp276 epitopes by immunoproteasomes reduces gp276 epitope generation to an extent that puts a limit on the generation of gp276-specific CTLs in LCMV-infected mice. Nevertheless, the effect of immunoproteasomes on the generation of gp276-specific CTLs is not as prominent as we expected. It was not observed when LMP2−/− and LMP7−/− mice were infected with either the faster replicating WE strain or the slower replicating Armstrong strain of LCMV. However, when the mice were infected with rVVG2, which produces lower amounts of the LCMV glycoprotein, the impact of immunoproteasomes was nicely detectable (Fig. 4). We did not rule out, however, that in addition to the effect on gp276 presentation, the greater number of gp276-specific CTLs in LMP2−/− and LMP7−/− knockout mice is due to a difference in the repertoire of peripheral T cells in these mice, as has been demonstrated for the influenza epitope NP366–374 in LMP2−/− mice (25). Differences in Vβ10 usage of LCMV-infected LMP2- and LMP7-deficient mice might indicate that an altered T cell repertoire of gp276-specific T cells exists in these mice (Fig. 5).

Still another interesting phenomenon observed in mice persistently infected with LCMV may be linked to our results. In two different models of chronic LCMV infection, it was recently found that the gp276 epitope that is subdominant in acute infection becomes the immunodominant epitope in chronically infected mice, whereas gp33 and NP396 drop deeply in epitope hierarchy (48, 49). Both research groups report that in chronic infection, the LCMV-specific CTLs stop to produce TNF-α and IFN-γ, which are the cardinal inducers of immunoproteasomes. We propose that this reversion in epitope hierarchy is at least in part due to a drop in the cellular content of immunoproteasomes.

Acknowledgments

We thank Dr. Tomoki Chiba and Dr. John Monaco for the contribution of mice, and Katrin Schwarz for the performance of some initial experiments. Dr. Cornelia Kolb is acknowledged for supplying purified proteasomes, and Dr. Frank Mombourg for providing the H-2Dβ expression construct. We are grateful to Eugene N. Damoc for help with mass spectroscopy.

References

IMMUNOPROTEASOMES DOWN-REGULATE SUBDOMINANT T CELL EPITOPE

