Ligand Binding to Inhibitory Killer Cell Ig-Like Receptors Induce Colocalization with Src Homology Domain 2-Containing Protein Tyrosine Phosphatase 1 and Interruption of Ongoing Activation Signals

Yatin M. Vyas, Hina Maniar, Clay E. Lyddane, Michel Sadelain and Bo Dupont

J Immunol 2004; 173:1571-1578; doi: 10.4049/jimmunol.173.3.1571
http://www.jimmunol.org/content/173/3/1571

Why The JI?

- **Rapid Reviews! 30 days*** from submission to initial decision
- **No Triage!** Every submission reviewed by practicing scientists
- **Speedy Publication!** 4 weeks from acceptance to publication

*average

References This article cites 48 articles, 25 of which you can access for free at: http://www.jimmunol.org/content/173/3/1571.full#ref-list-1

Subscription Information about subscribing to _The Journal of Immunology_ is online at: http://jimmunol.org/subscription

Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts
Ligand Binding to Inhibitory Killer Cell Ig-Like Receptors Induce Co-localization with Src Homology Domain 2-Containing Protein Tyrosine Phosphatase 1 and Interruption of Ongoing Activation Signals

Yatin M. Vyas, Hina Maniar, Clay E. Lyddane, Michel Sadelain, and Bo Dupont

Interaction of NK cells with target cells leads to formation of an immunological synapse (IS) at the contact site. NK cells form two distinctly different IS, the inhibitory NK cell IS (NKIS) and the cytolytic NKIS. Cognate ligand binding is sufficient to induce clustering of inhibitory killer cell Ig-like receptors (KIR) and phosphorylation of both the receptor and the phosphatase Src homology domain 2-containing protein tyrosine phosphatase 1 (SHP-1). Recruitment and activation of SHP-1 by a signaling competent inhibitory receptor is essential early events for NK cell inhibition. We have in the present study used three-dimensional immunofluorescence microscopy to analyze distribution of inhibitory KIR, SHP-1, LFA-1, and lipid rafts within the NKIS during cytolytic and noncytolytic interactions. NK clones retrovirally transduced with the inhibitory KIR2DL3 gene fused to GFP demonstrate colocalization of KIR2DL3 with SHP-1 in the center of early inhibitory NKIS. Ligand binding translocates the receptor to the center of the IS where activation signals are accumulating and provides a docking site for SHP-1. IS and rafts cluster in the center of early inhibitory NKIS and late cytolytic NKIS, and whereas rafts continue to increase in size in cytolytic conjugates, they are rapidly dissolved in inhibitory conjugates. Furthermore, rafts are essential only for cytolytic, not for inhibitory, outcome. These results indicate that the outcome of NK cell-target cell interactions is dictated by early quantitative differences in cytolytic activating and inhibitory signals. The Journal of Immunology, 2004, 173: 1571–1578.
LOCATION OF KIR MOLECULES IN NK IMMUNE SYNPASE

provides a structural framework for regulation of NK cell function. The plasma membrane has specialized cholesterol- and GM1-containing subdomains known as lipid rafts or glycolipid-enriched microdomains. Rafts, which are also important for TCR- and BCR-mediated signaling (21, 22), polarize to the NK-target cell contact site during cytolytic interactions (13, 23). Many signaling molecules become recruited to the rafts, which are constitutively enriched in glycosylphosphatidylinositol-anchored molecules such as linker for activation of T cells and the Src kinase, Lck (24–26). In contrast, the membrane-associated fractions of Src homology domain 2-containing protein tyrosine phosphatase 1 (SHIP-1) are excluded from the rafts. Furthermore, targeting of SHP-1 to rafts profoundly inhibits TCR-mediated activation (27). All inhibitory NK receptors mediate their inhibitory function by recruitment and activation of cytoplasmic tyrosine kinases to the Itam motif within the cytoplasmic domain of the receptor (10, 28, 29), and inhibitory receptors accumulate in the contact area with target cells (11, 30).

It has recently been shown that cognate ligand binding is sufficient to induce clustering of inhibitory KIR and phosphorylation of both the receptor and the phosphatase SHP-1. These events are not dependent on ICAM-1/LFA-1-mediated adhesion and actin polymerization, but require Zn²⁺ and Src kinase activity (31). Signaling-incompetent inhibitory KIR maintain the ability to induce clustering of cognate HLA ligand at the contact site, but do not inhibit raft polarization (13) or actin polymerization (11).

Recruitment and activation of SHP-1 and SHP-2 by a signaling competent inhibitory receptor are essential early events for initiation of the inhibitory signaling pathways (32–34). This results in inhibition of a multitude of downstream processes, including inhibition of raft polarization and aggregation in the central supramolecular activation cluster (cSMAC), F-actin organization, and rearrangement of actin cytoskeleton with translocation of microtubule-organizing center (MTOC) to the area of target cell contact. Up-regulation of LFA-1-mediated cell adhesion and induction of NK effector functions are also inhibited.

It has previously been demonstrated that the location of SHP-1 within the NKIS, as early as 1 min into conjugation, discriminates cytolytic from noncytolytic NK cell interactions with target cells. SHP-1, at this early time point, aggregates in the peripheral supramolecular activation cluster (pSMAC) in cytolytic conjugates, whereas in the noncytolytic conjugates, SHP-1 clusters in the central supramolecular inhibition cluster (cSMIC) (14). Other studies have shown that a mature cytolytic immune synapse is formed with a peripheral talin collar surrounding a central zone that is compartmentalized into one area where granule exocytosis occurs and another where the signaling molecules are concentrated (17, 18). Furthermore, analysis of the IS between T cell and APC indicates that the cSMAC serves the function of enhancing receptor triggering and receptor degradation. This results in an intense, but self-limiting, activation (19). We therefore hypothesized that NK interactions with a susceptible target cell would form a cytolytic IS that would rapidly accumulate signaling molecules and clustered rafts in the cSMAC. During inhibitory interactions we would expect the inhibitory receptors to segregate in the cSMIC and form a platform for recruitment and accumulation of the phosphatases SHP-1 and SHP-2.

We have in the present study used three-dimensional (3D) immunofluorescence microscopy to quantitatively analyze distribution of inhibitory KIR, SHP-1, LFA-1, and lipid rafts within the NKIS during cytolytic and noncytolytic interactions. Human NK clones retrovirally transduced with the inhibitory KIR2DL3 gene fused to GFP were applied. Our analysis demonstrates colocalization of the inhibitory KIR with SHP-1 in the center of inhibitory NKIS. This finding is consistent with the hypothesis that the movement of the receptor into the central area of the IS dictates the inhibitory outcome by providing the activated phosphatase in the environment where concomitant activation signals are building up. Our results also support the hypothesis that the outcome of NK cell-target cell interactions is controlled by quantitative differences in cumulative activating and inhibitory signals.

Materials and Methods

Cells

NK cell clones were generated and maintained from freshly isolated PBMC of healthy donors homozygous for HLA-Cw*0304 as previously described (12, 14). CD56+ CD3- GL183 EB6 DX9 CD94 NK cell clones were used for retroviral infection with KIR2DL3-GFP fusion protein. 2DL3-GFP-transduced and untransduced NK clones were used for conjugation assays with target cells such as 721.221 (class I-negative EBV-BLCL), 721.221-Cw*0401 (self allele transfectant), or 721.221-Cw*0304 cells (self allele transfectant) as previously described (12, 14).

Retroviral infection of primary NK cells

DNA encoding KIR2DL3 and enriched GFP (EGFP) was amplified using PCR and subcloned into NeoI and BamHI sites of a variant of the pSFG vector. This vector contains the myeloproliferative sarcoma virus long terminal repeat (35). The KIR2DL3-EGFP fusion gene was constructed with EGFP fused at the C terminus cytoplasmic domain of KIR2DL3. KIR2DL3 was amplified by PCR using the forward N-terminal primer 5’-ACGGATCCGGGCTCAGCATT containing the NeoI site and at the reverse C-terminus primer 3’-ACGGGATCCGGGCTCAGCATT containing the BamHI site, respectively. This fragment was cleaved and inserted in the pSFG vector at the NeoI and BamHI site. This plasmid was sequenced and again cut with BamHI enzyme. EGFP was amplified with the forward N-terminal primer 5’-ACGGGATCCCTACTTACCTGCAGTTC containing the BamHI site and with the reverse C-terminus primer 3’-ACGGGATCCCTACTTACCTGCAGTTC containing the BamHI site, respectively. This fragment was then inserted at the BamHI site of the pSFG vector with the KIR2DL3 gene. The plasmid was sequenced to check the orientation of EGFP. This KIR2DL3-EGFP fusion gene containing pSFG plasmid DNA was transfected into the H29 packaging cell line using the calcium phosphate method as previously described (36). Vesicular stomatitis virus G protein pseudotyped retroviral particles were used to infect the PG13 packaging cell line, creating high titer recombinant amphotropic viros pseudotyped with the gibbon ape leukemia virus envelope (37). The virus supernatants were used to infect NK cell clones in the presence of retinoic acid (Takara, Shuzo, Japan). The plates were coated with retinonectin (10 µg/mL) for 2 h at room temperature (36). Viral supernatants were added to the NK cell clones growing in retinoic acid-coated plates. The transduction efficiency was 5–20%. Both KIR2DL3-EGFP-transduced and untransduced cells were used for conjugation assays.

Antibodies

Primary.

NK cell clones were characterized with anti-KIR2DL1 (DX9), anti-KIR2DL3/2/3/2/DS22/2/DS3 (GL183), anti-KIR2DL1/2/DS1 (EB6), and anti-human CD94 mAbs (Immunotech, Marseilles, France). Anti-CD56 and anti-CD3 were purchased from BD Biosciences (San Jose, CA). The anti-CD1 mAb, DX17 (IgG1), was a gift from Dr. J. Phillips,直销商 Research Institute, Palo Alto, CA). Mouse monoclonal anti-human HLA class I mAb, DX17 (IgG1), was a gift from Dr. J. Phillips, DNAX Research Institute, Palo Alto, CA). Mouse monoclonal anti-human α-tubulin (identifies tubules and MTOC) was purchased from Amersham Biosciences (Piscataway, NJ). TRITC-conjugated cholera toxin β subunit (CTX; List Biological Laboratories, Campbell, CA) was used to label lipid raft ganglioside GM1. Primary Abs were titrated for optimal imaging as previously described (14). TRITC-CTX was titrated to optimize imaging of NK cells, and a dilution of 1/50, which predominantly stained the NK cell rafts, but not the B cell rafts, was used in the experiments. At a 1/50 dilution of TRITC-CTX, eight of 10 NK-target cell conjugates demonstrated staining only of the NK cell rafts, and only those conjugates with minimal to no staining of the target cell rafts were included in the analysis.

Secondary.

Affinity-purified second Abs and species-absorbed conjugates (FITC, Cy3, and Cy5) for multiple labeling were purchased from Chemicon International.
Cholesterol depletion of lipid rafts

For perturbation of rafts, NK cells were treated with different dilutions of methyl-β-cyclodextrin (MβCD; Sigma-Aldrich, St. Louis, MO) in RPMI 1640 medium at 37°C for a period ranging from 5 min to 1 h (38). Treatment of NK cells with 2.5 mM MβCD for 15 min was used for subsequent experiments. At this concentration and duration of treatment, NK cell viability was unaffected (80–85% viable) as determined by trypan blue dye exclusion. Furthermore, NK cell morphology and staining distribution of rafts analyzed by digital immunofluorescence microscopy showed healthy- looking NK cells with typical punctate staining suggestive of adequate cholesterol depletion at this concentration and duration of MβCD treatment. Higher concentrations of MβCD or longer incubation time led to <25% viability and distorted morphology of NK cells.

Conjugation assay and immunofluorescent cell imaging

NK cell-target cell conjugates were immunofluorescently labeled and analyzed after fixing at 1 and 10 min as previously described (12, 14). In all experiments digital imaging system with a Zeiss Axiovert 200M inverted microscope (Intelligent Imaging Innovations, Denver, CO) was used. Images were obtained both in two-dimension (2D; x- and y-axes) and three-dimension (3D; x-, y- and z-axes) (12, 14). Quantitative analysis of the entire contact area as well as the peripheral and central subdomains of the contact area was performed using the segmentation and statistics capabilities of SlideBook software (Intelligent Imaging Innovations). Sixty to 70 serial optical sections of 0.2 μm thickness were acquired for each label. The digital recorded data were then deconvolved using Constrained Iterative (3D) Deconvolution algorithm with SlideBook software. The relative enrichment, which is the fluorescence per unit volume at the contact site divided by the fluorescence per unit volume of the entire cell, was calculated for each of the molecules studied as previously described (14). Wilcoxon’s nonparametric two-sample test was used to determine the p values.

Results

Transduced inhibitory KIR molecules are functional and impart inhibitory specificity for NK cells interacting with target bearing the cognate HLA ligand

The role of the inhibitory KIR2DL3 (2DL3) receptor in the formation and maintenance of NKIS was studied in well-characterized human NK clones, which were retrovirally transduced with 2DL3-GFP fusion construct. Approximately 5–20% of NK cells expressed the transduced receptor (Fig. 1a, left panel). The transduced 2DL3-GFP receptor in the majority of NK cells was located both on the cell surface as well as in the cytoplasm predominantly around the MTOC (Fig. 1a, bottom panel). Such subcellular distribution has also been observed for other fluorescence-tagged transduced receptors (39). To test the function of 2DL3-GFP receptor, we selected NK clones that constitutively lacked expression of 2DL3, as determined by mAb GL183, but expressed the transduced 2DL3-GFP receptor (Fig. 1a, top right panel). Both 2DL3-positive and 2DL3-negative clones were tested for in vitro cytotoxicity against target cells lacking HLA class I molecules (721.221), and target cells expressing only the cognate ligand HLA-Cw*0304 (721.221-Cw*0304) in the presence or the absence of anti-HLA class I (mAb DX17) and anti-2DL3 (mAb GL183) Abs. 2DL3-negative clones were cytotoxic to both targets and the cytotoxicity was not affected by either mAbs (Fig. 1b, top panel). 2DL3-positive clones were inhibited by 721.221-Cw*0304, and the inhibition was reversed by either of the mAbs (Fig. 1b, bottom panel). The specificity of HLA-Cw molecules in inhibiting 2DL3-positive clones was further demonstrated in imaging studies. In this study a characteristic cytolytic NKIS with a cSMAC containing Syk kinase and lysosomes surrounded by talin in the periphery (pSMAC) was observed for 2DL3-negative NK cell conjugates with either 721.221-Cw*0304 or 721.221-Cw*0401 target cells (Fig. 1c, top two panels). This molecular configuration in the NKIS, obtained at 10 min of conjugate formation, is characteristic of a cytolytic interaction as previously described (12).

When the 2DL3-positive clones were tested with the 721.221-Cw*0304 target cell we observed an inert NKIS at 10 min of conjugate formation. The lysosomes and the Syk kinase did not polarize toward the contact area (2D images), and the contact area had even distribution of 2DL3 molecules (3D image; Fig. 1c, bottom panel, top three images), which is consistent with a mature inhibitory NKIS. In contrast, a cytolytic NKIS was observed only in conjugates between 2DL3-positive clones and the 721.221-Cw*0401 target, which does not express the inhibitory HLA ligand for 2DL3 (Fig. 1c, bottom panel, bottom three images). In this study the lysosomes and Syk were polarized toward the contact area (2D image), and both were located in the cSMAC (3D image). These studies demonstrate that 2DL3-negative NK clones gain inhibitory ligand specificity for Cw*0304 after retroviral transfer of the GFP-tagged 2DL3 receptor.
Location of 2DL3, SHP-1, and rafts in the early and mature inhibitory and cytolytic NKIS

Inhibitory and cytolytic NK cell conjugates were analyzed at 1 min (i.e., early conjugates) and 10 min (i.e., mature conjugates) after mixing with the target cells (Fig. 2). Analysis included localization in the NKIS of 2DL3-GFP, rafts, SHP-1, and LFA-1.

Inhibitory NKIS. The majority of early inhibitory NKIS demonstrates accumulation of 2DL3 in the cSMIC along with a fraction...
Table I. Quantitation of the molecular enrichment within the early and mature cytolytic and noncytolytic immune synapses

<table>
<thead>
<tr>
<th>Noncytolytic Conjugates (Target: T21-Cw0304)</th>
<th>1 min</th>
<th>10 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytolytic Conjugates (Target: 721.221)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHP-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.41 ± 0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LFA-1</td>
<td>1.14 ± 0.15</td>
<td>0.11 ± 0.05</td>
</tr>
<tr>
<td>0.05 ± 0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHP-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.14 ± 0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LFA-1</td>
<td>0.97 ± 0.06</td>
<td>0.07 ± 0.03</td>
</tr>
<tr>
<td>0.06 ± 0.03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes
- *Degree of accumulation* (i.e., relative enrichment) of 2DL3, SHP-1, rafts, and LFA-1 within the central and peripheral subdomains of early and mature cytolytic and inhibitory NKIS was determined. Enrichment of the molecules was determined for the total contact area (i.e., the immune synapse), the peripheral IS (i.e., pSMAC/pSMIC), and the central IS (i.e., cSMAC/cSMAC; Table I).
- **Inhibitory NKIS.** The early (1 min) inhibitory NKIS, 2DL3, SHP-1, and rafts were significantly more enriched in the pSMAC (p < 0.003). Although the degree of enrichment of 2DL3, rafts, and LFA-1 in the total synaptic areas was only slightly higher in the early noncytolytic NKIS compared with baseline distribution, these values did not reach statistical significance (p > 0.10). Therefore, enrichment of 2DL3 and rafts in the
cSMIC and that of LFA-1 in the pSMIC suggested rapid redistribution into distinct microcompartments of the IS rather than additional recruitment of these molecules/structures into the evolving IS.

The analysis demonstrates that within 1 min into a noncytolytic interaction, ~27 ± 4% of total inhibitory 2DL3 molecules and 63 ± 7% of the total NK cell SHP-1 were recruited to the center of the inhibitory NKIS. In contrast, the majority of mature (10 min) inhibitory NKIS did not show any additional degree of accumulation within the pSMIC or the cSMIC that was above the baseline for 2DL3, SHP-1, or rafts. LFA-1, which in the early NKIS was enriched only in the pSMIC, was redistributed evenly throughout the IS, with no additional LFA-1 being recruited. In a minority of the late inhibitory NKIS, the degree of accumulation of 2DL3 and SHP-1 was similar to that seen in the early inhibitory NKIS. These noncytolytic conjugates may represent new secondary conjugates formed with NK cells that have recently deconjugated from a previous target cell interaction. The uniform enrichment of both LFA-1 and rafts could reflect prolonged membrane changes that have persisted after initial conjugation with a previous target cell.

Cytolytic NKIS. The quantitative analysis of early cytolytic NKIS demonstrated the lack of additional recruitment or redistribution of 2DL3 within the NKIS. In fact, the degree of accumulation of 2DL3 in the IS, pSMAC, or cSMAC was not statistically different between early vs mature cytolytic NKIS. In contrast, the amounts of LFA-1 and SHP-1 enriched in the pSMAC were significantly higher than those in the cSMAC, whereas rafts, although having begun to accumulate in the IS, did not at this early time show any preferential accumulation in the pSMAC or cSMAC. In contrast, the mature cytolytic conjugates showed dramatic enrichment of SHP-1 and rafts in the cSMAC and of LFA-1 in the pSMAC. Therefore, temporal differences in the location and the degree of accumulation of proteins within the microcompartments of the IS distinguish a cytolytic from an inhibitory NK cell interaction.

Perturbation of rafts impacts upon cytolytic, but not inhibitory, NK cell signaling

To analyze the role of rafts in cytolytic and inhibitory signaling during NK cell-target cell interaction, we analyzed NK cell conjugates with either .221-Cw*0304 cells (i.e., inhibitory interaction) or 721.221 (i.e., cytolytic interaction) in NK cells pretreated with MβCD. The NK cells used in these studies were GL183-positive NK clones that displayed cytotoxicity against 721.221 and were noncytotoxic against 721.221-Cw*0304, as previously described (12, 14). NK conjugates with .221-Cw*0304 were analyzed at 1 min, and conjugates with 721.221 were analyzed at 10 min, because at these time points both SHP-1 and rafts were in the central NKIS during inhibitory and cytolytic interactions, respectively (Fig. 2). At 1 min, SHP-1 polarized to the contact area with .221-Cw*0304 in MβCD-treated NK cells (2D image) and was localized in the cSMIC enclosed by a ring of talin (3D image; Fig. 3a, right panel), similar to the observations made in NK cells not treated with MβCD (compare Fig. 3a and Fig. 2a and b). Furthermore, 2DL3-positive, MβCD-treated and untreated NK cells remained noncytotoxic against 721.221-Cw*0304 target cells (Fig. 3b, right panel). At 10 min, the analysis of cytolytic conjugates between MβCD-treated NK cells and 721.221 cells demonstrated lack of polarization of SHP-1 and multifocal aggregation of membrane-bound SHP-1 in the NKIS. This observation was in contrast to untreated NK cell conjugates with 721.221, where SHP-1 was polarized to the synapse at 10 min (2D image) and segregated as a unifocal cluster in the cytolytic NKIS (3D image; compare Fig. 2a, cytoytic panel, and Fig. 3a, left panel). Furthermore, MβCD-treated NK cells became noncytotoxic against 721.221 target cells (Fig. 3b, left panel). These studies suggest that raft clustering is not essential for KIR-mediated inhibition to occur, but is required for NK cell cytolytic responses. Most importantly, the translocation of cytoplasmic SHP-1 to the cSMIC in the inhibitory NKIS occurs in the absence of raft clustering.

Discussion

In this study we demonstrate the movements of the inhibitory NK receptor 2DL3 in the NKIS during NK cell interaction with susceptible target cells lacking cognate ligand for 2DL3 and with target cells expressing the cognate ligand, HLA-Cw*0304. The 2DL3 receptor was visualized in the NKIS by retroviral transduction of KIR-negative NK clones with a fusion gene where GFP was linked to the cytoplasmic tail of 2DL3. NK clones gained ligand specificity for cognate HLA-Cw Ags with asparagine in

FIGURE 3. The effect of raft perturbation on NK cell function. a. 2D and 3D fluorescent images of GL183 CD+ and NKp46− NK cell conjugates with either 721.221 (left panel) or .221-Cw*0304 (right panel) dual labeled with indicated molecules (in respective colors) and analyzed at indicated time points is shown. Representative conjugates from NK cells treated with MβCD are shown. The NK cell is the top cell in the conjugates shown in each image. 3D images represent the NKIS visualized as projection in the x- and z-axes. b. Bar graph (±SEM) representing the cytotoxic profile of MβCD-treated and untreated NK cells against 721.221 (left panel) and .221-Cw*0304 (right panel) is shown for the indicated E:T cell ratio. Data are representative of at least 10–12 NK clones. The p values comparing the two cytotoxicity profiles against 721.221 target cells, as determined by Wilcoxon’s nonparametric statistical analysis, is shown for each E:T cell ratio.
The Journal of Immunology

1577

codon 80, e.g., HLA-Cw*03, whereas NK clones were not inhibited by HLA-Cw ligands with lysine in codon 80, e.g., HLA-Cw*04. We demonstrate by digital immunofluorescence analysis that 2DL3 rapidly accumulates in the center of the inhibitory NKIS during interactions with target cells expressing cognate HLA class I ligand. In contrast, target cells lacking the cognate HLA class I ligand fail to aggregate 2DL3 in any specific subdomains of the cytolytic NKIS. Furthermore, 2DL3 rapidly (within 1 min) colocalizes with SHP-1 in the cSMIC of the inhibitory NKIS. It is also demonstrated that early raft formation occurs during the course of the interaction aggregate as clustered rafts in both the cSMIC and cSMAC. The quantitative analysis of relative enrichment demonstrates minimal additional recruitment of rafts into the early inhibitory NKIS from other regions of the NK cell surface. The raft redistribution, i.e., translocation of rafts from the periphery of the synapse into the center, accounts for the enrichment in early inhibitory NKIS, and this finding is consistent with previous studies of Th cell IS (40). In contrast, during cytolytic interactions, recruitment of additional rafts to the mature NKIS does occur. By 10 min of conjugate formation, large clustered rafts are observed in cytolytic NKIS, whereas the inhibitory NKIS at this time point has an inert configuration, except for a few NK cells engaged in formation of new conjugates with other target cells. The observation that aggregation of rafts occurs during the early interactions between NK cell and susceptible target cells as well as with target cells expressing ligands for inhibitory NK receptors demonstrates that early activation signals are also occurring during inhibitory interactions; however, progression into a full-blown cytolytic response is prevented by the early recruitment and activation of SHP-1 into the cSMIC. We also observe rapid formation of a peripheral ring of LFA-1 in pSMIC and pSMAC. This recruitment of LFA-1 becomes further enhanced only during cytolytic interactions, but remains at a low level throughout inhibitory interactions. These findings support the concept that early activation signals during inhibitory interactions are rapidly interrupted and never reach the levels required for strong adhesive binding between LFA-1 and ICAM-1. The quantitative analysis of relative enrichments of fluorescence confirms the impressions gained from visual inspection of the inhibitory and cytolytic NKIS. It is evident that the differential location of SHP-1 at 1 min of conjugate formation clearly defines the subsequent outcome of the NK cell-target cell interactions. The present studies also suggest that the inhibition of NK cytotoxicity induced by inhibitory KIR interactions with cognate ligand may not be caused by translocation of SHP-1 into rafts, as MβCD-mediated raft perturbation did not lift the KIR-HLA inhibition. Although targeting of SHP-1 into rafts does inhibit CD3-induced activation in T cells (27), SHP-1, as shown in this study, is located in the cSMIC during the inhibitory interaction even when raft function is perturbed.

Therefore, early during noncytolytic interaction, the inhibitory receptor recruits SHP-1 into cSMIC and provides a scaffold for the active phosphatases in the central synaptic region where the activation complexes are beginning to accumulate. Rapid recruitment of SHP-1 results in deactivation of these complexes. In contrast, during early cytolytic interaction, SHP-1 is removed from the center of the NKIS and is only brought into the cSMAC at a later time point, thus allowing activation signals to propagate. The recruitment of SHP-1 into the cSMAC of the mature cytolytic NKIS has previously been reported (12) and is consistent with previous studies of the Th cell IS (41). These findings suggest that the location of the cytoplasmic phosphatases within the central microcompartment of the IS plays important roles in terminating activation signals and facilitating receptor recycling also in the NK cells (19, 42). Taken together, our studies support recent findings indicating that NK cells, in contrast to Ag-specific CTLs, undergo a series of checkpoints and gradual maturation steps before progression into cytolytic activity (43, 44). Such a requirement by NK cells for stepwise accumulation of activation signals and structural reorganization of the synapse would provide a window for inhibitory receptors in the presence of cognate ligand on the target to exert their function and provide protection against autoreactivity.

Our findings do not support the hypothesis that the inhibitory NKIS has a configuration that is dramatically different from the TCR/MHC-peptide IS. One earlier study indicated that LFA-1 was located in the center of the NKIS surrounded by inhibitory KIR/MHC class I, but these images were obtained at 20 min, which is a late time point where most of the NK cell-target cell interactions and associated signaling have been completed (11). We did, however, identify a minority of inhibitory conjugates (~20%) at 1 min where LFA-1 was located predominantly in the center of the NKIS. In these conjugates SHP-1 was not yet colocalized with 2DL3. This would suggest the formation of early conjugates dominated by adhesion and formed before recruitment and activation of SHP-1. The differences in the location of LFA-1 and inhibitory KIR within the early and mature inhibitory NKIS observed in the present study and the previous report (11) may be due to differences in the NK effector cells used. Although previous studies applied KIR-transduced tumor cell lines that require LFA-1 and CD28 for activation of the lytic response (45, 46), the present study analyzed primary NK clones propagated in IL-2, which do not depend on CD28-CD80/CD86 for their activation.

The recent finding that early dephosphorylation of Vav1 by SHP-1 is the primary pathway used by inhibitory receptors to block activation of NK cytotoxicity is consistent with our observations (33). These investigators suggested that an early, actin polymerization-independent dephosphorylation of Vav1 by SHP-1 blocks subsequent downstream activation signals. These studies together with the observation that NK cell activation requires multiple, cumulative activation signals, allowing inhibitory signals to terminate the activation signals (43, 44), are in agreement with our findings. NK cell activation, in our model, is dependent upon a sequential series of activation signals that occur when target cells lack ligands for inhibitory receptors. Raft aggregation depends upon protein kinase C-θ translocation and Vav1/Rac-induced actin-cytoskeleton reorganization (47, 48). In the presence of such ligands, activating signals are interrupted as long as the inhibitory signals are provided within the allowed finite time frame. Recent studies have demonstrated that cognate ligand for inhibitory KIRs expressed on insect cells can induce clustering of KIR and phosphorylation of KIR and SHP-1 (31). These studies did not address the concomitant signals provided by other receptor-ligand interactions occurring under more physiological conditions. Although ligand binding to inhibitory receptor is capable of inducing receptor phosphorylation and phosphatase recruitment and activation, there are concomitant activation signals that also contribute to these events. Due to the prolonged time required by NK cells to be activated relative to Ag-specific CTLs, all these activation signals are therefore interrupted, and NK cell activation does not occur when the cumulative activation signals fail to exceed the threshold defined by the sum of the inhibitory signals. Addition of activation signals provided by ligand binding to activating receptors such as NKG2D or natural cytotoxicity receptor (i.e., natural cytotoxicity receptors NKP46, NKP44, and NKP30) may override this inhibition (10, 49). The mechanism by which such additional signals change the balance between activation and inhibition and how this affects the formation of NKIS are currently under investigation.

Acknowledgments

We thank Dr. J. Phillips (DNA Research Institute, Palo Alto, CA) for anti-HLA class I mAb DX17, and Dr. Peter Parham (Stanford University, Palo Alto, CA) for BLCL 721.221+ Cw*0304 and 721.221+ Cw*0401 and Dr. Lloyd J. Old (Ludwig Institute for Cancer Research, New York Branch) for access to digital fluorescence microscope with SlideBook software.

References

