Follicular Dendritic Cells Produce IL-15 That Enhances Germinal Center B Cell Proliferation in Membrane-Bound Form

Chan-Sik Park, Sun-Ok Yoon, Richard J. Armitage and Yong Sung Choi

J Immunol 2004; 173:6676-6683; doi: 10.4049/jimmunol.173.11.6676
http://www.jimmunol.org/content/173/11/6676

References
This article cites 75 articles, 39 of which you can access for free at:
http://www.jimmunol.org/content/173/11/6676.full#ref-list-1

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Follicular Dendritic Cells Produce IL-15 That Enhances Germinal Center B Cell Proliferation in Membrane-Bound Form

Chan-Sik Park,* Sun-Ok Yoon,* Richard J. Armitage,2† and Yong Sung Choi 3*

Factors that control the survival and proliferation of Ag-stimulated B cells within the germinal center (GC) are crucial for humoral immune responses with high affinity Abs against infectious agents. The follicular dendritic cell (FDC) is known as a key cellular component of the GC microenvironment for GC-B cell survival and proliferation. In this study, we report that IL-15 is produced by human FDC in vivo and by an FDC cell line, FDC/HK cells, in vitro. IL-15 is captured by IL-15Rα on the surface of FDC/HK cells. The surface IL-15 is functionally active and augments GC-B cell proliferation. Because GC-B cells have the signal-transducing components (IL-2/15Rβγ), but not a receptor for binding of soluble IL-15 (IL-15Rα), IL-15 signaling is possibly transduced by transpresentation from FDCs to GC-B cells via cell-cell contact. Together, these results suggest that IL-15 from FDC, in membrane-bound form, plays an important role in supporting GC-B cell proliferation, proposing a new target for immune modulation as well as treatment of B cell tumors of GC origin.

1 Laboratory of Cellular Immunology, Ochsner Clinic Foundation, New Orleans, LA 70121; and 2Amgen, Seattle, WA 98119

Received for publication June 23, 2004. Accepted for publication September 27, 2004.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 This research was supported by National Institutes of Health Grant CA092126.

2 Financial disclosure: R.J.A. is an employee of and a shareholder in Amgen.

3 Address correspondence and reprint requests to Dr. Yong Sung Choi, Laboratory of Cellular Immunology, Ochsner Clinic Foundation, 1516 Jefferson Highway, New Orleans, LA 70121. E-mail address: ychoi@ochsner.org

4 Abbreviations used in this paper: GC, germinal center; DAPI, 4’,6’-diamidino-2-phenylindole; FDC, follicular dendritic cell; hIL, human IL; MFI, mean fluorescent intensity; L, ligand.
Materials and Methods
Antibodies
Anti-IL-15 mAb (M110, M111, and M112: IgG1) were generated as follows: BALB/c mice were boosted twice with 10 μg of human (h) IL-15-FLAG in RIBI adjuvant (Ribi, Hamilton, MT). Three months after the last boost, one animal was boosted i.v. with 3 μg of hIL-15 in PBS. Three days later, the spleen was removed and fused with Ag8.653 using 50% polyethylene glycol (Sigma-Aldrich). Stably transfected hybridomas were cloned into 96-well plates in DMEM containing hypoxanthine/aminopterin/thymidine supplement (Sigma-Aldrich). Hybridoma supernatants were screened by Ab capture assay. Briefly, 96-well plates were coated with 10 μg/ml goat anti-mouse Ig overnight. After blocking with 3% BSA, 50 μl of cell supernatant was added to each well. After 1 h, plates were washed with PBS with 0.05% Tween 20. incubated hIL-15 was added to plates at a predetermined concentration, for 3 h. After washing, plates were then exposed to phosphor imager plates for 3 h. Positive cells were cloned out twice, using similar screen to detect positives. A CTL-2 cell proliferation assay was also performed to determine IL-15-blocking activity. Specificity of these mAbs has been tested and used previously (U.S. patent 5,795,966).

Cytokines and reagents
The culture medium used was IMDM (Irvine Scientific, Santa Ana, CA) and RPMI 1640 (Sigma-Aldrich) supplemented with 10% FCS (Invitrogen Life Technologies, Grand Island, NY), 2 mM glutamine, 100 U/ml penicillin G, and 100 μg/ml streptomycin (Irvine Scientific). Cytokines used were IL-2 (Hoffmann-LaRoche, Nutley, NJ) and IL-4 (a generous gift from Schering-Plough). Recombinant human IL-15 (Amgen, CA) and IL-15 mAb were prepared, as described previously (32, 42, 53). DRC-1 mAb (mouse IgG1) was purchased from DakoCytomation (Carpinteria, CA). Alexa 594-conjugated goat anti-mouse Ab was purchased from Molecular Probes (Eugene, OR). FITC-conjugated donkey anti-goat Ab was purchased from Jackson ImmunoResearch Laboratories (West Grove, PA).

Immunofluorescence staining of FDC clusters
Human tonsillar FDCs were isolated, as described previously (54). Isolated cells were cytospinned on glass slides at 700 rpm for 5 min (Cytospin 2; ThermoShandon, Pittsburgh, PA). The cytospin slides were fixed in cold acetone (–20°C) for 5 min and stored at –70°C until required. Slides were hydrated with PBS for 10 min at room temperature, then incubated with blocking solution (DakoCytomation) for 1 h at 25°C in a humidified chamber. Slides were stained with optimal amount of goat anti-IL-15 Ab or control goat Ig overnight at 4°C. Then the slides were washed three times and incubated with FITC-conjugated anti-goat Ig for 1 h at room temperature. For staining, DRC-1 mAb (see Fig. 1, A and C) or PE-conjugated anti-CD20 mAb (Fig. 1B) was added together with primary Abs. DRC-1 staining was visualized by secondary Alexa-594-conjugated anti-mouse Ab staining. For single FDC staining (Fig. 1D), slides were incubated in 4',6-diamidino-2-phenylindole (DAPI) solution (Molecular Probes) for nuclear counter staining, then stained with mouse anti-IL-15 or control Ab, followed by FITC-conjugated goat anti-mouse Ab. Slides were washed and mounted with anti-fade fluorescent mounting medium (Molecular Probes). Images were collected on a deconvolution microscope (Axiovert 200M; Carl Zeiss Microimaging, Thornwood, NY). Images were processed using the slidebook software (version 1.6.587; Intelligent Imaging Innovations, Denver, CO) and Adobe Photoshop 7.0 (Adobe Systems, San Jose, CA).

Flow cytometric analysis
FDC/HK cells were cultured in 10% FCS RPMI 1640 medium, as described previously (54). FDC/HK cells of passages 4–9 were used for the experiments. For FACS analysis, FDC/HK cells were collected with enzyme-free cell dissociation solution (Specialty Media, Philadelphia, PA). All FACS staining for surface IL-15 detection was performed with modification to previously described procedures for amplification (6). Briefly, cells were washed in cold FACS buffer (0.05% FCS, 0.01% NaN3, in PBS) and subsequently incubated with the appropriate concentration of anti-IL-15 mAb (B247) for 15 min at 4°C. After washing with cold FACS buffer, the amplification procedures using Flow-Amp kit (Flow-Amp Systems, Cleveland, OH) were followed, according to the manufacturer’s instruction. For competition study, anti-IL-15 Ab was incubated with 300 ng/ml rIL-15 for 30 min at 4°C before FACS staining. Samples were analyzed with FACS-Calibur (BD Biosciences, San Jose, CA) and CellQuest-Pro programs. Specific mean fluorescence intensity (MFI) was obtained by subtraction of fluorescence value from that of corresponding control.

Acid stripping and binding of IL-15
Acid stripping of previously bound IL-15 was performed, as described earlier (40, 48). Briefly, FDC/HK cells were washed twice with cold PBS, and then incubated with glycine buffer (25 mM glycine, 150 mM NaCl, pH 3) for 10 min at 4°C. Cells were then collected and washed twice with cold PBS and subjected to FACS staining. For binding experiment, FDC/HK or GC/B cells were collected and washed with cold PBS twice, and then incubated with a saturating dose of IL-15 (100 ng/ml) for 30 min at 4°C, washed with cold PBS, and then stained for FACS analysis.

CTLL-2 cell assay
CTLL-2 cells (American Type Culture Collection, Manassas, VA) were maintained in RPMI 1640 medium containing 10% FCS, IL-2 (30 U/ml), and 2-ME (5 × 10^-3 M; Sigma-Aldrich). Serially diluted numbers of FDC/HK cells (from 2 × 10^5 cells/well to none/well) were cultured in 96-well plates for 1 day in 5% CO2 incubator. The plates were then washed and fixed in 1% paraformaldehyde in PBS for 1 h at 4°C, followed by extensive washing in cold PBS. CTLL-2 cells (5 × 10^3 cells/well) in maintaining medium were added in triplicate to the 96-well plates coated with fixed FDC/HK cells and cultured with anti-IL-15 mAb or isotype control mAb. After 20 h of culture, cells were pulsed with 0.5 μCi of [3H]Thydr (20 Ci/mM; PerkinElmer Life Sciences, Boston, MA) for additional 4 h. The cultures were harvested onto glass fiber filter, and [3H]Thydr incorporation was measured by a liquid scintillation counter (Rackbeta; LKB Instruments, Houston, TX). Results are expressed as the mean cpm ± SEM of triplicate cultures.

RT-PCR
To examine the expression of mRNA for IL-15Rα, IL-2Rγ, IL-2Rβ, and IL-2Ry, total RNA was extracted from cells using the RNeasy kit (Qiagen, Valencia, CA). One-microgram aliquot of RNA was transcribed using random oligo-dT and Moloney marine leukemia virus reverse transcriptase (Invitrogen Life Technologies). Complementary DNA was amplified in a 25-μl reaction mixture containing 200 μM each dNTP, 500 nM primers, and 2.5 U of Taq polymerase. Amplification of each cDNA sample was conducted under condition, as follows: denaturation at 94°C for 50 s, annealing at 57°C for 50 s, and extension at 72°C for 5 s. Human GAPDH was used to ensure equal sample loading. A mock PCR was performed to serve as a negative control. Amplified PCR products were separated on 1.5% agarose gel and visualized by ethidium bromide staining. Primers used are as follows: for IL-15Rα, 5'-GTCAAGAGCTCAGCTTGTAC-3' and 5'-CATAGGTGGTGAGAGCA-3'; for IL-2Rγ, 5'-AAGCTCTGCCACTCGGAACACAAC-3' and 5'-TGTACCGAGAAAACACAGG-3'; for IL-2Rβ, 5'-ACCTCTGAGCATGTCAGAC-3' and 5'-CTCTCCACGACTCTTATG-3'; for IL-2Rγ, 5'-CCAGAAGTGCAGCCACTATC-3' and 5'-TGGATTTGCTGCTGTTGCT-3'; and for GAPDH, 5'-CCCTCTCAAAATCAAGGCGG-3' and 5'-CGCCACAGTTCCTGGGAAGG-3'.

Preparation and culture of human tonsillar GC-B cells
GC-B cells were purified from tonsillar B cells by MACS (Miltenyi Biotec, Auburn, CA), as described previously (6). The purity was greater than 95%, as assessed by the expression of CD20 and CD38. GC-B cells (2 × 10^5 cells/well) were cultured in 24-well plates in the presence of irradiated FDC/HK cells (2 × 10^5 cells/well; 5000 rad), CD40L (100 ng/ml), IL-2 (30 U/ml), and IL-4 (50 U/ml). IL-2 was included to increase sensitivity, except for the experiment for Fig. 5B, because the overall recoveries of cultures were very low without IL-2 (6). For blocking experiment, anti-IL-15 or IL-2 neutral control mAb (of same Ig class, if not indicated) was added for 30 min before adding GC-B cells. Some of blocking and corre-
amplification method (Flow-Amp) to detect IL-15. As shown in a highly sensitive surface FACS-staining method using tyramine expression of IL-15, as reported previously (53–56). We used a sensitivity

IL-15 was present on the surface of FDC/HK cells bound to IL-15Rα

Because it was practically impossible to obtain a sufficient number of freshly isolated FDCs without contaminating B cells, we next investigated the production of IL-15 by primary FDC cell line, FDC/HK, which was shown to share many of FDC characteristics, including the capacity to support GC-B cell survival and proliferation (12, 23). We were not able to detect IL-15 in the culture supernatant of FDC/HK cells (2 × 10⁷ cells/ml) by ELISA (assay sensitivity ≥19 pg/ml; data not shown), so we explored the surface expression of IL-15, as reported previously (53–56). We used a highly sensitive surface FACS-staining method using tyramine amplification method (Flow-Amp) to detect IL-15. As shown in Fig. 2A, IL-15 was detected on FDC/HK cells, whereas GC-B cells were negative (Fig. 2A). These results are consistent with the previous immunofluorescence staining data on FDC-B cell clusters. The specific staining of IL-15 on FDC/HK was verified by competing with soluble IL-15. When anti-IL-15 mAb was preincubated with excess amount of IL-15, the staining of IL-15 on the surface of FDC/HK cells was completely reduced to that of isotype control. These results were reproduced in three separate experiments.

There are two conflicting explanations for the mechanisms of surface IL-15: one is the presence of an alternative membrane type IL-15 molecule (52), and another is through the rebinding of secreted IL-15 (40, 41). To explore the mechanism, we tried to remove IL-15 on the FDC/HK cell surface by acid treatment, as described previously (40). IL-15 was completely removed from the surface of FDC/HK cells after treatment with glycine buffer (pH 3.0) for 10 min on ice and then stained with specific Ab or isotype control Ab (Fig. 2C, inset). The specific staining of IL-15 on FDC/HK was verified by competition experiments were performed to confirm specificity by incubating specific mAb with IL-15 (300 ng) for 30 min on ice before staining cells (solid line). Acid stripping. FDC/HK cells were incubated in cold glycine buffer (pH 3.0) for 10 min on ice and then stained with specific Ab or isotype control Ab (acid treatment, bold line; no treatment, solid line; isotype control, broken line).

FIGURE 2. FDC/HK cells express IL-15 on their surface bound to IL-15Rα. A, Surface expression of IL-15 by FACS. Surface FACS staining with specific or control mAb was amplified with Flow-Amp kit (bold and broken line, respectively). Competition experiments were performed to confirm specificity by incubating specific mAb with IL-15 (300 ng) for 30 min on ice before staining cells (solid line). B, Disappearance of surface IL-15 after acid stripping. FDC/HK cells were incubated in cold glycine buffer (pH 3.0) for 10 min on ice and then stained with specific Ab or isotype control Ab (acid treatment, bold line; no treatment, solid line; isotype control, broken line). C, Expression of IL-15Rα mRNA in FDC/HK cells. RT-PCR for IL-15Rα and IL-2Rα (an internal control) was performed with the same amount of FDC/HK cell mRNA under the same conditions.

Results

IL-15 was produced by FDC, but not by B cells

To identify the cellular source of IL-15 in the GC, we examined in vivo expression of IL-15 by staining freshly isolated FDC-B cell clusters with specific Abs to IL-15 (Fig. 1).

FDC clusters were cellular aggregates consisting of a typical FDC with large cytoplasm and more than 10 B cells (29) (Fig. 1, A–C). IL-15 was expressed in the FDC clusters, suggesting the presence of IL-15 in vivo (Fig. 1, A and B). To determine the cellular source of IL-15 in FDC clusters, FDC-specific marker DRC-1 mAb or B cell-specific marker anti-CD20 mAb was costained with goat anti-IL-15 Ab, respectively (29, 55). Anti-IL-15 Ab (green) costained with DRC-1 mAb (red; costaining, yellow; Fig. 1A), but not with anti-CD20 mAb (red; Fig. 1B), suggesting that DRC-1-positive FDCs, not B cells, produce IL-15. The staining was specific for IL-15 because there was no costaining in samples costained with the goat control and DRC-1 Abs (Fig. 1C). Some FDCs (10–20%) were not clustered with B cells, but can be identified by their abundant cytoplasm and frequent double nuclei (16) (Fig. 1D). These single FDCs also expressed IL-15 as stained by a murine anti-IL-15 mAb (MAB247), confirming the above result. Similarly, there was no green staining, but only blue nuclear staining in samples stained with mouse control mAb and DAPI (Fig. 1D, inset).

FIGURE 1. IL-15 is expressed in human tonsillar FDCs, not in B cells. Cytospin preparations of human tonsillar FDC clusters were stained with goat polyclonal anti-IL-15 Ab (A and B, green), mouse anti-IL-15 mAb (D, green), and corresponding control Abs (C and D, inset, green). Slides were costained with DRC-1 mAb for FDCs (A and C, red), anti-CD20 mAb for B cells (B, red), and DAPI for nucleus (D, blue). Original magnification ×400.

Because it was practically impossible to obtain a sufficient number of freshly isolated FDCs without contaminating B cells, we next investigated the production of IL-15 by primary FDC cell line, FDC/HK, which was shown to share many of FDC characteristics, including the capacity to support GC-B cell survival and proliferation (12, 23). We were not able to detect IL-15 in the culture supernatant of FDC/HK cells (2 × 10⁷ cells/ml) by ELISA (assay sensitivity ≥19 pg/ml; data not shown), so we explored the surface expression of IL-15, as reported previously (53–56). We used a highly sensitive surface FACS-staining method using tyramine amplification method (Flow-Amp) to detect IL-15. As shown in a highly sensitive surface FACS-staining method using tyramine expression of IL-15, as reported previously (53–56). We used a
3.0) to the staining level with the control mAb (Fig. 2C). This result suggests rebinding of secreted IL-15 rather than an alternative membrane type protein.

Because IL-15Rα binds to IL-15 with high affinity (35), we examined the presence of IL-15Rα in FDC/HK cells. In RT-PCR experiments, the specific band for the IL-15Rα was amplified from the cDNA of FDC/HK cells as well as positive control plasmid, whereas for the IL-2 Rα was not amplified, which was included to serve as an internal negative control (Fig. 2C). This result indicates that FDC/HK cells express mRNA for IL-15Rα.

Membrane-bound IL-15 on the FDC/HK surface is biologically active

To examine the biological activity of surface-bound IL-15 on FDC/HK cells, the IL-2- and IL-15-dependent CTL-2 cell assay was used. Although soluble IL-15 was not detectable by ELISA, we fixed FDC/HK cells with 1% paraformaldehyde to exclude the false positive results by soluble IL-15. Incorporation of tritiated thymidine by CTL-2 cells increased in proportion to the number of fixed FDC/HK cells present in cultures (Fig. 3A). At the ratio of 4:1 of FDC/HK cells to responding CTL-2 cells, the value of cpm was almost 3 times higher than negative controls (2,000 to 7,500). The relatively higher background proliferation of CTLL-2 cells in control wells without fixed FDC/HK cells (7,500 cpm) can be attributed to suboptimal dose of IL-2 added to increase the sensitivity of the assay. The result is consistent with the previous report that the rebound IL-15 is functionally active on the cell surface (53–56). To examine the possible effect of soluble IL-15 released from the FDC/HK cells, the culture supernatant from the highest FDC/HK cell concentration (2 × 10⁴ cells/well) was added to the same culture. There was no significant difference in cpm values between cultures with control medium and with FDC/HK cell culture supernatant, indicating the absence of IL-15 in the culture supernatant, which is consistent with the ELISA results.

To confirm that the stimulatory effect on CTL-2 cells was mediated by IL-15, specific blocking mAb to IL-15 and isotype control mAb were added to the culture. As shown in Fig. 3B, the addition of anti-IL-15 mAb blocked completely the proliferation of CTL-2 cells enhanced by fixed FDC/HK cells, whereas the control mAb had no effect.

GC-B cells express receptor components for IL-15 signal transduction, but not for high affinity binding

Production of IL-15 by FDC implied that IL-15 possibly had a biologic function in the GC reaction, most likely on GC-B cells. We thus examined the expression profile of specific receptors required for IL-15 signaling in GC-B cells (Fig. 4A). The expression of IL-15Rα mRNA, a receptor component for high affinity binding, was virtually negligible in RT-PCR, showing a similar faint band to that of IL-2Rα in freshly isolated GC-B cells (a negative control). In contrast, expressions of IL-2Rβ and IL-2Rγ mRNAs, the major components of signal transduction, were evident in GC-B cells whether freshly isolated or cultured, suggesting the presence of signaling receptor components for IL-15 or IL-2 in GC-B cells both in vivo and in vitro.

The absence of IL-15Rα mRNA was also confirmed by the failure to detect IL-15Rα protein in FACS staining of GC-B cells (data not shown) and the lack of IL-15 binding (Fig. 4B). In contrast to FDC/HK cells that exhibited intense binding of IL-15, no significant binding of IL-15 was detected on the surface of GC-B cells after incubation with excess IL-15, demonstrating the absence of IL-15Rα on the surface. Because soluble IL-15 needs IL-15Rα to transduce its mitogenic signal (56), the result suggests that GC-B cells cannot respond to soluble IL-15. This conclusion is consistent with the observation that soluble IL-15 in the absence of FDC/HK cells showed no noticeable difference in GC-B cell recovery (data not shown).

FIGURE 3. Membrane-bound IL-15 on the FDC/HK surface is biologically active. Different numbers of FDC/HK cells (2-fold dilution from 2 × 10⁴ to none/well) were cultured in 96-well plates for 1 days and fixed with 1% paraformaldehyde. CTL-2 cells (5 × 10³ cells/well) were cultured for 1 day on FDC/HK cell-coated 96-well plates in triplicate in RPMI 1640 medium containing 10% FCS, 1 U/ml IL-2, and 2-ME. Cells were pulsed with 0.5 μCi of [³H]Tdr (20 Ci/mM) for last 4 h. [³H]Tdr incorporation was measured by a liquid scintillation counter. Results are expressed as the mean cpm ± SEM of triplicate cultures. A, Proliferation of CTL-2 cells in various numbers of FDC/HK cells coated to the fixed number of CTL-2 cells (none, 10% FCS RPMI 1640 medium control without coated FDC/HK; spn, FDC/HK culture supernatant). B, Inhibition of enhanced CTL-2 cell proliferation by specific anti-IL-15 mAb (10 μg/ml). Broken line represents the cpm value of cultured CTL-2 cells without FDC/HK cells or Ab. These results were reproduced in two independent experiments.

FIGURE 4. Expression of IL-15Rs in GC-B cell. A, RT-PCR was performed with mRNAs from freshly isolated or cultured GC-B cells, as described in Materials and Methods. (+) control, Plasmid containing respective genes; GC-B d0, freshly isolated GC-B cells; GC-B d4, 4-day cultured GC-B cells; DW, distilled water to serve as a negative control. B, FACS profiles of IL-15-binding assay. Freshly isolated GC-B and FDC/HK cells were incubated with a saturating dose of IL-15 (100 ng) for 30 min on ice, and then stained with anti-IL-15 mAb (bold line).
IL-15 on FDC/HK cells increases GC-B cell proliferation

In recent reports, IL-15 in surface-bound form is shown to deliver signals effectively in the absence of IL-15Rα on the target cells (40, 41). Therefore, despite the absence of IL-15Rα in GC-B cells, observations that IL-15 is expressed on the surface of FDC/HK cells and that GC-B cells expressed receptor components for signal transduction prompted us to investigate whether IL-15 on FDC/HK has a functional role in GC-B cell survival and proliferation.

GC-B cells were cultured with FDC/HK cells and cytokines, as described in Materials and Methods. When different amounts of anti-IL-15 mAb were added, GC-B cell proliferation was remarkably inhibited in a dose-dependent manner (Fig. 4A), suggesting that IL-15 on FDC/HK cells has biologic effect in supporting GC-B cell proliferation. At day 10, the number of viable GC-B cells in the culture containing anti-IL-15 mAb (10 μg/ml) was 17% of that of cultures containing isotype control mAb. However, blocking of IL-15 did not affect differentiation of GC-B cells in our culture system (data not shown). This result was reproduced in four separate experiments. Similar inhibitions were also observed in the experiments using other mAbs to IL-15 (clones M111, M112, and MAB247; data not shown).

Because IL-2 shares the receptor components for signal transduction with IL-15 and was present in above experiment to increase the sensitivity of assay, we modified our culture condition by omitting IL-2 to exclude possible indirect effect by IL-2 to verify the effect of IL-15 in the depletion experiment. As shown in Fig. 4B, the amount of surface IL-15 on FDC/HK cells was increased further by the incubation with exogenous IL-15. Hence, coated FDC/HK cells were incubated with different amount of IL-15 (1–100 ng) before GC-B cell cultures to augment IL-15 effect. The MFI of surface IL-15 by FACS were increased in proportion to the IL-15 added (data not shown, for 100 ng; Fig. 4B, right panel). The cell number recovered at culture day 10 was increased in a dose-dependent manner (Fig. 5B). In the presence of 100 ng/ml IL-15, the number of viable GC-B cells increased two and a half times more than the control culture. Given that GC-B cells do not express IL-15Rα, these results strongly suggested that surface IL-15 on FDC/HK enhanced GC-B cell proliferation. This result was reproduced in four separate experiments.

IL-15 on FDCs augments GC-B cell proliferation rather than protection from apoptosis

To investigate the augmenting effect of IL-15 on FDC/HK cells, division history of cultured GC-B cells in the presence or absence of IL-15 was analyzed by labeling cells with CFSE.

The recovery of viable CFSE-labeled GC-B cells in control culture with isotype control mAb in the presence of IL-2, IL-4, and CD40L at day 6 was increased to 172.5% of initial seeded cells (2 × 10^7/well to 3.45 × 10^7/well; Fig. 6A, control Ig), indicating that the CFSE (5 μM) did not interfere with cell proliferation compared with previous data (30). The significant increase in the recovery of control cells also demonstrated proliferation of GC-B cells in our culture system instead of just survival of certain subpopulations from the initial population. As shown in Fig. 6A, recovery increased by 49% in cultures with additional IL-15 compared with that of control cultures (5.15 × 10^5/well vs 3.45 × 10^5/well). In blocking experiments, the recovery of the cultured GC-B cells with anti-IL-15 decreased remarkably to 38%, compared with cultures containing control mAb (1.25 × 10^5/well vs 3.45 × 10^5/well). The recovery of GC-B cells in the culture with blocking anti-IL-15 mAb was decreased by 75% compared with that of cultures with a saturating dose of IL-15 (1.25 × 10^5/well vs 5.15 × 10^5/well), demonstrating the critical effect of IL-15 on GC-B cell growth.

Division profiles determined by CFSE intensity revealed that most of GC-B cells had divided more than four times by day 6 (Fig. 6B). In the presence of IL-2, IL-4, and CD40L with FDC/HK cells, the greatest proportion of harvested cells was found in the fifth and sixth division (76.6 and 18.9%, respectively), showing an almost synchronized response in proliferation to added mitogenic signals effectively in the absence of IL-15Rα.
signals. The effects of additional IL-15 on the distribution of cultured GC-B cells across divisions revealed a decrease in the fifth division population (from 76.6 to 61.9%) and a corresponding increase in the sixth division population (from 18.9 to 33.6%). Furthermore, when endogenous IL-15 was blocked by specific anti-IL-15 mAb, hardly any cells were found in sixth division, while the greatest percentage of cells was found in the fourth and fifth divisions (28.5 and 68%, respectively). These results suggest that the addition of IL-15 enhanced cell division slightly and the blocking of IL-15 retarded the majority of GC-B cells by at least one round of cell division behind that of the controls. Therefore, the overall increase in the recovery of viable cells in the presence of IL-15 can be mainly attributed to the proliferative effect rather than antiapoptotic effect. However, the possibility of antiapoptotic effects on GC-B cells cannot be ruled out completely because the 14.7% difference in the most divided subpopulation between cultures with and without additional IL-15 does not appear to be sufficient to explain the ~30% difference in recovery between them.

The amount of IL-15 on the FDC/HK surface is increased by coculturing with GC-B cells or by the addition of TNF-α

Because the GC is formed by cellular interactions between B cells, T cells, and FDCs (3), we examined whether the amounts of IL-15 on the surface of FDC/HK cells can be modified by various GC factors.

Because FDC/HK cells are known to express CD40 (54), we first compared surface IL-15 levels after incubating FDC/HK cells in the presence or absence of CD40L. The IL-15 levels of FDC/HK cells cultured with GC-B cells and cytokines were also compared (Fig. 7). Compared with culture without cytokines (media), the surface-bound IL-15 on FDC/HK cells was not increased by incubating them with IL-2, IL-4, and CD40L (24L), unless GC-B cells were included in the culture. The amount of surface IL-15 on FDC/HK cells was dramatically increased when FDC/HK cells were cultured with GC-B cells (24L + GCB, MFI: 290 from 139). Hence, signals exclusively from GC-B cells, but not from CD40L and cytokines, modulated the amount of IL-15 on FDC/HK cells. Because TNF-α has been reported to be an essential GC-B cell factor for FDCs in network formation in vivo (16, 57, 58), we examined the effect of TNF-α. The increase in surface IL-15 induced by TNF-α was remarkable (MFI: 438). This result suggests that factors produced by GC-B cells increase the level of surface IL-15 on FDC.

Discussion

The function of IL-15 in B cells has not been studied extensively, because, in part, in genetically modified mice, either eliminating IL-15 or forced expression model does not reveal evident differences in B cell responses compared with wild-type mice (59–61). Accumulating evidences, however, indicate that the biological roles of IL-15 may not solely be confined to T or NK cells, but to B cells. IL-15 is shown to enhance proliferation and Ig secretion of human peripheral B cells (42, 44, 62), to inhibit apoptosis induced by anti-IgM (63), and to induce proliferation of malignant B cells (43, 47). To our knowledge, however, there have been few reports about the function of IL-15 on GC-B cells. We, therefore, investigated the biologic function of IL-15 in GC reaction.

We first examined the cellular source of IL-15 within the GC. Although IL-15 mRNA and small amounts of soluble IL-15 have been reported to be produced by in vitro cultured FDC (64), it is important to confirm the production of IL-15 by FDC at the protein level: IL-15 mRNA is almost ubiquitously expressed, and the production and secretion of protein are mainly controlled by complex and inefficient posttranslational mechanisms (33, 34). Our data reveal that FDCs produce IL-15, as shown by the immunofluorescence staining of freshly isolated FDC clusters. This observation was confirmed by showing that a FDC cell line, FDC/HK cells, indeed produced IL-15. IL-15 protein was detected on the surface of FDC/HK cells. The specificity of membrane-bound IL-15 was confirmed by competition FACS analysis and by the blocking experiment of CTLL-2 bioassay. However, IL-15 was not detected by ELISA in the FDC/HK culture supernatant, and it was further confirmed with the CTLL-2 assay. The presence of membrane-bound IL-15 on FDCs in place of secreted protein is not uncommon. Various cell types, such as monocytes, fibroblasts, epithelial cells, and leukemic progenitors, have been reported to express membrane-bound IL-15 in the absence of detectable soluble protein (52, 65–67). In fact, IL-15 protein is rarely detected in culture supernatant or in tissues (68), due in part to the poor translational and short half-life of the cytokine. It is also possible that detection is difficult because IL-15 is usually bound to IL-15Rα.

The membrane form is known to be biologically active, more potent than the soluble form (52, 66). The bioactivity of IL-15 on the FDC surface was also demonstrated by the CTLL-2 assay.

There are three possible mechanisms that could result in surface IL-15 expression: binding of secreted IL-15 by IL-15Rα (40), binding to a novel receptor as reported for mast cells (69), and expression of a new variant of IL-15 protein that contains a membrane-spanning region (52, 67). The complete loss of IL-15 staining after acid treatment and enhanced binding after incubation with exogenous IL-15 strongly suggest a receptor-anchored mechanism rather than the presence of an alternative membrane form of IL-15. Although the possibility that failure to detect IL-15 after acid treatment resulted from denaturation of transmembrane form cannot be ruled out completely, expression of specific mRNA for IL-15Rα in FDC/HK cells favors the first hypothesis.

Second, we investigated the biologic relevance of IL-15 signaling in the GC by examining the effect of IL-15 on GC-B cell proliferation by the removal or addition of IL-15. As shown in Fig. 5, GC-B cell growth was decreased significantly in the presence of anti-IL-15-blocking mAb and was enhanced when IL-15 was

![FIGURE 7](http://www.jimmunol.org/)

FIGURE 7. IL-15 levels on the surface of FDC/HK are enhanced by coculturing with GC-B cells or by the addition of TNF-α. FDC/HK cells were incubated for 3 days in 10% FCS IMDM medium with various induction conditions, as follows: media alone (media), IL-2, IL-4, and CD40L (24L); IL-2, IL-4, and CD40L with GC-B cells (24L + GC-B); TNF-α (10 ng/ml). Harvested cells were stained for FACS analysis. Numbers in the parentheses represent MFI of each sample, which is calculated by subtracting control value from that of specific mAb (broken line and solid line, respectively).
added. Recovery of GC-B cells in the culture containing a saturating dose of IL-15 (100 ng/ml) was 4-fold higher than that of the culture where the activity of endogenous IL-15 was depleted by blocking mAb. The significance of IL-15 signaling in the GC was further supported by the observation that the amount of membrane-bound IL-15 was significantly modulated by GC-B cell factors. Given the dynamic nature of GC reactions, the presence of a positive feedback mechanism between GC-B cells and FDCs is especially plausible. To meet the urgent need for the production of high affinity protective Abs, a vigorous expansion of a few precursors having appropriate BCR in the initial phase of GC reaction requires a positive feedback amplification of proliferative stimuli such as IL-15. Taken together, these results strongly suggest the presence of IL-15 signaling mechanism in the GC.

This enhancement of GC-B cell proliferation by IL-15 on FDC/HK can be attributed to indirect effect on FDCs. IL-15 on dendritic cells is reported to increase costimulatory molecules by autocrine loop (70, 71); thus, blocking IL-15 may lead to alteration of other FDC molecules, which can affect the proliferation and survival of GC-B cells. GC-B cells are entirely dependent on the combination of variety of soluble and cell surface factors from HK cells for their survival and proliferation; it is very difficult to investigate the effect of only the membrane-bound IL-15 of HK cells on GC-B cells using conventional experimental systems for membrane-bound molecules such as transwell experiments or paraformaldehyde fixation, which result in massive apoptosis of GC-B cells.

Although the indirect effect via changes in molecule of FDCs cannot be ruled out, direct effect of IL-15 has plausible implication in regard to GC reaction. Recent data suggest that IL-15Rα not only acts as a component of IL-15R complex for the high affinity binding, but can also act to present IL-15 to adjacent cells in vitro and in vivo (40, 41, 65, 67, 72). In the GC reaction, effective delivery of survival and proliferative signals only to appropriate clones having higher affinity BCR is essential so as not to expand overwhelming numbers of clones with low affinity BCR. Therefore, provision of cosignals, e.g., IL-15, from the microenvironment in a membrane-bound form may be advantageous in ensuring selective proliferation and prevention of nonspecific activation via bystander effects. It is also conceivable that direct IL-15 effect on GC-B cells and indirect effect through FDC by IL-15 autocrine loop may work together to accelerate GC reaction in vivo.

Vigorous proliferation of centroblasts within the stromal environment created by FDCs is a hallmark of GC reaction (2, 3). However, factors that are responsible for this rapid cell division have not been identified. Many cytokines have been reported to have potent being IL-2 (6, 73). In the absence of IL-2, GC-B cell recovery has been shown to be decreased by at least 3-fold (6). However, activated T cells that produce IL-2 are not common in GC reaction has been shown to be decreased by at least 3-fold (6). However, activated T cells that produce IL-2 are not common in GC reaction (74), and centroblasts do not express IL-2Rα, which is essential for binding IL-2 with high affinity (75). In this study, we showed that IL-15 is present on FDC in the GC in vivo and that endogenous IL-15 from FDC/HK cells supported IL-15 cell proliferation in vitro as comparable as or more than exogenous IL-2 alone when endogenous IL-15 was removed by blocking Ab (4.2 × 10^5 in Fig. 5A, left first bar vs 2.9 × 10^5 in Fig. 5B, right end bar). Moreover, GC-B cells proliferate in the presence of IL-15, dividing faster than the cells cultured without IL-15. Together, these results imply that IL-15 signaling may be one of the mechanisms responsible for the rapid proliferation of centroblasts in the GC in vivo.

In summary, IL-15 from FDC, in a membrane-bound form, plays an important role in supporting GC-B cell proliferation, proposing a new target for immune modulation as well as treatment of B cell lymphoma because IL-15 presentation by FDC may be an important trigger in the initiation of lymphomagenesis.

Acknowledgments

We thank Russell Hendrick and Farheen Khan for excellent technical assistance. Human tonsils were generously provided by Dr. J. L. Guirasco (Ochsner Clinic Foundation) and Dr. R. Craver (Children’s Hospital, New Orleans, LA).

References

