The Structure of H-2Kb and Kbm8 Complexed to a Herpes Simplex Virus Determinant: Evidence for a Conformational Switch That Governs T Cell Repertoire Selection and Viral Resistance

Andrew I. Webb, Natalie A. Borg, Michelle A. Dunstone, Lars Kjer-Nielsen, Travis Beddoe, James McCluskey, Francis R. Carbone, Stephen P. Bottomley, Marie-Isabel Aguilar, Anthony W. Purcell and Jamie Rossjohn

http://www.jimmunol.org/content/173/1/402

References
This article cites 38 articles, 18 of which you can access for free at:
http://www.jimmunol.org/content/173/1/402.full#ref-list-1

Subscription
Information about subscribing to \textit{The Journal of Immunology} is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
The Structure of H-2Kb and Kbm8 Compressed to a Herpes Simplex Virus Determinant: Evidence for a Conformational Switch That Governs T Cell Repertoire Selection and Viral Resistance1,2

Andrew I. Webb,3* Natalie A. Borg,3* Michelle A. Dunstone,* Lars Kjer-Nielsen,† Travis Beddoe,* James McCluskey,†† Francis R. Carbone,†† Stephen P. Bottomley,* Marie-Isabel Aguilar,* Anthony W. Purcell,\textsuperscript{4,5†† and Jamie Rossjohn4,5*}

Polymorphism within the MHC not only affects peptide specificity but also has a critical influence on the T cell repertoire; for example, the CD8 T cell response toward an immunodominant HSV glycoprotein B peptide is more diverse and of higher avidity in H-2bm8 compared with H-2b mice. We have examined the basis for the selection of these distinct antiviral T cell repertoires by comparing the high-resolution structures of Kb and Kbm8, in complex with cognate peptide Ag. Although Kb and Kbm8 differ by four residues within the Ag-binding cleft, the most striking difference in the two structures was the disparate conformation adopted by the shared residue, Arg62. The altered dynamics of Arg62, coupled with a small rigid-body movement in the \textalpha{} helix encompassing this residue, correlated with biased V\textalpha{} usage in the B6 mice. Moreover, an analysis of all known TCR/MHC complexes reveals that Arg62 invariably interacts with the TCR CDR1\textalpha{} loop. Accordingly, Arg62 appears to function as a conformational switch that may govern T cell selection and protective immunity. The Journal of Immunology, 2004, 173: 402–409.

The cytotoxic T cell response toward viruses is mediated by class I MHC molecules complexed to viral peptide Ags. These complexes are expressed on the surface of infected cells and are subsequently recognized by clonally distributed TCR on CD8T lymphocytes. Appropriately armed and activated CD8T cells can eliminate infected cells and prevent viral replication. The CD8T cell response toward many viruses is extremely focused with viral eradication occurring through the recognition of only one or two immunodominant epitopes. Polymorphism in class I molecules not only diversifies selection of peptide Ags (1) but also broadens the T cell repertoire that is used to recognize pathogens. Even single amino acid differences in MHC molecules can exert profound effects on T cell repertoire selection and dictate subtle changes in peptide ligand selection (2) and Ag processing (3, 4, 38). The effect of the polymorphism may be to alter the thymic peptide repertoire and influence thymic positive and negative T cell selection, to alter the viral determinants presented during infection, or to present the same viral determinants in an altered conformation, resulting in selection of different T cell clonotypes. We have examined the CD8T cell response to infection with HSV-1 in C57BL/6 (B6) mice to study the influence of polymorphism on antiviral responses at a molecular level. The response to HSV-1 in B6 mice is almost entirely focused on a single immunodominant determinant (glycoprotein B 498–505 (SSIEFARL)), which encompasses up to 90% of the total response. Moreover, in B6 mice, SSIEFARL-specific CD8T T cells exhibit TCR V\textalpha{} usage (such that 70% use V\textalpha{}2 and V\textbeta{} usage bias (60% use V\textbeta{}10, and 20% use V\textbeta{}8S1) (5, 6), T cell clonotypes expressing these V\textalpha{} and V\textbeta{} pairings are selected from a diverse naïve repertoire.

Spontaneous mutations in the H-2Kb molecules of B6 mice has been used as a tool to investigate the role of MHC polymorphism in the immune response and were initially identified by their ability to elicit allogeneic T cell responses in wild-type mice (7). Of particular interest in our study is the mutant molecule H-2Kbm8, which differs from Kb at four amino acids (Y22→F, M23→I, E24→S, and D30→N) that are located within the Ag-binding cleft and are inaccessible to TCRs (8). The ability of H-2Kbm8 (Bm8) mice to elicit allogeneic T cell responses, therefore, most likely reflects altered peptide repertoire and/or changes in MHC-peptide conformation expressed on the allograft, consistent with recent structures of monoallelic variants and analysis of their ligand repertoires (2, 9–13). The response of Bm8 mice to viral and other Ags has been studied in detail. CD8T cell immunity to OVA is poor in Bm8 mice, yet this response in B6 mice is robust and dominated by the SIINFEKL determinant. This difference in response is due to poor Kbm8-restricted presentation of SIINFEKL (14, 15). In contrast,
comparable immune responses and equivalent protective immunity in both strains are seen following challenge with vesicular stomatitis virus (VSV) or Sendai virus (SEV). This observation suggests that both strains produce diverse naïve T cell repertoires capable of clearing pathogens using similar T cell determinants and hierarchies of immunodominance. Analysis of the structures of Kb and Kbm8 complexed to dominant peptide determinants from VSV and SEV revealed subtle conformational changes in the complexes, but these were not associated with major functional differences in the CD8+ T cells generated in B6 and Bm8 mice (8, 16, 17). However, it is remarkable that, although in HSV-1 infection, the SSIEFARL epitope dominates the CD8+ T cell response in both strains of mice, Bm8 mice are five times more resistant to lethal challenge with HSV-1 than B6 mice. This observation correlates with a more diversified repertoire and higher functional avidity of SSIEFARL-specific CD8+ T cells in Bm8 mice (18). The basis of this MHC-linked enhancement in antiviral resistance and T cell selection is not well understood but is thought to be related to differences in T cell selection in the two strains of mice. In this study, we investigate the structural influence of the MHC class I polymorphism between Kb and Kbm8 in the presentation and recognition of the SSIEFARL determinant and examine potential extrathymic mechanisms of clonotypic expansion based on the differences observed in the two structures.

Materials and Methods

Expression, purification, crystallization, and structure determination

Four amino acid substitutions differentiate H-2Kb from Kbm8. Truncated Kbm8 (aa 1–285) was generated by site-directed mutagenesis using a Kb-plasmid template (QuickChange; Stratagene, La Jolla, CA). Recombinant Kb and Kbm8 molecules were expressed as inclusion bodies, refolded, and purified, as previously described (19).

All crystallization trials were conducted using the hanging-drop vapor diffusion technique (20, 21). The crystals were grown under identical conditions for each allele, by mixing equal volumes of 10 mg/ml Kb and Kbm8 peptide complexes with the reservoir buffer (0.1 M sodium cacodylate, 0.2 M calcium acetate, and 14% (v/v) polyethylene glycol 8000 (pH 6.5)) and microseeded from crystals grown in 16% (v/v) polyethylene glycol 8000 at room temperature. Crystals were frozen following a stepwise transfer from 5 to 10% of the cryoprotectant glycerol with 5 min per condition. The crystals were transferred to a solution of 10 mM Tris and 150 mM NaCl (pH 8.0).

CD spectra were measured on a Jasco 810 spectropolarimeter using a thermostatically controlled cuvette at temperatures between 20 and 90°C as described in detail elsewhere (25–27). Far-UV spectra from 195 to 250 nm were collected and averaged over 10 individual scans; θ218 measurements for the thermal melting experiments were made at intervals of 0.1°C at a rate of 1°C/min. The midpoint of thermal denaturation (Tm) for each protein was calculated by taking the first derivative of the ellipticity data and identifying the inflection point. Both complexes were measured at 30 μg/ml in a solution of 10 mM Tris and 150 mM NaCl (pH 8.0).

Results

Greater thermostability of H-2Kb vs H-2Kbm8 complexes

The improved protective immunity against HSV observed in mutant Bm8 mice could reflect a higher affinity for the SSIEFARL determinant by Kbm8 molecules. This might lead to higher determinant density, which might explain the greater diversification of the T cell repertoire in this strain. Therefore, we examined the thermostability of the Kbm8-SSIEFARL complexes by CD. Both complexes gave similar spectra at 20°C, however, the Tm of Kb was found to be ~7°C higher than Kbm8 bound to the SSIEFARL peptide in two independent experiments (Tm of 61 and 54°C, respectively; Fig. 1), suggesting greater stability and longer half-life of Kbm8-SSIEFARL complexes in vivo. This finding is consistent with the lower half-life of surface Kb relative to Kbm8 bound to other viral Ags (8). In contrast, the lower stability of Kbm8 complexes indicates that the enhanced protective immunity to HSV in Bm8 mice is not the result of higher levels of Ag presentation and must therefore reflect altered selection of the T cell repertoire.

Impact of polymorphic residues on the conformation of the MHC-peptide complexes

The structures of Kb and Kbm8 complexed to the SSIEFARL have been determined to 2.0- and 1.8-Å resolution, respectively (Table I). Both complexes crystallize in the same space group under identical conditions with isomorphous unit cell dimensions. In addition, the freezing protocol for the complexes were identical. Accordingly, conformational differences that are observed between the two crystal structures can be attributed to the polymorphic amino acid differences between Kb and Kbm8. Moreover, all of the regions of interest that are discussed below do not participate in crystal contacts. Table II describes all peptide-H chain (hc) interactions in detail.

Within both Ag-binding clefts, SSIEFARL is bound in an extended conformation, with a small centrally located bulge around the relatively mobile Glu residue. Other surface-exposed residues are Ser, Ala, and Arg, which accordingly may play a role in contacting the TCR in both strains (Fig. 2, A and B). Three of the four polymorphic amino acids (positions 22, 23, and 24) between Kb and Kbm8 are clustered on the floor of the Ag-binding cleft, whereas the Asp50Asn substitution is located on a solvent-exposed loop remote from known sites of TCR recognition. Residues at 22, 23, and 24 are solvent inaccessible and located within the β2 strand of the cleft. Residues 22 and 24 project into the cleft, whereas residue 23 points toward the β2-microglobulin domain (Fig. 2, C and D).

In Kb, Glu24, found at the base of the B pocket, is only the polymorphic residue that directly contacts the peptide (Fig. 2C). The carboxylate of Glu24 forms a direct H-bond with P2-SerOγ of the bound peptide, as well as making H-bonds to the h c residues Asn70-Asn76 (located on the α1 helix) and the Tyr22-Oγ and Tyr45-Oγ groups. The aliphatic moiety of Glu24 also packs against the polymorphic Tyr22 residue, as well as ValP and PheE, a residue on the
The aromatic ring of Tyr23 residue packs against the backbone of the α1 helix, and the side chains of Asn70, Glu71, and Tyr74.

In Kbm8, the polymorphic residues do not directly contact the peptide. Glu24 is replaced by the smaller Ser residue. The Ser O\(^{\cdots}\)H-bond to the peptide, and the loss of the H-bonding network that is centered around Glu24 in Kb, and a H-bond to the α1 helix is also lost in the Kbm8 complex. Structural perturbations can be seen to flow on from position 24. In Kbm8, Tyr45 moves toward Ser24, such that the Tyr45-O\(_N\) groups are 1.0 Å apart in the respective structures (Fig. 2E), and the tilt of the aromatic ring of Tyr45 has changed by ~45°. In Kb, Tyr45 lies flat against the base of the α1 helix, whereas in Kbm8, the plane of the aromatic ring is more perpendicular to the axis of the α1 helix, nesting within the groove of the helix as well as participating in a unique water-mediated H-bond to P2-Ser of the peptide. The plane of the aromatic ring of Phe22, a residue that contacts the polymorphic residue at position 22, has also been adjusted by ~30° in the two structures. These polymorphism-mediated structural perturbations result in a local readjustment of the core-packing residues, resulting in a rigid-body shift in the α1 helix spanning from residues 62 to 73. These changes also influence the positioning and the dynamics of Arg62 (Fig. 2, A, B, and E).

![FIGURE 1. Thermostability of polymorphic H-2K molecules bound to SSIEFARL, as revealed by CD spectropolarimetry.](http://www.jimmunol.org/)

Table I. Data collection and refinement statistics\(^a\)

<table>
<thead>
<tr>
<th></th>
<th>Kb</th>
<th>Kbm8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>100 K</td>
<td>100 K</td>
</tr>
<tr>
<td>X-ray source</td>
<td>RU-3HBR</td>
<td>APS, BioCars</td>
</tr>
<tr>
<td>Space group</td>
<td>P2(_h)</td>
<td>P2(_h)</td>
</tr>
<tr>
<td>Cell dimensions (Å) (a,b,c)</td>
<td>66.31, 89.46, 89.26, β = 111.46(^o)</td>
<td>66.28, 90.23, 89.15, β = 111.50(^o)</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>2.0</td>
<td>1.8</td>
</tr>
<tr>
<td>Total no. observations</td>
<td>128,032</td>
<td>248,935</td>
</tr>
<tr>
<td>No. unique observations</td>
<td>62,586</td>
<td>85,706</td>
</tr>
<tr>
<td>Multiplicity</td>
<td>2.0</td>
<td>2.90</td>
</tr>
<tr>
<td>Data completeness (%)</td>
<td>95.4(94.8)</td>
<td>93.9(75.1)</td>
</tr>
<tr>
<td>No. data > 2σ(_I)</td>
<td>69.9(44.3)</td>
<td>70.2(30.2)</td>
</tr>
<tr>
<td>I/σ(_I)</td>
<td>12.6(2.6)</td>
<td>16.1(2.0)</td>
</tr>
<tr>
<td>R(_merge) (%)</td>
<td>5.9(35.6)</td>
<td>5.7(49.1)</td>
</tr>
<tr>
<td>Nonhydrogen atoms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein</td>
<td>6,296</td>
<td>6,288</td>
</tr>
<tr>
<td>Water</td>
<td>656</td>
<td>712</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>50–2.0</td>
<td>50–1.8</td>
</tr>
<tr>
<td>R(_factor) (%)</td>
<td>23.2</td>
<td>23.0</td>
</tr>
<tr>
<td>R(_free) (%)</td>
<td>27.1</td>
<td>25.7</td>
</tr>
<tr>
<td>rmsd from ideality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bond lengths (Å)</td>
<td>0.006</td>
<td>0.005</td>
</tr>
<tr>
<td>Bond angles (Å)</td>
<td>1.31</td>
<td>1.28</td>
</tr>
<tr>
<td>Improperss (Å)</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>Dihedrals (Å)</td>
<td>25.06</td>
<td>25.09</td>
</tr>
<tr>
<td>Ramachandran plot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Most favoured</td>
<td>92.1</td>
<td>93.2</td>
</tr>
<tr>
<td>And allowed region (%)</td>
<td>7.6</td>
<td>6.5</td>
</tr>
<tr>
<td>B factors (Å(^2))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average main chain</td>
<td>25.2</td>
<td>27.3</td>
</tr>
<tr>
<td>Average side chain</td>
<td>27.6</td>
<td>30.2</td>
</tr>
<tr>
<td>Average water molecule</td>
<td>36.0</td>
<td>39.9</td>
</tr>
<tr>
<td>rmsd bonded Bs</td>
<td>1.77</td>
<td>1.74</td>
</tr>
</tbody>
</table>

\(^a\) The values in parentheses are for the highest resolution bin (approximate interval, 0.1 Å).

\(^b\) R\(_factor\) = \(\sum_{n=1}^{N} |F_{o}| - |F_{c}| / \sum_{n=1}^{N} |F_{o}| \) for all data except for 4%, which was used for the \(^d\) R\(_merge\) calculation.

\(^d\) R\(_merge\) = \(\sum_{hkl} \sum_{i=1}^{N} [I_{hi} - \langle I_{hi} \rangle]^2 / \sum_{hkl} \sum_{i=1}^{N} I_{hi} \) for all data except for 4%, which was used for the \(^d\) R\(_merge\) calculation.
In the Kb complex, the Arg62 side chain is disordered, with limited electron density observed beyond the Cβ atom of the Arg side chain. Attempts to model the Arg62 into a discrete conformation, such as that observed in the Kbm8 complex, resulted in significant negative peaks in the F_o - F_c difference maps, and discontinuous electron density for this side chain in the $2F_o$ - F_c difference maps as well as high temperature factors. Moreover, simulated-annealing omit maps (28) confirmed the disordered nature of the Arg62 side chain for both molecules in the asymmetric unit (data not shown). In contrast, within the Kbm8 complex, the discrete conformation of Arg62 side chain (temperature factor of 44 Å²) was clearly evident in the initial electron density maps and later unambiguously confirmed using simulated-annealing omit maps. In the Kbm8 structure, Arg62 clearly forms a salt bridge with Glu63, and van der Waals contacts with Trp167, such that the side chain lies parallel to the α1 helix (Fig. 2, D and E). The slightly broader cleft in the Kb complex and more optimal packing of the B pocket associated with direct interaction of Glu63 with the peptide act in concert to mobilize Arg62.

Discussion

We have determined the high-resolution structures of Kb and Kbm8 complexed to the immunodominant HSV determinant gB498–505. These structures have revealed small rigid-body shifts in the α1 helix and changes in the H-bonding network associated with the four polymorphic amino acids, altered water structure, and changes in the position and dynamics of Arg62. The four polymorphic amino acids present between Kb and Kbm8 are not in a position to interact with the TCR directly, consistent with previous structures of related complexes (8). In our structures, the bound conformation of SSIEFARL in the Kb and Kbm8 complexes is very similar, with subtle structural perturbations evident toward the N terminus of the peptide. Subtle changes in the α helices bounding the peptide can impact upon T cell recognition and thymic selection, as highlighted, for example, by our recent studies on the ligand repertoire and conformation of HLA B44 allotypes (2). Moreover, differences in T cell selection by Kb and Kbm8 have previously been documented (15) and suggested that altered peptide repertoire and conformation of MHC-peptide complexes can impact significantly on T cell selection in B6 and Bm8 mice. Consistent with this concept was the ability of certain mAb to differentiate between cells expressing Kb and Kbm8 (17).

The substitution of Glu24 to Ser24 in Kbm8 not only substantially reduces the electrogative potential of the B pocket of these molecules but also results in the loss of a direct H-bond between the peptide ligand and the peptide ligand. A series of conformational adjustments are observed to compensate for the loss of this interaction with changes in the hydrophobic packing of the B pocket and surrounding residues evident. Interestingly, the loss of these interactions probably accounts for the considerable decrease in the thermostability of the complex as measured by CD and increased crystallographic temperature factors for the peptide. Earlier epitope stabilization studies (29) have demonstrated that Kbm8 molecules expressed on TAP-deficient cells bind to SSIEFARL in a manner similar, with subtle structural perturbations evident toward the N terminus of the peptide. Subtle changes in the α helices bounding the peptide can impact upon T cell recognition and thymic selection, as highlighted, for example, by our recent studies on the ligand repertoire and conformation of HLA B44 allotypes (2). Moreover, differences in T cell selection by Kb and Kbm8 have previously been documented (15) and suggested that altered peptide repertoire and conformation of MHC-peptide complexes can impact significantly on T cell selection in B6 and Bm8 mice. Consistent with this concept was the ability of certain mAb to differentiate between cells expressing Kb and Kbm8 (17).

The substitution of Glu24 to Ser24 in Kbm8 not only substantially reduces the electrogative potential of the B pocket of these molecules but also results in the loss of a direct H-bond between the peptide ligand and the peptide ligand. A series of conformational adjustments are observed to compensate for the loss of this interaction with changes in the hydrophobic packing of the B pocket and surrounding residues evident. Interestingly, the loss of these interactions probably accounts for the considerable decrease in the thermostability of the complex as measured by CD and increased crystallographic temperature factors for the peptide. Earlier epitope stabilization studies (29) have demonstrated that Kbm8 molecules expressed on TAP-deficient cells bind to SSIEFARL in a manner similar, with subtle structural perturbations evident toward the N terminus of the peptide. Subtle changes in the α helices bounding the peptide can impact upon T cell recognition and thymic selection, as highlighted, for example, by our recent studies on the ligand repertoire and conformation of HLA B44 allotypes (2). Moreover, differences in T cell selection by Kb and Kbm8 have previously been documented (15) and suggested that altered peptide repertoire and conformation of MHC-peptide complexes can impact significantly on T cell selection in B6 and Bm8 mice. Consistent with this concept was the ability of certain mAb to differentiate between cells expressing Kb and Kbm8 (17).

The substitution of Glu24 to Ser24 in Kbm8 not only substantially reduces the electrogative potential of the B pocket of these molecules but also results in the loss of a direct H-bond between the peptide ligand and the peptide ligand. A series of conformational adjustments are observed to compensate for the loss of this interaction with changes in the hydrophobic packing of the B pocket and surrounding residues evident. Interestingly, the loss of these interactions probably accounts for the considerable decrease in the thermostability of the complex as measured by CD and increased crystallographic temperature factors for the peptide. Earlier epitope stabilization studies (29) have demonstrated that Kbm8 molecules expressed on TAP-deficient cells bind to SSIEFARL in a manner similar, with subtle structural perturbations evident toward the N terminus of the peptide. Subtle changes in the α helices bounding the peptide can impact upon T cell recognition and thymic selection, as highlighted, for example, by our recent studies on the ligand repertoire and conformation of HLA B44 allotypes (2). Moreover, differences in T cell selection by Kb and Kbm8 have previously been documented (15) and suggested that altered peptide repertoire and conformation of MHC-peptide complexes can impact significantly on T cell selection in B6 and Bm8 mice. Consistent with this concept was the ability of certain mAb to differentiate between cells expressing Kb and Kbm8 (17).
comparable to the wild-type Kb molecules. Taken together with the lower thermostability of Kbm8 complexes, we predict that the stability of these surface-loaded molecules will be much reduced in Kbm8, as observed for VSV8 and SEV9 peptides (8). In addition to the conformational changes directly associated with the four polymorphic amino acids, we also see changes in the orientation and mobility of Arg62, a shared residue on the hc α_1 helix. Comparison of the structures of previously reported shared viral ligands of Kb

FIGURE 2. Cut-away view of the Ag-binding clefts of Kb (A) and Kbm8 (B) bound to the SSIEFARL. The 2.0- and 1.8-Å electron density omit maps of SSIEFARL complexed to the respective H-2K molecules are also indicated. Very similar conformations of the peptide were observed, highlighting the exposed Ser1, Glu4, Ala6, and Arg7 residues. Analysis of H-bond and van der Waals contacts contributed to by polymorphic amino acids in Kb (C) and Kbm8 (D) are shown in the same orientation as the views in A and B, respectively. These representations were also superimposed (E) to highlight the mobility of the Arg62 residue and the rigid-body shift in the α_1 helix (residues 62–73). The Kb hc is shown in cyan, whereas Kbm8 is shown in green. The peptide ligands are shown in orange and yellow for Kb and Kbm8, respectively.
and K^{bmn} also reveal variability in the orientation of Arg⁶² (8). A role for the positioning and dynamics of Arg⁶² in locking in the N termini of bound peptides in HLA B27 complexes has also recently been noted (9). Moreover, a ligand-dependent switch in the orientation of Arg⁶² has been observed in structures of HLA B8 complexed to EBV (FLRGRAYGL) and HIV (GGKKKYKL) epitopes (30, 31). The Phe group of the EBV determinant sterically restricts positioning of Arg⁶², forcing it to project into the solvent, whereas the Arg⁶² packs down in B8/GGKKKYKL structure in a manner analogous to our K^{bmn} structure. Fig. 3A highlights this remarkable variability in the positioning of Arg⁶² in selected unligated MHC-peptide complexes.

In all the class-I/TCR complexes that we have examined, where an Arg⁶² is present on the MHC helix, it interacts with CDR1_α. This suggests that, regardless of the positioning of Arg⁶² in the unligated state, once the MHC molecule is engaged by the TCR, Arg⁶² interacts with the CDR1_α loop. The flexibility of Arg⁶² was observed to accommodate the differing CDR1_α footprint (Fig. 3B). Thus, we predict that Arg⁶² of K^b and K^{bmn} will also interact with the CDR1_α of anti-HSV TCRs (22). We also propose that Arg⁶² functions as an electrostatic guide for TCR docking in general, and thus changes in the dynamics and positioning of Arg⁶² can impact on T cell selection.

During infection with HSV, B6 CD8⁺ T cells only recognize SSIEFARL bound to cognate K^b molecules and not to the K^{bmn} allelic variant. Conversely, a subset of Bm8 CD8⁺ T cells cross-react on K^b targets presenting the SSIEFARL determinant (6). The ability of T cells to discriminate between complexes suggests the conformational differences observed have functional relevance. Analysis of TCR usage in HSV infection has revealed that Bm8 mice use more diverse V_α/V_β combinations, whereas B6 mice use dominant V_α2, V_β10, and V_β8 gene families (Table III). Differences in the structures of the complexes studied here are focused around the N terminus of the ligand and surrounding regions of the α₁ helix and can only, assuming a conserved diagonal TCR docking framework, directly affect the V_α chain. Any bias in the β-chain most likely reflects the particular V_α/V_β pairing. The exaggerated use of V_α2 in up to 70% of all B6 SSIEFARL-specific T cells may therefore result from differences in this structurally disparate end of the complexes. A distinctive feature of V_α2-positive TCRs isolated from infected B6 mice is the presence of an acidic residue in the CDR1_α loop (Table III). Conversely, the CDR1_α regions used in many of the K^{bmn}-restricted CD8⁺ T cells such as V_α5 and V_α6-1 (6) do not contain an electronegative amino acid in their CDR1_α loops. Given the conserved nature of CDR1_α-Arg⁶² interaction, this potential salt bridge is available for both K^b and K^{bmn} complexes, and yet only K^b-restricted CD8⁺ T cells demonstrate V_α2 bias. Moreover, in V_α2-, V_α1-, and V_α5-positive TCRs, the acidic residue is at position 26, a position previously shown to salt bridge to Arg⁶² in the Kb5-C20 TCR-H-2^{Kb} complex structure (22) and positioned in a region of CDR1_α that dominantly interacts with Arg⁶² in all other ternary complex structures where an Arg⁶² is present (32, 33). Therefore, we speculate that the V_α2 bias in CD8⁺ T cells from B6 mice results from selection of TCRs that can efficiently ligate the highly mobile Arg⁶² on the α₁ helix of K^b via salt bridge formation. TCR binding to K^b/SSIEFARL will have a greater entropic penalty than binding to the equivalent K^{bmn} complex because of the mobility of Arg⁶² in the K^b complexes. Given that TCR-MHC interactions are generally enthalpically driven, which reflects the requirement for surface complementation, and that TCR ligation involves entropic penalties associated with the greater order of residues and solvent molecules at the MHC-TCR interface (34, 35), the biased selection of V_α2 in B6 mice may reflect the repertoire constraints in overcoming a greater entropic penalty for recognition of this complex. This would be consistent with the narrower expansion of SSIEFARL-specific CD8⁺ T cells in B6 mice. In contrast, the ordered Arg⁶² conformation in K^{bmn} complexes imparts much less constraint on the T cell repertoire usage of Bm8 mice, and this leads to more diverse and higher functional avidity of the CD8⁺ T cell response. This hypothesis is currently under investigation by studying the thermodynamics of soluble forms of SSIEFARL-specific TCRs.
binding to their cognate MHC-peptide molecules using both BIA-core and calorimetric methodologies in a manner analogous to Davis and colleagues (36).

Our findings indicate the importance of subtle structural variation in MHC-peptide complexes in selecting a suitable diverse antiviral T cell repertoire necessary for protective immunity. Presumably, these subtle thermodynamic and structural constraints are amplified in the environment of the immunological synapse where multiple MHC-peptide-TCR ligation events occur and the influence of coreceptors and adhesion molecules come into play, propagating small advantages and driving extrathymic selection of particular T cell clonotypes. Thus, in addition to events that lead to aggregating small advantages and driving extrathymic selection of particular T cell clonotypes that may impact on protective immunity toward pathogens.

Acknowledgments
We thank A. Brooks and A. Winterhalter for the original Kb expression construct. We thank the staff at BioCARS and the Australian Synchrotron Research Program for assistance.

References

4The CDR1\textalpha sequences of V\textalpha TCRs used dominantly in B6 SSIEFARL-specific TCRs are aligned with other V\textalpha sequences found in Bm8 SSIEFARL-specific TCRs and reveals the pronounced bias for complementary acidic residues (underlined) in the CDR1\textalpha of B6 CTL compared with Bm8. Overlap in Bm8 and B6 V\textalpha sequences is evident in Va275-containing TCRs. Alternate IMGT (International ImMunoGeneTics) classification system is also shown (39).

