CCR7 Directs the Migration of Thymocytes into the Thymic Medulla

Joanne Kwan and Nigel Killeen

J Immunol 2004; 172:3999-4007; doi: 10.4049/jimmunol.172.7.3999

http://www.jimmunol.org/content/172/7/3999

References This article cites 51 articles, 27 of which you can access for free at: http://www.jimmunol.org/content/172/7/3999.full#ref-list-1

Subscription Information about subscribing to *The Journal of Immunology* is online at: http://jimmunol.org/subscription

Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts
CCR7 Directs the Migration of Thymocytes into the Thymic Medulla

Joanne Kwan and Nigel Killeen

Developing thymocytes migrate from the cortex to the medulla of the thymus as a consequence of positive selection. This migration is likely to be essential for tolerance because it allows the developing cells to move into an environment that is optimal for negative selection. Guidance mechanisms that draw positively selected thymocytes into the medulla have not been clarified, but several studies have implicated chemokines in the process. CCR7, the receptor for the medullary chemokines CCL19 and CCL21, is induced on thymocytes during their positive selection. In this study we show that premature expression of CCR7 repositions CD4+CD8+ double-positive cells into the medulla of transgenic mice. This repositioning of the thymocytes is accompanied by impairment of their development. The data show the involvement of CCR7 in medullary migration and emphasize the importance of proper thymocyte positioning for efficient T cell development.

Small CD4+CD8+ (double-positive) cells are the most numerous hematopoietic cell type in the thymus (1). These short-lived cells are packed densely into the cortex of the thymus, where they will either die by apoptosis or receive signals that induce them to develop further. The few cells that differentiate into CD4+CD8− or CD4−CD8+ (single-positive) cells subsequently complete their development in the thymic medulla. Both the cortex and the medulla are comprised of complex networks of epithelial, mesenchymal, and hematopoietic cells (2, 3). The division of the thymus into cortical and medullary regions is perhaps its most striking histological characteristic, yet comparatively little is known about how these regions are formed or how T cell precursors are induced to move between them during their development.

Blood-borne hematopoietic precursor cells enter the thymus from vessels that are located deep in its cortex near the boundary with the medulla (4, 5). The cells proliferate on entry and gradually migrate toward the outer regions of the cortex. As they move, they eventually cease dividing, express the recombination-activating gene 1 (RAG-1) (6) and RAG-2 proteins and undergo VDJ rearrangements at the Tcra and/or Tcrg loci. Cells that complete productive Tcra rearrangements can express TCRβ proteins and will display these on their surfaces in precursor-TCR (pre-TCR) complexes (1). Signals from the pre-TCRs then induce the cells to re-enter the cell cycle and ultimately to reverse their migration back toward the medulla while they differentiate into double-positive cells (4–6).

After a rapid series of five or more divisions, the cells again cease proliferating and re-express RAG-1 and RAG-2 before rearranging the Tcra locus. Productive rearrangements this time permit the expression of TCRβ complexes, which are capable of delivering signals to the cells when they engage peptide/MHC complexes (1).

Although the majority of double-positive cells die because they fail to receive the correct form of signal from the TCRβ they express, a minor fraction of them receive signals that allow for differentiation into single-positive cells. These cells migrate into the medulla as they down-regulate RAG-1 and RAG-2 and complete the changes in gene expression that define the CD4+ or CD8+ lineages (1). Interestingly, single-positive cells can reside in the medulla for 2–3 wk, a time period that may be essential for the completion of negative selection (7). At the end of this time, medullary single-positive cells leave the thymus, at least in part via the blood (8).

Chemokines are small diffusible or matrix-associated proteins that transmit chemotactic signals into cells through pertussis toxin-sensitive, G protein-coupled receptors (9, 10). Just as they have proved essential for lymphocyte migration in secondary lymphoid tissue, there are several indications that chemokines are important for the migration of cells within and from the thymus. Most notably, a number of studies have shown that pertussis toxin can impede the migration of single-positive cells into the medulla and prevent the exit of mature cells from the thymus to the periphery (11, 12). There are also thymic abnormalities in mice lacking Goi (13, 14). In addition to these functional observations, the expression patterns of chemokines and their receptors are highly suggestive of potential roles in guiding cells in the thymus. Thus, passage through the TCRβ and TCRα developmental checkpoints is associated with the up-regulation of distinct chemokine receptors, the ligands for which are regionally localized in the thymus. For example, pre-TCR signaling leads to increased CCR9 expression, which would allow the cells to migrate toward CCL25 (thymus-expressed chemokine) (15–18). Similarly, CCR4, CCR7, and CCR8 are all up-regulated during positive selection and would permit migration toward medullary CCL22 (macrophage-derived chemokine) or CCL17 (thymus and activation-regulated chemokine), CCL19 (EBI1-ligand chemokine, macrophage inflammatory protein-3β, and Exodus-3)/21 (secondary lymphoid tissue chemokine, 6-C-kine, Exodus-2, and thymus-derived chemotactic agent 4), and CCL1 (T cell activation gene-3), respectively (8, 19–22).

Notwithstanding their suggestive expression patterns, however, evidence for the involvement of specific chemokines in thymocyte migration in vivo has been limited to date. Mutant mice deficient
in the expression of individual chemokines or their receptors generally show well-defined cortical and medullary regions with little evidence for defects in the positioning of thymocytes in them (9). An exception to this is the recent demonstration that thymus-specific deletion of CXCXR4 can impair the migration of double-negative thymocytes into the cortex (23). Interestingly, the defect in cortical migration is associated with impaired thymocyte development, suggesting that proper positioning may be essential for cells to receive the developmental cues they would normally require. Nonetheless, thymocytes can still complete their development without CXCXR4, albeit at reduced efficiency compared with wild-type cells (23–25). Similarly, mice lacking CCR7 support largely normal thymocyte development, yet these mice show a defect in the emigration of mature cells from the neonatal thymus (8). Although it remains to be tested, an attractive hypothesis to reconcile the pertussis toxin, expression pattern, and genetic data is that multiple chemokines and their receptors are involved in positioning thymocytes, and that there is at least some redundancy in the positioning process at different thymocyte developmental stages.

As one means to examine the specific roles of CCR7 in thymocyte migration, we generated transgenic mice that express CCR7 prematurely. CCR7 is normally induced during positive selection, so it seemed reasonable that this receptor might be important for directing the migration of cells from the cortex to the medulla in response to the medullary chemokines CCL19 and CCL21 (20, 26). Our expectation was that premature expression of CCR7 might be sufficient to cause a redistribution of double-positive thymocytes and perhaps result in their inappropriate entrance into the medulla before positive selection had occurred. In this study we report the results of these experiments and identify CCR7 as a participant in the directed migration of thymocytes that accompanies positive selection.

Materials and Methods

Mice, Abs, and flow cytometry

A cDNA encoding a FLAG-tagged form of mouse CCR7, provided by Drs. V. Ngo and J. Cyster (University of California, San Francisco, CA; the FLAG epitope is Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys) (26), was cloned by PCR, Southern blot, and fluorescent in situ hybridization (SISH) (27). The resulting construct was linearized and injected into C57BL/6 (28). The T3.70 Ab specific for the B6.2.16 TCR (29) was pre-immunized with synthetic peptide (Southern Biotechnology Associates, Birmingham, AL), or human LFA3-Fc have been described previously (30). Brieﬂy, 2 × 10^6 thymocytes were stained with Abs specific for cell surface Ags. After washing twice with PBS, the cells were ﬁxed for 30 min in 2% paraformaldehyde and subsequently permeabilized with 0.1% Nonidet P-40. After this step, the cells were pelleted, incubated with 0.1% BSA/1% TBS and water, sections were counterstained with hematoxylin Gill’s Formulation I (Fisher Scientiﬁc, Pittsburgh, PA).

Cell transfers

Bone marrow cells were collected from wild-type B6.Ly5.2/Cr and Ly5.1-expressing CCR7 transgenic or nontransgenic littermates using IMDM containing 15% FCS. The CCR7 transgenic or nontransgenic cells were mixed with B6.Ly5.2 cells in various ratios ranging from 1:19 to 1:1, and a total of 5 × 10^6 cells were injected into each lateral tail vein of lethally irradiated recipients (two doses of 550 rad, 3 h apart), 6- to 7-wk-old, B6.Ly5.2 mice. The recipients received water containing neomycin (Sigma-Aldrich) and polyvinyl B sulfat (Paddock Laboratories, Minneapolis, MN) for 6 wk.

5-Bromo-2′-deoxyuridine (BrdU) labeling of thymocytes

Eight-week-old mice received one i.p. injection of 1.8 mg of BrdU (Sigma-Aldrich) dissolved in 200 μl of water and were thereafter provided with BrdU (0.8 mg/ml) and 1% glucose drinking water for up to 8 days. Thymuses were harvested at various time points and stained for BrdU incorporation. BrdU detection was performed as previously described with some modifications (30). Brieﬂy, 2 × 10^6 thymocytes were stained with Abs specific for cell surface Ags. After washing twice with PBS, the cells were ﬁxed for 30 min in 2% paraformaldehyde and subsequently permeabilized with 0.1% Nonidet P-40. After this step, the cells were pelleted, incubated with 50 Kunitz U of DNase I (Sigma-Aldrich), washed with PBS, and then stained with FITC-conjugated anti-BrdU Ab (BD Biosciences).

Intrathymic injections

Five- to 6-wk-old mice were anesthetized with avertin (tribromoethanol; Sigma-Aldrich). An incision was made in the sternum to reveal the thymus, and a total of 20 μl of an FITC (Molecular Probes, Eugene, OR) solution (1 mg/ml) in PBS was injected into each thymic lobe. Spleen and mesenteric lymph nodes from mice with equivalent levels of FITC labeling in the thymus were analyzed by flow cytometry 16 h after injection for the presence of FITC-labeled recent thymic emigrants.

Results

Expression and function of CCR7 on thymocytes from transgenic mice

To express CCR7 on immature thymocytes, we generated transgenic mice in which expression of the chemokine receptor was controlled by regulatory elements from the mouse Cd4 gene (27). A cDNA encoding a FLAG-tagged form of CCR7 (26) was embedded in a Cd4 minigene construct that lacked the transcriptional silencer normally present in the first intron of the Cd4 gene. CCR7 expression on cells in these mice could be detected either with an Ab specific for the FLAG epitope or with a CCL19-Fc fusion protein (28). As shown in Fig. 1, A and B, all transgenic thymocyte
subsets expressed CCR7, whereas the endogenous protein was expressed on post-positive selection, double-positive thymocytes (i.e., CD69$^{\text{high}}$CD4$^{+}$CD8$^{+}$ cells) and CD4$^{+}$CD8$^{-}$ and CD4$^{-}$CD8$^{+}$ single-positive thymocytes. Consistent with the expression pattern, both immature and mature thymocytes from the transgenic mice migrated toward a source of CCL19 or CCL21 in Transwell chemotaxis assays (Fig. 1C), with double-negative cells demonstrating slightly enhanced migration relative to double-positive cells. In contrast, only the mature cells from nontransgenic mice demonstrated CCL19- or CCL21-dependent chemotaxis. These data show that expression of the transgene-derived CCR7 was sufficient to render immature thymocytes responsive to chemokines that would normally only induce the migration of CD69$^{\text{high}}$CD4$^{+}$CD8$^{+}$ double-positive cells and mature single-positive cells (20, 26).

CCR7 expression induces the movement of double-positive cells into the thymic medulla

The cortical and medullary regions of wild-type mice can be readily distinguished from one another in fixed sections of thymus tissue stained with H&E. In the representative image shown in Fig. 2A, the medulla can be seen as a large central and mostly contiguous lightly stained area. Such medullary areas were more difficult to identify in sections of CCR7 transgenic thymuses, which typically showed much smaller islands of weak staining amid an expanded area of dense staining. Specifically, compared with wild-type thymuses, the CCR7 transgenic mice had a 4-fold increase in areas of weak staining, which together accounted for 2- to 3-fold less surface area (Fig. 2B).

The reduction in the weakly stained areas visible in H&E-stained sections could represent either a compression of the medullary space or an invasion of the medulla by double-positive thymocytes brought on by CCR7-dependent chemotaxis. To determine which of these possibilities was correct, we stained serial sections of thymuses from the two types of mice with two mAbs that distinguish cortical from medullary epithelium. We also stained the sections with PNA, a lectin that binds to desialylated O-linked glycans, which are much more abundant on double-positive than on single-positive thymocytes. As shown in Fig. 2C, CCR7 transgenic and wild-type thymuses contained similar masses of cells that stained with MTS10, which is specific for medullary epithelium. These same medullary masses could be identified in the serial sections by their absence of staining with CDR1, which binds to cortical epithelium. Strikingly, whereas PNA$^{+}$ cells were largely excluded from the wild-type medullary areas identified by the absence of CDR1, they were clearly present in the transgenic equivalents. This presence of CCR7 transgenic (but not nontransgenic) PNA$^{+}$ cells in the medullae was apparent...
both from the analysis of serial sections and from images of double-stained sections (Fig. 2, far right), in which the brown wash of PNA-stained cells characteristically extended well beyond the red CDR1/H11001 cortical areas. These data therefore indicate that the transgenic thymuses have similar areas of medullary epithelium to those of wild-type mice, with the striking difference being that PNA/H11001 double-positive cells are present in the former, but not the latter. Thus, the premature expression of CCR7 leads to invasion of the medulla by double-positive cells.

As an additional means to visualize whether premature CCR7 expression could induce double-positive thymocytes to migrate into the medulla, we performed adoptive transfer experiments that would allow for the relative locations of transgenic and nontransgenic cells to be compared within individual thymuses. Lethally irradiated B6.Ly5.2 mice were reconstituted with B6.Ly5.2 bone marrow cells mixed with variable percentages of transgenic or nontransgenic Ly5.1/H11001 bone marrow cells. The recipients were then allowed to recover for 6 wk to allow for repopulation of the thymus with cells from the injected bone marrow. Sections of thymuses from the aged chimeras were stained with PNA to detect double-positive cells together with an Ab specific for Ly5.1 to distinguish between the transgenic and nontransgenic cells. Representative images from chimeras containing 5% Ly5.1 marked transgenic or nontransgenic cells are shown in Fig. 3. In marked contrast to their nontransgenic counterparts, the transgenic PNA/H11001 immature cells were preferentially localized to the medulla and the cortico-medullary junction of the thymus. These experiments, therefore, provide additional evidence that CCR7 expression is sufficient to relocate immature cells from the cortex to the medulla and suggest that the normal induction of CCR7 during positive selection is important for the migration of positively selected cells into the medulla.

Premature expression of CCR7 impairs the development of single-positive thymocytes

The presence of double-positive cells in the thymic medulla raised the possibility that early expression of CCR7 might affect the development of thymocytes. This seemed reasonable given the demonstrated importance of cortical epithelium in positive selection and of the medulla in negative selection (1). Thus, inappropriate

FIGURE 3. CCR7 expression induces movement of double-positive cells into the thymic medulla. Lethally irradiated mice were reconstituted 6 wk before analysis with mixtures of wild-type and allotype-marked (Ly5.1+) transgenic or nontransgenic cells. Thymic sections were stained with PNA and an Ab specific for Ly5.1. Representative sections from chimeras reconstituted with 95% Ly5.1- and 5% Ly5.1+ cells are shown at ×5 magnification.
The percentages of CD4\(^{+}\)/H11002 slopes were estimated using the ordinary least square method. The slopes for formation of CD4\(^{+}\)/H11001/H11001 are plotted for CD4\(^{+}\) CCR7 transgenic mice were examined by continuous in vivo BrdU labeling, followed by surate decrease in the absolute number of CD4\(^{+}\)unchanged by the presence of the transgene, there was a commen-

A

B

C

D

FIGURE 4. Premature expression of CCR7 impairs the development of single-positive thymocytes. A, Representative flow cytometric data showing decreased numbers of CD4\(^{+}\)CD8\(^{-}\) thymocytes in a CCR7 transgenic mouse compared with a nontransgenic control mouse. B, Scatter plots showing the relative percentages of thymocyte subsets identified by CD4 and CD8 expression from 7-wk-old mice. The absolute numbers of thymocytes for transgenic and nontransgenic mice were 89 ± 11 \times 10^6 and 82 ± 17 \times 10^6, respectively. The difference in percentages of CD4\(^{+}\) CD8\(^{-}\) cells was determined to be significant using Student’s \(t\) test (\(p < 0.002\)). C, Impaired selection of clonotype-expressing CD4\(^{+}\)CD8\(^{-}\) thymocytes in mice transgenic for both CCR7 and the H-Y-specific B6.2.16 αβ TCR. The contour plots show the expression of CD4 and CD8 on thymocytes expressing high levels of the αβ TCR clonotype identified with the T.3.70 Ab. The scatter plot shows the frequency of T.3.70\(^{hi}\)/CD4\(^{+}\)CD8\(^{-}\) cells in the two types of TCR transgenic thymuses. The percentages of CD4\(^{+}\)CD8\(^{-}\) T cells were significantly different by Student’s \(t\) test (\(p < 0.001\)). D, The kinetics of formation of CD4\(^{+}\)CD8\(^{-}\) cells in CCR7 transgenic mice were examined by continuous in vivo BrdU labeling, followed by flow cytometry. The relative frequencies of BrdU-labeled cells are plotted for CD4\(^{+}\)CD8\(^{-}\) (upper panel) and CD4\(^{+}\)CD8\(^{+}\) (lower panel) cells. In each case, the curves were generated using three data points, and the slopes were estimated using the ordinary least square method. The slopes for formation of CD4\(^{+}\)CD8\(^{-}\) cells (lower panel) were significantly different when compared using an F test (\(p < 0.05\)).

apposition of double-positive thymocytes with medullary epithelium might be expected to impair positive selection or perhaps to accentuate negative selection.

Using flow cytometry, we saw no effect of premature CCR7 expression on early thymocyte development (as assessed by CD44 and CD25 expression on double-negative cells), and there was no obvious decrease in the average number of double-positive cells present in the transgenic thymuses. We also found that double-positive cells were not enriched for annexin V\(^{+}\) cells relative to wild-type controls. Thus, the mislocalization of cells had little detectable impact on development before positive selection, and it likewise did not appear to induce an increase in the apoptosis of double-positive cells. There was, however, an obvious effect of the transgene on the representation of CD4\(^{+}\)CD8\(^{-}\) single-positive cells in the thymus. Most notably, we observed a 2-fold reduction in the percentage of CD4\(^{+}\)CD8\(^{-}\) cells relative to other cells in the thymus (Fig. 4, A and B). As the total cellularity of the thymus was unchanged by the presence of the transgene, there was a commensurate decrease in the absolute number of CD4\(^{+}\)CD8\(^{-}\) cells per thymus. Reduced numbers of single-positive cells were apparent in the fetal and neonatal transgenic thymuses, and this developmental effect was also reflected in the reduced numbers of CD4\(^{+}\) T cells present in the lymph nodes and spleens of young adult transgenic mice (data not shown). Despite the developmental abnormalities, however, the CD4\(^{+}\) T cells that emerged from the transgenic thymuses retained the capacity to mediate immune responses, as shown by a test of delayed-type hypersensitivity (data not shown).

The frequency of CD4\(^{+}\)CD8\(^{-}\) cells was not obviously different in transgenic compared with nontransgenic mice. We therefore crossed the CCR7 transgenic mouse to a mouse expressing an MHC class I-restricted TCR transgene, so that selection of the CD4\(^{+}\)CD8\(^{+}\) cells could be examined with greater sensitivity. The TCR transgenic mouse we chose for this purpose encoded the well-characterized B6.2.16 TCRαβ specific for the H-2D\(^{b}\)-restricted H-Y Ag from the Smcy gene (31). Most thymocytes expressing this TCR are deleted at the double-negative stage of development or just after it in male H-2\(^{b}\) thymuses (32), but they are efficiently selected into the CD8 lineage in female thymuses (29). We observed no effect of premature CCR7 expression on the deletion of H-Y-specific thymocytes (data not shown), but we consistently observed a reduced frequency of CD4\(^{+}\)CD8\(^{-}\) single-positive cells in the double-transgenic female thymuses. More strikingly, we found that compared with TCR transgenic mice lacking the CCR7 transgene, the double-transgenic thymuses contained fewer CD4\(^{+}\)CD8\(^{-}\) cells that stained brightly with the T3.70 anti-clonotype mAb (Fig. 4C). This phenotype suggests that premature expression of CCR7 compromised the selection of clonotype-bearing cells, such that cells using endogenously encoded TCR α-chains were at a selective advantage. Cumulatively, the data indicate that, as seen for CD4\(^{+}\)CD8\(^{-}\) cells, the presence
CD4 Chemokine ligands of CCR7 direct impaired selection of mature expression of CCR7 causes a decrease in the fraction of cells of steady-state thymocyte frequencies, this result suggests that pre-positive cells from nontransgenic mice. Consistent with the analysis interfered with the positive selection of CD4\(^+\)CD8\(^+\) of the CCR7 transgene and the mislocalization it induced, interfered with the positive selection of CD4\(^+\)CD8\(^+\) thymocytes.

In an attempt to clarify whether the impaired development of CD4\(^+\)CD8\(^+\) single-positive thymocytes in CCR7 transgenic mice was due to a decrease in their rate of formation, the kinetics of thymocyte development were examined by tracing BrdU incorporation after continuous BrdU oral administration in their drinking water. In the thymus, BrdU is incorporated into rapidly proliferating, double-negative cells, with little incorporation after the cells reach the double-positive stage of development, where they largely, but not completely, cease dividing (33, 34). Thus, the rate of appearance of the BrdU label in single-positive cells is a useful index of the rate of formation of these cells from double-positive precursors. As shown in Fig. 4D, the kinetics of double-positive thymocyte labeling were similar in CCR7 transgenic and nontransgenic mice. In contrast, CD4\(^+\)CD8\(^+\) single-positive cells in CCR7 transgenic mice showed a reduced rate of BrdU labeling compared with CD4\(^+\)CD8\(^-\) single-positive cells from nontransgenic mice. Consistent with the analysis of steady-state thymocyte frequencies, this result suggests that premature expression of CCR7 causes a decrease in the fraction of cells that commits to the CD4 lineage during positive selection.

Chemokine ligands of CCR7 direct impaired selection of CD4\(^+\)CD8\(^-\) cells in CCR7 transgenic mice

The data shown in Figs. 2 and 3 indicate that premature CCR7 expression causes the redistribution of immature thymocytes toward the thymic medulla. To show that the developmental effects associated with this redistribution were dependent on interactions between CCR7 and its chemokine ligands, CCL19 and CCL21, we crossed CCR7 transgenic mice to plt/plt mice that show impaired expression of these chemokines (35, 36). The plt mutation is a deletion of a large genomic region that contains the gene encoding CCL19 and one of two linked genes encoding CCL21. Mice homozygous for the plt mutation lack expression of CCL19 and show much reduced expression of CCL21 (36–38). As shown in Fig. 5A, the effect of premature CCR7 expression on T cell development was effectively suppressed in plt/plt mice. In addition, PNA-positive thymocytes were no longer present in the plt/plt CCR7 transgenic medullae, and the thymuses had normal cortical and medullary areas (Fig. 5B). These data indicate that, as expected, the positioning and developmental effects of the transgene were dependent on CCL19/21.

Effect of transgenic CCR7 on the exit of T cells from the thymus and their accumulation in the spleens of newborn mice

The most abundant source of CCL19 and CCL21 in the thymus is medullary epithelial cells, but there is also some expression of CCL19 on thymic endothelial cells. This latter site of CCL19 expression has recently been implicated as being important for the directed emigration of thymocytes from the medulla at the completion of their development (8). Support for this idea came principally from the finding that neonatal mice lacking CCR7 expression showed delayed accumulation of recent thymic emigrants in their spleens compared with wild-type littermates. Furthermore, CCL19, but not CCL21, could induce the migration of cells when it was applied to thymic organ cultures. Because of these findings, it was important to test whether premature exit of cells from the thymus might be associated with the developmental effects caused by transgenic CCR7 expression.

Two assays were used to quantify recent thymic emigrants in the CCR7 transgenic mice. In one, a solution of FITC was injected directly into the thymuses of transgenic and nontransgenic mice, and the numbers of FITC-labeled emigrant cells in secondary lymphoid organs were then determined by flow cytometry the following day. In the second, thymocyte and splenic T cell numbers were counted in neonatal mice. As shown in Fig. 6, neither assay showed any evidence of an increase in thymic emigration as a consequence of expression of the transgene. In fact, in both cases,
there was reduced accumulation of CD4+ cells in the transgenic mice, reflective of the developmental effect described above.

Finally, we also examined neonatal and adult blood and lymphoid tissues for the presence of elevated numbers of double-positive cells, but again could find no evidence that the transgene was inducing early exit of these cells from the thymus (data not shown).

Discussion
In this study we have shown that CCR7 can promote the migration of double-positive cells from the cortex to the medulla of the thymus. This role was apparent both from the steady state analysis of CCR7transgenic thymuses and from the positioning of the transgenic thymocytes in radiation chimeras. Inappropriate localization of double-positive thymocytes reduced the efficiency with which single-positive cells were formed, indicating that the correct positioning of thymocytes is essential for their development. The data suggest that regulating responsiveness to medullary chemokines is a crucial component of the normal development of thymocytes and highlight CCR7 as a participant in cortical to medullary thymocyte migration.

CCR7 binds to CCL19 and CCL21, both of which are encoded by a small cluster of genes on mouse chromosome 4. In the thymus, CCL19 is expressed by medullary epithelial cells, CD11c+ dendritic cells, and CD31+ endothelial cells. The expression of CCL21 overlaps with that of CCL19, but its range of action may be somewhat more constrained, because, unlike CCL19, it has a charged C-terminal extension that allows for binding to the extracellular matrix (39–41). We have shown that the effect of the CCR7 transgene on thymocyte development is lost in mice that are homozygous for the plt mutation, in which both CCL19 and CCL21 expression is impaired. Although this observation makes clear that the transgenic phenotype is ligand dependent, it leaves open the question of whether CCR7-directed migration into the medulla might normally be dependent on both or just one of the two chemokines.

The plt/plt mice have clearly defined cortical and medullary regions in the thymus, and they support overtly normal development of thymocytes. Similar statements apply to mice that lack CCR7 (8, 42). Such observations could be used to infer the absence of a role for CCR7 in medullary translocation and to call into question the conclusions of our study. It remains true, however, that positive selection in normal mice results in up-regulation of CCR7, and as we show in this study, the acquisition of CCR7 is sufficient to move double-positive cells into the medulla. Other chemokine receptors are also up-regulated during positive selection, raising the possibility that the migration of cells into the medulla could be brought about by the combined influence of multiple redundant mechanisms. Possibilities in this respect would include CCR4 and CCR9. CCR4 may be an especially attractive candidate, because, like CCR7, its expression is markedly induced as a consequence of positive selection. Moreover, CCL22, one of the ligands for CCR4, is also expressed in the medulla, and this ligand is an efficacious attractant for cells undergoing positive selection (i.e., CD69+ cells) (16, 20, 43, 44). CCR9 is expressed by double-positive cells, but its greatest increase in expression may occur after the pre-TCR signal (15–17). The ligand for CCR9, CCL25, is found in both the cortex and the medulla, and thymocytes show apparently equivalent migration toward it both before and immediately after positive selection (15, 17, 20). Mice lacking CCR4 (45) or CCR9 (18, 46) have been generated, but neither mouse has to date been described as showing a defect in thymocyte positioning or in the formation of cortical or medullary areas. To date, mice showing defective responses to combinations of chemokines (e.g., mice lacking both CCR4 and CCR7) have not been generated, but such mice are of obvious importance for discerning the nature of the redundancy in the migration mechanism. If CCR4 and CCR7 are the major contributors to medullary migration, then the loss of both receptors would presumably have a marked effect on migration and development.

In addition to its capacity to guide cells toward the medulla, CCR7 and its ligands are apparently also involved in directing cells out of the thymus. Neonatal mice lacking CCR7 or mice treated with a CCL19 antagonist show decreased emigration of cells from the thymus to the spleen, although in neither case is emigration completely impaired (8). Thus, as just argued for migration to the medulla, the dependency of thymocytes on CCR7-directed chemotaxis for emigration is not complete, and other factors are also likely to be involved in this process. Consistent with this, we found that transgenic expression of CCR7 on double-positive cells and mature single-positive cells was insufficient to direct them out of the thymus, and we saw no detectable increase in thymocyte emigration in the transgenic mice using two separate assays. Emigration from the thymus could involve both lymphatic and blood vessels, and the mechanisms that regulate it are largely unclear. As CCR7 is expressed from an early point after positive selection, yet single-positive cells can reside in the medulla for 2 wk or more (7), additional signals may be required to prime cells for exit, and these signals may only be received after the cells have resided in the medulla for a substantial length of time.

The migration path of thymocytes is circuitous, involving movement from the medulla to the outer cortex, followed by re-entry into the medulla after TCRβ selection (4–6). As mentioned in the introduction, recent data implicate CXCR4 in the first step of this path, i.e., the guidance of progenitor cells into the cortex (23). When in competition with wild-type thymocytes, CXCR4-deficient cells failed to enter the cortex, and their development was arrested at the double-negative stage. In a similarly competitive situation, CCR7 transgenic cells did not show the same type of developmental block despite the fact that they were found concentrated in the medulla and showed little, if any, penetration into the cortex. Although the intrathymic migration phenotypes of CXCR4-deficient and CCR7 transgenic cells appear to be superficially similar, additional experiments will be required to determine whether this is, in fact, the case. It remains possible, for example, that CXCR4 expression on progenitor thymocytes allows them to move toward CCL12-secreting cells close to the medullary boundary, and that limited penetration into the cortex of this sort is sufficient for development to proceed.

The thymic medulla is rich in cell types that are effective in inducing negative selection. Double-positive cells are especially sensitive to apoptosis, in part because of their reduced expression of proteins such as Bcl-2 that would protect them against programmed cell death (1). It seemed possible, therefore, that by causing double-positive cells to move into the medulla prematurely, there would be an increase in apoptosis because of the induced expression of proteins such as Bcl-2 that would protect them against programmed cell death. It seemed possible, therefore, that by causing double-positive cells to move into the medulla prematurely, there would be an increase in apoptosis because of the induced expression of proteins such as Bcl-2 that would protect them against programmed cell death. Thus, the overall cellularity of the thymus was not decreased, and the only observable defects were those in the rate of formation of CD4+CD8+ or CD4–CD8+ single-positive cells. Cortical epithelial cells are distinctive in their capacity to promote the positive selection of cells (2), and it could be that less of the transgenic cells are able to interact efficiently with these cells because of premature migration toward medullary stromal elements. Alternatively, the apposition of the cells next to medullary components may, in fact, suppress signals that are necessary for positive selection. Whatever the basis of the effect, the data make clear that normal thymocyte development hinges on the
proper regulation of cortico-medullary migration and retention of cells in the cortex until positive selection signals have been received.

Patterning of the thymus during and after embryogenesis is a dynamic process that can be reinitiated in response to thymocyte depletion and that can also be modeled in vitro in reaggregate organ culture systems. The formation of the cortex and medulla in both contexts is crucially dependent on the presence of thymocytes (2). There is, for instance, a lack of recognizable medullary or cortical areas in mice that lack intrathymic T cell precursors (e.g., mice deficient in both c-Kit and common γ-chain expression or mice that overexpress human CD3ε) (47, 48). Such thymuses are extremely small and contain seemingly disorganized aggregations of epithelial cells. RAG-1- or RAG-2-deficient mice that lack double-positive thymocytes have larger thymuses, but these are still much smaller than wild-type thymuses. Although cortical epithelium forms in these thymuses, they contain hypoplastic and disorganized medullae (49, 50). TCRα-deficient thymuses are also devoid of properly organized medullae despite the presence of abundant cortical epithelium (51). Cumulatively, observations of this sort show that the formation of the medulla is dependent on the presence of mature, single-positive cells, whereas the cortex can be organized in response to the presence of double-negative thymocytes.

References