Improved Immunogenicity of an Immunodominant Epitope of the Her-2/neu Protooncogene by Alterations of MHC Contact Residues

Simona Vertuani, Alessandro Sette, John Sidney, Scott Southwood, John Fikes, Elissa Keogh, Jan Alvar Lindencrona, Glenn Ishioka, Jelena Levitskaya and Rolf Kiessling

*J Immunol* 2004; 172:3501-3508; doi: 10.4049/jimmunol.172.6.3501

http://www.jimmunol.org/content/172/6/3501

---

**References**  This article cites 40 articles, 22 of which you can access for free at:
http://www.jimmunol.org/content/172/6/3501.full#ref-list-1

**Subscription** Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

**Permissions** Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

**Email Alerts** Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts

---

*The Journal of Immunology* is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852
Copyright © 2004 by The American Association of Immunologists All rights reserved.
Print ISSN: 0022-1767 Online ISSN: 1550-6606.
Improved Immunogenicity of an Immunodominant Epitope of the Her-2/neu Protooncogene by Alterations of MHC Contact Residues

Simona Vertuani,† Alessandro Sette,‡ John Sidney,‡ Scott Southwood,† John Fikes,† Elissa Keogh,‡ Jan Alvar Lindencrona,* Glenn Ishioka,‡ Jelena Levitskaya,* and Rolf Kiessling²*

The HER-2/neu (HER-2) oncogene is expressed in normal epithelial surfaces at low levels and overexpressed in several types of tumors. The low immunogenicity against this self tumor Ag can be improved by developing epitopes with amino acid replacements in their sequences. In this study, three HER-2/neu.369 (HER-2.369) analogue peptides, produced by modifying both anchor positions by introducing L, V, or T at position 2 and V at the C terminus, were analyzed for their capacity to induce CTLs in vitro from human PBMC and in vivo in HLA-A2.1/Kb transgenic mice. One of the analogues (HER-2.369 V2V9) sensitized target cells for HER-2-specific recognition by human CTLs and induced specific CTLs in vitro at 100-fold lower concentrations than the HER-2.369 wild-type epitope. These CTLs were also able to recognize the wild-type epitope and HER-2-expressing tumors in an MHC-restricted manner. Furthermore, a 100-fold lower amount of the HER-2.369 V2V9 analogue compared with the wild-type epitope was required to induce CTLs in HLA-A2.1/Kb transgenic mice. However, the V2V9 analogue demonstrated only marginally better binding to the MHC class I A2 allele compared with wild type. To establish thermodynamic parameters, we developed radiolabeled F3*Y analogues from both the HER-2.369 epitope and the V2V9 analogue. Our results indicate that the high biological activity of the HER-2.369 V2V9 epitope is associated with a slower dissociation kinetic profile, resulting in an epitope with greater HLA-A2 stability. The Journal of Immunology, 2004, 172: 3501–3508.

During the last decade, a large number of tumor-associated Ags (TAA), which can be recognized by T lymphocytes and therefore constitute tumor vaccine candidates, have been identified (1). Numerous immunodominant epitopes recognized by CTL or Th cells have been defined from human melanomas, and several of them are currently being evaluated in clinical trials. Promising results have been reported for some of them (2–4). Much less is known, however, about the TAA expressed in carcinomas. Among the few TAA defined to date, HER-2/neo (hereafter termed HER-2) is a prominent example. HER-2 is a nonmutated, overexpressed oncogene that encodes a 185-kDa transmembrane, receptor-like glycoprotein with tyrosine kinase activity and is expressed in a broad spectrum of human carcinomas. Several properties render HER-2 a promising candidate for T cell-based tumor vaccination strategies (5). Of particular importance, HER-2 overexpression appears to contribute not only to disease initiation and progression, but also to the transformation of human mammary epithelium. Therefore, the risk that HER-2-overexpressing tumors escape immune responses by Ag loss is relatively low.

HER-2 is a typical example of a self tumor Ag, expressed not only by tumors, but also at low levels in a variety of healthy fetal and adult tissues derived from all three germ layers (6). Therefore, it is expected that this tumor Ag may be weakly immunogenic, and that most T cells specific for this Ag are clonally eliminated or subjected to tolerance in the periphery. Yet accounts from experimental models and clinical trials confirm that HER-2 can be immunogenic and generate Ab, CTL, and Th cell responses in subjects bearing HER-2-overexpressing tumors (5). Results from murine neu transgenic experimental models further illustrate that HER-2-based vaccines can induce tumor protection (7).

Because of the possible repertoire limitations related to T cell tolerance alluded to above, we and others are interested in enhancing the immunogenicity of the HER-2 molecule and achieving more efficient tumor-specific CTL responses. One approach entails agonist analogues of HER-2 epitopes associated with the ability to induce higher levels of responses than wild-type peptides. These epitope analogues may ultimately be more efficient in inducing anti-tumor responses in patients with HER-2-expressing tumors.

Two general approaches have been taken to design agonist epitopes from tumor Ags. One approach entails modification of HLA anchor residues, resulting in higher HLA binding. This approach has been applied with success for several HLA-A2 peptides derived from melanoma Ags and for HER-2-derived epitopes (8–12). Alternatively, the replacement of residues involved in the TCR contact may also result in an increased response by T cells (13–16). In this study we have applied the first approach and tested a series of variants with enhanced HLA-A2 binding derived from...
the immunodominant HER-2.369–377 epitope (17). We found that one of the analogues (HER-2.369 V2V9) can induce wild-type specific CTLs in vitro in HLA-A2-positive human donors and in vivo in HLA A2.1/Kb transgenic mice (HLA-A2.1/Kb tg) at markedly lower concentrations than the HER-2.369 wild-type epitope. This analogue bound HLA-A2 only marginally better than the wild-type peptide, but resulted in HLA complexes associated with higher stability. We speculate that the higher biological activity of the HER-2.369 V2V9 epitope could result from a higher HLA-A2 stability and/or subtle conformation alterations of the peptide/HLA complex.

Materials and Methods

Cell lines

The TAP-defective HLA-A2.1 T2 cell line derived from the human T cell leukemia/b cell LCL Hybrid 174 was a gift from Dr. P. Cresswell (Yale University School of Medicine, New Haven, CT). The .221A2.1 cell line was produced by transferring the HLA-A2.1 gene into the HLA-A,-B,-C-mutant human B lymphoblastoid cell line .221. The colon adenocarcinoma cell lines SW403 and HT-29 were obtained from American Type Culture Collection (Manassas, VA). Cells were grown in RPMI 1640 medium supplemented with antibiotics, sodium pyruvate, nonessential amino acids, and 10% (v/v) heat-inactivated FCS. Jurkat A*0201/R2, a human T cell leukemia/HLA-A2.1-negative cell line stably transfected with an HLA-A*0201/R2 chimeric gene, was provided by W. M. Kast (Loyola University, Maywood, IL). Cells were maintained in RPMI 1640 (Life Technologies, Grand Island, NY) supplemented with 10% heat-inactivated FCS, 100 IU/ml penicillin, and 100 μg/ml streptomycin (complete medium).

Peptides and HLA-A2 binding assays

Peptides were synthesized by a solid phase method using a multipetide synthesizer and were analyzed by reverse phase HPLC as previously described (18, 19).

HLA-A2.1 molecules were purified as previously described (20). Briefly, cell lysates from JY cells were first depleted of HLA-B and -C molecules by repeated passage over a B1.23.2 (anti-HLA-B and -C) column. Remaining HLA-A molecules were captured on a W6/32 (anti-HLA-A, B, C) column. The protein content and purity of class I preparations were monitored by SDS-PAGE analysis.

Quantitative assays to measure the binding of peptides to soluble class I molecules are based on the inhibition of binding of a radiolabeled standard against peptide bound. These assays were performed as previously described (21).

Briefly, 1–10 nM radiolabeled peptide was coincubated at room temperature with 1 μM to 1 nM purified MHC in the presence of 1 μM human β2-microglobulin (The Scripps Laboratories, San Diego, CA) and a mixture of protease inhibitors. After a 2-day incubation, the percentage of MHC-bound radioactivity was determined by size exclusion gel chromatography by using a TSK 2000 column. Alternatively, the percentage of MHC-bound radioactivity was determined by capturing MHC/peptide complexes on W6/32 Ab-coated Optiplates (Packard Instrument, Meriden, CT), and determining bound counts per minute using the TopCount (Packard Instrument) microtiter plate counter.

The radiolabeled standard peptide used for HLA-A2.1 assays was an F2βγα Y analogue of the HBV core 18–27 epitope (sequence FLPSDYF19 PSV). The average IC50 of this peptide for HLA-A2.1 was 5.0 nM. In the case of competitive assays, the concentration of peptide yielding 50% inhibition of the binding of the radiolabeled peptide was calculated. Peptides were initially tested at one or two high doses. The IC50 of peptides yielding positive inhibition were then determined in subsequent experiments, in which the concentration of radiolabeled peptide was held constant and the concentration of unlabeled competitor was increased. The IC50 values are reasonable approximations of the true Kd values. Each competitor peptide was tested in two to four independent experiments. As a positive control, the unlabeled version of the radiolabeled probe was also tested in each experiment.

To allow the performance of kinetic of association (Kd) experiments using radiolabeled peptides, analogues representing F1 γδ relatives of Her2/neu peptides were designed, and peptide-MHC assays were set up as described above, and then incubated for various times ranging between 0 and 60 min at either room temperature or 37°C. Further association between HLA-A2.1 and the radiolabeled ligand was stopped by dilution, and the fraction of peptide bound was determined as described above by size exclusion chromatography. The initial linear part of the binding iso-
**Human IFN-γ ELISPOT assay**

Ninety-six-well filtration plates (MAIPS45 10; Millipore, Bedford, MA) were coated overnight at 4°C with 75 μl/well of 2 μg/ml anti-human IFN-γ mAb. Wells were then washed six times with PBS and blocked with 100 μl/well RPMI 1640/1% human serum albumin for 2 h at 37°C. Stimulator cells were washed once, resuspended in RPMI 1640 at 2.5 x 10^4 cells/ml, plated at 80 μl/well, then mixed with 20 μl of 0.5 μg/ml peptide solution. CTLs were added at the concentration of 2 x 10^4 cells/well in 100 μl. After 4 h of incubation at 37°C, the plates were washed six times with PBS/0.05% Tween 20. Wells were incubated overnight at 4°C with 75 μl/well mouse biotinylated anti-human IFN-γ mAb (7-B6-1-biotin; Mabtech, Nacka, Sweden) at a concentration of 0.75 μg/ml in PBS, 1% BSA, and 0.02% NaN_3. After washing six times with PBS/0.05% Tween 20, 75 μl of streptavidin-alkaline phosphatase conjugate solution (Mabtech, Nacka, Sweden) diluted 1/1000 in PBS (1% BSA/0.02% NaN_3) was added for 2 h at room temperature in the dark. After another washing step with PBS, 75 μl/well substrate solution was added to each well for 5–10 min. Color development was stopped by washing under running tap water. After drying at room temperature, IFN-γ-secreting T cells were counted using the automated image analysis system ELISPOT reader.

**Analysis of in vivo immunogenicity in HLA-A2.1/Kb transgenic mice**

HLA-A2.1/Kb mice (23) were coimmunized with varying doses of the HER-2 wild-type or analogue peptide and 50 μg/mouse of the PADRE Th epitope prepared in IFA. The dose of immunizing peptide ranged from 100 μg/mouse to 10 ng/mouse, in log intervals. As a control, mice were injected with an IFA emulsion without peptide. Eleven days after immunization, splenocytes from injected animals were cultured with 1 μg/ml of each of the peptides for 16 h at 37°C in RPMI 1640 with 10% FCS and 1 x 10^5 stimulator cells (HER-2-expressing, HLA-A2-1 transgenic mice) per well. The release of IFN-γ was measured by ELISPOT (Fig. 1). The wild-type HER-2 epitope was found to generate specific CTLs, but only at the concentration of 1 μg/ml, whereas no specific CTL responses were detected at the lower concentrations (10 ng/ml or below). In contrast, the variant peptide V2V9 was able to efficiently elicit CTL responses to the wild-type 369 epitope when cultures were stimulated with 1 μg/ml and 10 ng/ml peptide. Of particular interest, these CTLs raised by the V2V9 analogue were able to recognize not only the V2V9 analogue, but also the 369 wild-type epitope as well as the L2V9 analogue. The L2V9 variant peptide, which had the highest HLA-A2.1 binding affinity, did not generate CTL responses at any of the tested concentrations. Similar results were obtained with PBL from two other HLA-A2-positive donors (data not shown).

**Results**

Fixed anchor analogues derived from the HER-2.369 epitope can sensitize target cells at low peptide concentrations for recognition by HER-2.369-specific CTLs

Three HER-2.369 analogue peptides, produced by modifying both main anchor positions by introducing L, V, or T at position 2 and V at the C terminus, were previously demonstrated to have improved HLA-A2.1 binding and/or supertype cross-reactive binding compared with the wild-type epitope (22). We first analyzed to what extent these HER-2/neu.369 (HER-2.369) variants would be able to sensitize HLA-A2-expressing T2 cells for recognition by HER-2.369 wild-type-specific CTLs, as measured in ELISPOT IFN-γ production assays. Both V2V9 (KVFGSLAVF) and L2V9 (KLFGSLAFV) analogues more efficiently sensitized T2 cells for HER-2.369-specific CTL lysis compared with the wild-type peptide (22, 23). The L2V9 analogue, however, bound only marginally better to HLA-A2.1 compared with the wild-type HER-2.369 epitope (23 vs 37 nM), but nevertheless was associated with increased ability to induce HER-2.369-specific CTL recognition.

The HER-2.369 V2V9 analogue can induce specific CTLs in vitro at lower concentrations than the wild-type epitope

We next determined the capacity of the HER-2.369 peptide variants V2V9 and L2V9 to induce peptide-specific CTLs. A range of concentrations was used for each peptide to determine the minimal concentration required to elicit specific CD8⁺ T cell responses from HLA-A2-positive healthy donors stimulated with autologous DC cells pulsed with various concentrations of wild-type (Fig. 2A), V2V9 analogue (Fig. 2B), or L2V9 analogue (Fig. 2C). Seven days after the third stimulation, the CTL cultures were tested in IFN-γ release ELISPOT assays against T2 cells pulsed with 10 μg of wild-type peptide, V2V9 analogue, L2V9 analogue, or irrelevant peptide (Pol476–484, peptide from the reverse transcriptase of HIV-1). The wild-type HER-2 epitope was found to generate specific CTLs, but only at the concentration of 1 μg/ml, whereas no specific CTL responses were detected at the lower concentrations (10 ng/ml or below). In contrast, the variant peptide V2V9 was able to efficiently elicit CTL responses to the wild-type 369 epitope when cultures were stimulated with 1 μg/ml and 10 ng/ml peptide. Of particular interest, these CTLs raised by the V2V9 analogue were able to recognize not only the V2V9 analogue, but also the 369 wild-type epitope as well as the L2V9 analogue. The L2V9 variant peptide, which had the highest HLA-A2.1 binding affinity, did not generate CTL responses at any of the tested concentrations. Similar results were obtained with PBL from two other HLA-A2-positive donors (data not shown).

**FIGURE 1.** HER-2.369 analogues show improved capacity to sensitize T2 cells for recognition by a HER-2.369 wild-type induced CTL clone. The release of IFN-γ was tested in an ELISPOT assay against T2 cells pulsed with decreasing concentrations of the wild-type peptide (A) or HER-2.369 V2V9 (B), HER2.369 L2V9 (C), and HER-2.369 T2V9 (D) analogues. The arrows indicate the concentration of peptide required for production of IFN-γ in 25% of effector CTLs.

**CTLs induced by the HER-2.369 V2V9 analogue can recognize HER-2-expressing, HLA-A2.1-positive tumor cells**

The HER-2.369 epitope was previously demonstrated to be naturally processed and expressed on HER-2-expressing, HLA-A2-positive tumor targets (17, 26). The experiments described above showed that the CTLs raised against the V2V9 peptide were also able to recognize low concentrations of the wild-type HER-2 peptide, indicating that these CTLs may also recognize HER-2-expressing tumor targets. To test this hypothesis, microcultures of CTLs were induced by either the HER-2.369 V2V9 peptide or the wild-type control peptide (data not shown) from two healthy HLA-A2-positive donors. Nineteen of 26 V2V9-specific cultures from both donors were able to recognize the wild-type 369 epitope, as measured in IFN-γ release assays (data not shown). Of importance, five of the CTL cultures specific for the wild-type 369 epitope were able to recognize the SW403 HER-2-expressing, HLA-A2.1-positive tumor targets, but not HER-2-expressing, HLA-A2.1-negative HT29 tumor targets (Fig. 3). We therefore conclude that CTLs raised by the V2V9 peptides are capable of recognizing not only the wild-type HER-2.369 epitope, but also HER-2-expressing tumor targets.
The HER-2.369 V2V9 analogue can induce specific CTLs in vivo in HLA-A2.1/Kb transgenic mice at lower concentrations than the HER-2.369 wild-type epitope

We next investigated whether the HER-2.369 V2V9 analogue would be more efficient than the HER-2.369 wild-type epitope in inducing immunity in vivo. HLA-A2.1/Kb transgenic mice were immunized with varying doses of the HER-2 wild-type or analogue peptide coemulsified in IFA with the PADRE Th epitope. Eleven days after immunization, splenocytes were cultured with the immunizing peptide and APC for 5 days, and peptide-specific IFN-γ production was measured using an in situ capture ELISA or the ELISPOT assay. The results demonstrated that the HER-2.369 V2V9 analogue possessed a markedly higher immunogenicity in the HLA-A2.1/Kb transgenic mice (Fig. 4). Specifically, the HER-2.369 V2V9 analogue was able to induce a specific CTL response in HLA-A2.1/Kb mice immunized with 10 ng of peptide or more. In contrast, the wild-type HER-2.369 epitope was only able to do so at an immunizing dose of 100 ng of peptide, not at any of the lower doses. Comparable results were obtained with both the IFN-γ ELISA and the ELISPOT assay (Fig. 4). Taken together, the results demonstrate that the higher immunogenicity in vitro of the HER-2.369 V2V9 peptide is paralleled by a markedly increased immunogenicity in vivo of this analogue compared with the wild-type HER-2.369 epitope. Next, we further analyzed the mechanism behind the enhanced immunogenicity of the V2V9 peptide.

High stability of HER-2.369 V2V9 HLA-A2.1 complexes

Both the association and the dissociation rates contribute to the steady state binding equilibrium of peptide/MHC complexes and, ultimately, are also expected to affect that of the TCR/peptide/MHC complexes. To further characterize the mechanisms of the increased immunogenicity of the V2V9 analogue peptide in comparison with its wild-type counterpart, the kinetics of association and dissociation of these two epitopes were analyzed. The results are summarized in Table I and Fig. 5. Previous data compared the equilibrium binding capacity at room temperature of the wild-type epitope and the V2V9 analogue peptide. As mentioned above, the V2V9 analogue bound marginally better than the wild type (23 vs 37 nM), but still less strongly than the control peptide HBV core F6*Y (5 nM). This assay was used because room temperature of the F3 peptides are similar (within 2-fold) to the corresponding Y3 analogues (3.6 vs 1.9 nM). This assay was used because room temperature binding affinity values have been found to correlate well with immunogenicity (27) and because the empty MHC molecules rapidly unfold at 37°C equilibrium competition analysis somewhat impractical and inaccurate. In our experience, to accurately estimate 37°C binding constants, it is most effective to separately radiolabel each peptide and to independently determine on-off rate parameters. In the current set of experiments we first developed two F3*Y analogues to allow for radiolabeling and direct establishment of thermodynamic parameters. As measured by the equilibrium assay (see first column of Table I), the binding at room temperature of the F3 peptides are similar (within 2-fold) to the corresponding Y3 analogues (3.6 × 10⁻⁸ vs 1.9 × 10⁻⁸ M for HER-2.369; 2.3 × 10⁻⁸ vs 3.3 × 10⁻⁸ M for the V2V9 analogue), even though the V2F3V9 analogue is slightly less than that of the
with varying doses of the HER-2 wild-type or analogue peptide and 50 g/ml of the PADRE Th epitope prepared in IFA. Mice were injected with an IFA emulsion without peptide (IFA). Mice were sacrificed 11 days after immunization, and splenocytes from the injected animals were cultured with 1 µg/ml of the immunizing peptide to expand CTLs as described in Materials and Methods. Five days later, peptide-specific IFN-γ production by the CTLs was measured using an in situ capture ELISA (A) or the ELISPOT assay (B). The background IFN-γ levels in assay wells tested in the absence of peptide or in the presence of an irrelevant peptide ranged from 0–59 pg/well and 0.1–3 spots/2 × 10⁴ cells. Values shown represent net CTL responses with background subtracted.

F3 analogue (3.3 vs 1.9 × 10⁻⁸ M). The on rates of these two peptides (see second and third columns of Table I), measured after ¹²⁵I labeling, were essentially identical regardless of whether they were measured at room temperature or 37°C (3.4 vs 3.7 × 10³ s⁻¹ M⁻¹ at 23°C and 2.6 vs 2.4 × 10³ s⁻¹ M⁻¹ at 37°C). These values were substantially lower (~3-fold) than those obtained with the control HBV core 18–27 peptide.

Next, off-rate values at 37°C were determined (fourth column of Table I). Surprisingly, the F3 and V2F3V9 epitopes were remarkably more stable than the HBV core 18–27 F6*Y epitope (4 × 10⁻⁵ s⁻¹ for HBV core 18–27 F6*Y, 2 × 10⁻⁵ s⁻¹ for F3, and 7 × 10⁻⁶ for V2F3V9). Thus, when the 37°C Kₐ values were calculated as the ratio of Kₐ/Kₑ (fifth column of Table I), both the wild-type epitope and the analogue were associated with affinities similar to that of the HBV core 18–27 epitope (note that the Kₑ of the HBV core 18–27 did not change significantly with temperature, but that of the HER-2 epitopes did). The gain in affinity was particularly remarkable for the V2F3V9 peptide, which increased >10-fold (33 vs 2.9 nM), compared with the F3 analogue, which increased only 2- to 3-fold. Thus, these HER-2-derived epitopes achieved binding affinities similar to that of HBV core 18–27, but with a different thermodynamic profile (the HBV core is “fast on, fast off,” whereas the HER-2 peptides are associated with a “slow on, slow off” kinetic profile). It is reasonable to speculate that the higher affinity for A2.1 at 37°C of these peptides (both F3 wild type and V2F3V9 analogue) and their stability (especially the V2F3V9) could be linked to their high biological activity.

Discussion

The results presented in this study demonstrate that the HER-2.369 V2V9 variant is a more potent immunogen than the wild-type epitope, and that the T cell responses activated by this analogue are able to recognize the natural processed epitope on tumor target cells. However, this increased immunogenicity is associated with only a marginal increase in HLA class I binding of the variant epitope. When the thermodynamic parameters for these peptides were established, the result demonstrated that HER-2 peptides, in particular the HER-2.369 V2V9 peptide, were associated with a slow on, slow off kinetic profile, whereas the HBV core epitope demonstrated a much lower stability. These data therefore indicate that the strong immunogenicity associated with the HER-2 V2V9 peptide could be explained by a marked stability of binding of these peptides to MHC class I molecules.

Previously, we reported the identification of 11 new epitopes derived from HER-2, CEA, p53, and MAGE2/3, which included the three epitopes analyzed in this study (22). These epitopes were produced by modifying both the main anchor positions by introducing L, V, or T at position 2 and V at the C terminus, and were demonstrated to have improved HLA-A2.1 binding and/or supertypic cross-reactive binding compared with the wild-type epitope. These substitutions were introduced based on the results reported by Rupert et al. (28), who showed that these residues are associated with optimal HLA-A2 binding capacity. Although the main finding in our earlier report was to confirm the importance of a threshold of HLA binding as a necessary criterion for epitopes to

Table 1. Summary of thermodynamic parameters

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Kₐ at RT¹</th>
<th>Kₐ at RT²</th>
<th>Kₐ at 37°C³</th>
<th>Kₐ at 37°C⁴</th>
<th>Kₐ at 37°C⁵</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBV core 18–27 F6*Y</td>
<td>5 × 10⁻⁹</td>
<td>ND</td>
<td>7.1 × 10³</td>
<td>4 × 10⁻⁵</td>
<td>5.6 × 10⁻⁹</td>
</tr>
<tr>
<td>HER-2.369</td>
<td>3.6 × 10⁻⁸</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>HER-2.369 F3&gt;V</td>
<td>1.9 × 10⁻⁸</td>
<td>3.4 × 10²</td>
<td>2.6 × 10³</td>
<td>2 × 10⁻⁵</td>
<td>7.7 × 10⁻⁹</td>
</tr>
<tr>
<td>HER-2.369 I2&gt;V, L9&gt;V</td>
<td>2.3 × 10⁻⁸</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>HER-2.369 I2&gt;V, F3&gt;Y, L9&gt;V</td>
<td>3.3 × 10⁻⁸</td>
<td>3.7 × 10²</td>
<td>2.4 × 10³</td>
<td>7 × 10⁻⁶</td>
<td>2.9 × 10⁻⁹</td>
</tr>
</tbody>
</table>

¹ Kₐ molar values from the inhibition assay.
² M⁻¹ s⁻¹ values calculated from data in Fig. 5.
³ s⁻¹ values calculated from data in Fig. 5.
⁴ Kₐ at 37°C molar values calculated as Kₐ/Kₑ ratios.
be immunogenic, no side-by-side comparison with the corresponding wild-type epitope with regard to immunogenicity was conducted. In this study we have compared the HER-2 analogues and the wild-type epitope using both human CTL induction protocols and the mouse HLA-A2.1/Kb transgenic model.

Several reports have demonstrated that amino acid modifications of CTL epitopes from tumor Ags associated with increased affinity of peptide/MHC binding can enhance their immunogenicity (8–11, 17, 29, 30). Terasawa et al. (30) designed a human agonist CTL epitope of the prostate-specific Ag (PSA). Compared with the corresponding native PSA epitope, this agonist epitope demonstrated enhanced binding to the HLA-A2.1 allele as well as enhanced stability of the peptide–MHC complex. In line with our data, this PSA agonist was shown to induce higher levels of T cell activation compared with the native PSA peptide in HLA-A2.1/Kb mice. Also, the gp100.209(2M) analogue, which is an MHC anchor residue modification of the antigenic peptide derived from the gp100209–217 melanoma Ag, was demonstrated to be 100-fold more potent in activating naive T cells than its wild-type peptide (31). This approach has been applied to HER-2-derived epitopes, in which modifications of the p654–662 HER-2-derived epitope, which has a low MHC class I binding affinity, was found to improve induction of peptide- and tumor-specific CTLs (32). Baratin et al. (29) demonstrated that amino acid substitutions of a p53-derived murine CTL epitope associated with 10- to 100-fold enhanced MHC binding affinity could overcome its poor immunogenicity. Thus, especially in the case of low on rate epitopes, increased binding affinity can be associated with increased immunogenicity. In this study we analyzed the effect of substituting the main anchor positions of an epitope that is already classified as a good binder, as it binds HLA molecules with an affinity <50 nM. Accordingly, the affinity of the HER-2 V2V9 analogue described in this study was only marginally increased compared with wild-type epitope (23 vs 37 nM). Despite this modest increase in MHC class I binding, the V2V9 analogue was still associated with a strong increase in immunogenicity, which motivated our analysis of the kinetics of the association and dissociation of this peptide.

When the thermodynamic parameters for the HER-2.369 epitopes were established, the result, particularly for the V2V9 epitope, demonstrated an association with a slow on, slow off kinetic profile. The enhanced stability of the MHC binding of this epitope could be an important parameter explaining the stronger immunogenicity. Other studies using whole-cell, flow cytometry-based techniques and measuring the half-time of the peptide–MHC complex have found that high stability is associated with enhanced immunogenicity (30). Because of the indirect techniques used, these reports did not assess on/off rates of the peptide analogues. Restifo found that the dissociation rate of the gp100.209(2M) analogue was >100-fold slower than that of the wild-type peptide (N. Restifo, personal communication). Of particular interest, in a clinical trial where this anchor-modified gp100 peptide was used to immunize melanoma patients, a dramatic increase in tumor-reactive T cells was observed (4). One can speculate that peptides that possess enhanced stability may remain bound to HLA class I on the APCs for a longer period, allowing this peptide/MHC class I complex to reach the local lymph nodes and there activate a more potent CTL response. This consideration might be of particular relevance in immunization strategies when the antigenic epitope is exogenously provided, and epitope/MHC complexes cannot be replenished by synthesis of new epitope molecules from within the APC. It is also possible that the increased immunogenicity of the peptide analogue might be related to increased functional binding activity for T cells. This might be the indirect result of the increased stability of the complexes, allowing more avid TCR contact. Alternatively, this might also originate from subtle conformational alterations in the peptide residues interacting with the TCR induced by the alterations in the MHC anchor motifs. If this were the case, our analogue would be classified as a heteroclitic analogue, associated with increased TCR binding (13).

The risk that these substitution analogues may alter the conformation of the MHC class I/peptide complex and thereby induce a different set of CTLs that do not cross-react with the wild-type epitope must be considered. Results from melanoma patients vaccinated with the gp100 epitope, which had been modified at the second position (g9–209(2M)) to enhance MHC binding affinity, support this idea (33). Their data suggest that the T cell repertoire in the vaccinated patients had been altered by expanding an array of T cells with different fine specificities, only some of which recognized melanoma cells. Our results showed that a subset of the microcultures of CTLs induced by the analogue peptide that were able to recognize the wild-type peptide also were able to recognize the HLA-A2.1-positive SW403 HER-2-expressing tumor line. We conclude that this recognition was MHC class I-restricted, as a HER-2 expressing, but HLA-A2.1-negative, tumor was not recognized. In line with these findings, Kawashima et al. (34) were able to identify double-substitution analogues from CEA with strong tumor-specific immunogenicity in vitro, and others have found that
double or single substitution of CTL epitopes is able to induce tumor-specific T cells (8–11, 17, 29, 30).

Taken together, our results demonstrate that the CTLs induced by the V2V9 analogue also recognize the processed wild-type epitope expressed on tumor cells, but do not rule out the induced T cell repertoire may be altered compared with the repertoire induced by the wild-type epitope.

Our data also indicate that epitope analogues may be useful to develop more sensitive assays to monitor immune responses in patients in tumor vaccination trials based on wild-type recombinant proteins or epitopes. Thus, we demonstrate that a HER-2 specific CTL line generated against the wild-type epitope responded with a higher number of IFN-γ-producing cells at low peptide concentrations when stimulated with the V2V9 analogue peptide compared with the wild-type peptide (Fig. 2). In line with these data, T cells generated against a native epitope from a PSA showed higher levels of CTL activity against targets pulsed with the agonistic epitope compared with the natural PSA epitope (30).

Several clinical trials with HER-2-based vaccines have been conducted or are in progress in patients with HER-2-overexpressing tumors (35–37). The T cell responses in patients vaccinated with the HER2.369 epitope in combination with GM-CSF were reported to be weak and short-lived (38). Our results therefore suggest that the HER2.369 V2V9 analogue should be tested in clinical trials, which may lead to stronger and more persistent T cell responses, in analogy with our results observed in HLA-A2 transgenic mice. This analog could be used in a peptide-based format in the presence of an appropriate adjuvant, such as GM-CSF, or in a vaccine based on DC pulsed ex vivo with peptides (36, 37). Protective HER2-based vaccines based on plasmid DNA vaccine have shown promising results in experimental animal models (39, 40). Therefore, the alternative strategy based on the construction of vectors that contain multiple epitope genes or the entire HER-2 gene, but with altered amino acid sequences of the V2V9 analog, could also be considered.

References
Changes in the fine specificity of gp100\textsubscript{209–217}-reactive T cells in patients following vaccination with a peptide modified at an HLA-A2.1 anchor residue. *J. Immunol.* 162:1749.


