IL-7 Stimulates T Cell Renewal Without Increasing Viral Replication in Simian Immunodeficiency Virus-Infected Macaques

Marie-Thérèse Nugeyre, Valérie Monceaux, Stéphanie Beq, Marie-Christine Cumont, Raphaël Ho Tsong Fang, Laurent Chêne, Michel Morre, Françoise Barré-Sinoussi, Bruno Hurtrel and Nicole Israël

J Immunol 2003; 171:4447-4453; doi: 10.4049/jimmunol.171.8.4447

http://www.jimmunol.org/content/171/8/4447

References

This article cites 39 articles, 20 of which you can access for free at: http://www.jimmunol.org/content/171/8/4447.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at: http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts
IL-7 Stimulates T Cell Renewal Without Increasing Viral Replication in Simian Immunodeficiency Virus-Infected Macaques

Marie-Thérèse Nugeyre,* Valérie Monceaux,† Stéphanie Beq,* Marie-Christine Cumont,† Raphaël Ho Tsong Fang,† Laurent Chène,* Michel Morre,‡ Françoise Barré-Sinoussi,* Bruno Hurtrel,† and Nicole Israël2*

The main failure of antiretroviral therapy is the lack of restoration of HIV-specific CD4+ T cells. IL-7, which has been shown to be a crucial cytokine for thymopoiesis, has been envisaged as an additive therapeutic strategy. However, in vitro studies suggest that IL-7 might sustain HIV replication in thymocytes and T lymphocytes. Therefore, in the present study, we evaluated the effect of IL-7 on both T cell renewal and viral load in SIVmac-infected young macaques in the absence of antiretroviral therapy. This evaluation was conducted during the asymptomatic phase in view of a potential treatment of HIV patients. We show that IL-7 induces both a central renewal and a peripheral expansion of T lymphocytes associated with cell activation. No alarming modulation of the other hemopoietic cells was observed. No increase in the viral load was shown in blood or lymph nodes. These data strengthen the rationale for the use of IL-7 as an efficient immunotherapy in AIDS. The Journal of Immunology, 2003, 171:4447–4453.
Recombinant human (rhIL-7) treatment

All animals (infected and noninfected) were injected s.c. with rhIL-7 (CYT 99 007, an Escherichia coli-derived rhIL-7 supplied by Cyttheris, Vanves, France) twice a day at 40 μg/kg for 21 days. In the infected macaques, this treatment was performed 29 wk after infection throughout the asymptomatic phase.

Lymphocyte immunophenotyping and flow cytometry analysis

EDTA-treated blood cells were incubated for 15 min with the conjugated mAbs. Erythrocytes were lysed by the Lysing kit (Beckman Coulter, Fullerton, CA). Samples were then washed and fixed in PBS containing 1% paraformaldehyde. Analysis was performed on 5000 cells. Immunostaining was analyzed using an XL-4C cytofluorometer (Beckman Coulter France). For intracellular labeling, cells were permeabilized with the Cytofix/Cytoperm kit (BD Biosciences, Mountain View, CA) before incubation with mAb Ki67.

Abs used for immunostaining

Cells were immunostained using the following conjugated mAbs: CD20-PE (clone L27), HLA-DR-PE (clone L243), CD8-PerCP (clone SK1), CD4-PE, and CD3-PerCP (clone SK7); CD4-PE, and CD62L-PE (clone SK11) from BD Biosciences; and CD45RA-FITC (clone SK1), CD4-FITC, or CD4-PE (clone M-T477), CD4-PerCP (clone SK3) and CD62L-PE (clone SK11) from BD Biosciences; D45RA-FITC (clone 2H4) from Beckman Coulter France; and Ki67-FITC (clone Ki67) from DAKO (Roskilde, Denmark) and IgG1, x-FITC, PE, PerCP (clone MOPC-21), as negative controls.

Quantification of TREC

The TREC were determined in the sorted CD4+ or CD8+ T cells of the peripheral blood according to a modified technique of Zhang et al., (25). CD4+ or CD8+ T cells were lysed and treated with proteinase K at 200 μg/ml for 1 h at 56°C. The quantification of TREC was performed by real-time PCR. Twenty-five microliters of reaction containing 10 μl of cell lysate (25,000 cells), 0.6 μM primers (sense, 5’-ATC ACT CTT TCT CTA GCT CCC AGC-3’; antisense, 5’-ATG TGT GAT GTT CTA TCA TTC CTC CTT GGT-3’; 0.2 μM TaqMan probe, M-TAC177), CD4-PerCP (clone SK3) and CD62L-PE (clone SK11) from BD Biosciences; D45RA-FITC (clone 2H4) from Beckman Coulter France; and Ki67-FITC (clone Ki67) from DAKO (Roskilde, Denmark) and IgG1, x-FITC, PE, PerCP (clone MOPC-21), as negative controls.

Quantification of serum viral loads

The SIVmac serum viral loads were measured by real-time quantitative RT-PCR (26). The standard RNA was obtained from the pGEM-SZI7 GAG plasmid (provided by A.-M. Aubertin, Strasbourg).

In situ hybridization tissue section

In situ hybridization was performed as previously described with a 35S-labeled RNA nef probe derived from the nef SIVmac142 (27).

Table 1. Impact of rhIL-7 treatment on the dynamics of hemopoietic cells

<table>
<thead>
<tr>
<th></th>
<th>Uninfected Animals</th>
<th>Infected Animals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day 0</td>
<td>Day 21*</td>
</tr>
<tr>
<td>T Lymphocytes</td>
<td>3,559</td>
<td>4,885</td>
</tr>
<tr>
<td>B Lymphocytes</td>
<td>1,391</td>
<td>653</td>
</tr>
<tr>
<td>Erythrocytes</td>
<td>4,700,000</td>
<td>4,040,000</td>
</tr>
<tr>
<td>Leukocytes</td>
<td>11,000</td>
<td>7,800</td>
</tr>
<tr>
<td>Neutrophils</td>
<td>5,610</td>
<td>1,950</td>
</tr>
<tr>
<td>Monocytes</td>
<td>220</td>
<td>156</td>
</tr>
<tr>
<td>Platelets</td>
<td>303,000</td>
<td>377,000</td>
</tr>
</tbody>
</table>

*The number of hematopoietic cells per microliter of blood was determined in either healthy (macaques 1 and 2) or SIV-infected animals in asymptomatic stage (macaques 3 and 4) animals treated with 80 μg/kg per day of rhIL-7 at days 0, 21, and 60.

*ND, Not done.

Results

Main experimental settings

Since there had been no previous report on IL-7 treatment in macaques when we started this study, we first had to determine the minimal dose of rhIL-7 and the duration of the treatment necessary to induce a beneficial effect on T cell reconstitution. By extrapolation from the active doses in mice, we tested 40 or 80 μg/kg per day. Eighty micrograms per kilogram per day was shown to be a more efficient dose when used during 3 wk and therefore the reported experiments were performed under these conditions.

Our study was conducted on four rhesus macaques. Animals 1 and 2 were uninfected controls, while 3 and 4 were SIV-infected animals as described in Materials and Methods. Infected animals received rhIL-7 treatment during the asymptomatic phase characterized by a stabilization of the viral load and of CD4+ T cell counts. Before rhIL-7 treatment, macaque 3 exhibited a high viral load (106 RNA copies/ml of serum) and its CD4+ T cell number dropped from 5200/μl of blood (a mean of three samplings) and stabilized around 1800/μl of blood (a mean of four samplings), whereas macaque 4 exhibited a low viral load (105 RNA copies/ml of serum) and its CD4+ T cell number was not significantly modified: from 2200 (a mean of three samplings) to 2120/μl of blood (a mean of four samplings).

Impact of IL-7 treatment on the dynamics of hemopoietic cells

Longitudinal studies were then conducted to evaluate the counts of hemopoietic cells during and after rhIL-7 treatment (as shown in Table I). Whether infected or not, the four macaques exhibited a strong increase in T lymphocyte counts during rhIL-7 treatment which persisted after interruption of the treatment (except for macaque 4 whose T cell count returned to basal level at day 60). In other respects, IL-7-transgenic mice have been previously shown to develop B cell lymphoma (28, 29). We therefore measured the B cell population: individual variability was observed in the B cell counts, but no large increase could be seen following rhIL-7 treatment. A decrease was even observed in macaques 1, 2, and 4. We also studied the other hemopoietic cell populations and we observed a slight modification of the erythrocyte count in the four macaques. In macaque 3, a decrease of the platelets was observed, but the main decrease in the four animals concerned the neutrophils. However, this decrease did not affect the health of the animals and was reversible after the end of the rhIL-7 treatment (see at day 60).

Since our study is focused on the effect of rhIL-7 on T cell renewal, because of the particular decline of CD4+ T cells in AIDS, we studied in more detail the evolution of T cells (CD4+...
and CD8⁺) during (from day 0 to day 21) and after (from day 22 to day 56 or 60) the treatment.

rhIL-7 increases the absolute number of CD4⁺ or CD8⁺ T cells and this increase correlates with that of naive CD4⁺ or CD8⁺ T cells

We first evaluated the capacity of rhIL-7 to increase the CD4⁺ and CD8⁺ T cell pools in peripheral blood. As shown in Fig. 1a, the number of CD4⁺ T cells increased (2- to 4-fold) and culminated around 5000 CD4⁺ T cells/μl in all animals (whether infected or not) and even in the presence of a high viral load (macaque 3). The response persisted at least 35 or 39 days after interruption of the treatment (except for macaque 4 whose T cell count already decreased at 39 days after treatment). However, analysis made 11 wk after the treatment (before the sacrifice of the animals) indicated a return to baseline in all animals (data not shown).

The CD8⁺ T cell count also increased (2- to 3-fold) under rhIL-7 treatment but this increase was not maintained throughout the treatment in the uninfected macaque 1 and in the infected macaque 4 (Fig. 1c).

The correlative increased production of naive CD4⁺ and CD8⁺ T cells (CD4⁵RA⁻CD62L⁺), shown in Fig. 1, b and d, argues for a central renewal of these cells under rhIL-7 treatment. Of note, the percentage of naive/total CD4⁺ T cells (macaque 1, 85%; 2, 55%; 3, 83%; and 4, 84%) initially high (over 80%) in three of four of these young animals did not increase much with rhIL-7 treatment (macaque 1, 83%; 2, 73%; 3, 85%; and 4, 92% at day 21) except in macaque 2 which initially exhibited a lower percentage. In contrast, the percentages of naive/total CD8⁺ T cells were all initially lower than for the CD4⁺ population (macaque 1, 53%; 2, 37%; 3, 57%; and 4, 60%) and increased with the treatment (macaque 1, 70%; 2, 70%; 3, 79%; and 4, 84% at day 21).

rhIL-7 increases T cell activation and proliferation

It has been recently shown that the human CD4⁺ T lymphocytes expressing the HLA-DR activation marker specifically proliferate in the presence of rhIL-7 in vitro (30). We thus wondered whether rhIL-7 might up-regulate in vivo this activation marker and whether this activation correlates with the capacity to proliferate, as characterized by the expression of the Ki67 marker. As shown in Fig. 2a, an increase in the absolute number of CD4⁺HLA-DR⁺...
We also determined the level of TREC among the CD4+ cells. rhIL-7 induces a decline of TREC in infected macaques. Therefore, we suggest that this particular decline might be due to an increased rate of transition between naive and memory T cells to compensate for the destruction of activated T cells by infection. Of note, interruption of the treatment at day 21 limits the decrease in TREC numbers.

rhIL-7 does not modify the viral load in the serum nor in the lymph nodes

In vitro studies indicate a possible induction of virus replication in IL-7-treated thymocytes (11) or lymphocytes (21, 23). Furthermore, we noticed that rhIL-7 significantly increased lymphadenopathy.

As shown in Fig. 3, despite the high rate of proliferation due to rhIL-7 treatment, the TREC values were maintained in healthy macaques, arguing therefore for an increase in thymic output. In contrast, we observed a marked decline (day 21) in the TREC values in infected animals. Since the magnitude of the production of naive T cells was presumably the same in the four animals, we can argue that this decline was the result of a higher rate of T cell proliferation. This high level of proliferation was not obvious from the counts of Ki67+ cells (Fig. 2, b and d) but the overall rate of proliferation might have been impaired by the rate of apoptosis due to infection. Therefore, we suggest that this particular decline might be due to an increased rate of transition between naive and memory T cells to compensate for the destruction of activated T cells by infection.

rhlL-7 induces a decline of TREC in infected macaques

We also determined the level of TREC among the CD4+ and CD8+ T cells. This level is dependent upon the thymic output but also upon cell proliferation which dilutes these epismal markers. Since IL-7 increases both T cell regeneration and T cell proliferation, it was interesting to determine how the TREC values vary during rhIL-7 treatment.

As shown in Fig. 3, despite the high rate of proliferation due to rhIL-7 treatment, the TREC values were maintained in healthy macaques, arguing therefore for an increase in thymic output. In contrast, we observed a marked decline (day 21) in the TREC values in infected animals. Since the magnitude of the production of naive T cells was presumably the same in the four animals, we can argue that this decline was the result of a higher rate of T cell proliferation. This high level of proliferation was not obvious from the counts of Ki67+ cells (Fig. 2, b and d) but the overall rate of proliferation might have been impaired by the rate of apoptosis due to infection. Therefore, we suggest that this particular decline might be due to an increased rate of transition between naive and memory T cells to compensate for the destruction of activated T cells by infection. Of note, interruption of the treatment at day 21 limits the decrease in TREC numbers.

rhlL-7 does not modify the viral load in the serum nor in the lymph nodes

In vitro studies indicate a possible induction of virus replication in IL-7-treated thymocytes (11) or lymphocytes (21, 23). Furthermore, we noticed that rhIL-7 significantly increased lymphadenopathy.

As shown in Fig. 3, despite the high rate of proliferation due to rhIL-7 treatment, the TREC values were maintained in healthy macaques, arguing therefore for an increase in thymic output. In contrast, we observed a marked decline (day 21) in the TREC values in infected animals. Since the magnitude of the production of naive T cells was presumably the same in the four animals, we can argue that this decline was the result of a higher rate of T cell proliferation. This high level of proliferation was not obvious from the counts of Ki67+ cells (Fig. 2, b and d) but the overall rate of proliferation might have been impaired by the rate of apoptosis due to infection. Therefore, we suggest that this particular decline might be due to an increased rate of transition between naive and memory T cells to compensate for the destruction of activated T cells by infection. Of note, interruption of the treatment at day 21 limits the decrease in TREC numbers.
cells expressing the viral genome. The first question to address was whether IL-7 permits a restoration of T cell number even in the presence of an ongoing infection and the second was whether this cytokine modifies the level of virus replication in vivo. For this reason, we analyzed in SIV-infected macaques the effect of a 3-wk rhIL-7 treatment during the asymptomatic phase of infection in the absence of ART. The implications of this study are therefore different from those derived from the study published recently by Fry et al. (31), which reports the effect of IL-7 in infected animals treated with ART and immunization (therefore precluding the observation of the effect of IL-7 on viral load).

We report here that IL-7 exhibits the remarkable capacity to increase T cell number in monkeys, in particular by increasing the pool of CD4+ and CD8+ naive T cells. This increase reaches the same level whether the animals have been infected or not. Of note, the CD4+ response persisted for at least 5 wk after interruption of the rhIL-7 treatment. Although the increase in T cells was similar in magnitude to that observed by Fry et al. (31), in contrast to these authors, we observed an increase in activated HLA-DR+ cells. The percentage of these cells among the total CD4+ varied for each animal and was independent of infection. It reached around 30%, which represents an 8-fold increase above normal level. The fact that the kinetics of HLA-DR+ cells correlates with that of Ki67+ cells strongly suggests that these activated cells, mostly memory cells, are those that are able to proliferate in the presence of IL-7.

These data are in agreement with the study of Jaleco et al. (30) who showed that under conditions where the HLA-DR+ cells are removed, purified human CD4+ T cells fail to proliferate in response to IL-7. Several ex vivo studies in humans also indicate that IL-7 does not promote the proliferation of naive T cells (32–34) except in the case of the immature naive cells of the human cord blood which have been identified as recent thymic emigrants (33, 35). Our conclusions differ from those of Fry et al. (31) who observed an expansion of naive T cells. This difference is probably due to the very high IL-7 concentration (500 μg/kg per day) used by these authors, which presumably leads to the proliferation of some recent thymic emigrants still existing in these young animals. Since we observed that the number of Ki67+ cells slightly exceeded those of HLA-DR+ (except for macaque 3), we cannot exclude the possibility that a few non-fully activated cells might be induced to proliferate. Nevertheless, most of the naive cells did not seem to proliferate and their increased number was probably attributable to de novo generation. The TREC values in the CD4+ and CD8+ T cells, measured in healthy animals, argued for an increase in thymic output since they remained stable despite the high level of peripheral expansion. In contrast, the marked decline in TREC values observed in infected animals might result from an increased rate of transition between naive and memory T cells to compensate for the destruction of the activated cells by infection.

TREC levels in CD8+ cells also decreased, probably because cell death also affects CD8+ cells. For instance, it has been shown that human CD8+ cells are driven to apoptosis by indirect mechanisms following infection (36).

On the basis of TREC values, Fry et al. (31) could not conclude in favor of an increase in thymic function, even in healthy animals, because of the dilution of TREC by a higher rate of cell proliferation in response to a higher dose of IL-7 (500 μg/kg per day).

A recent study by Storek et al. (37) described the impact of IL-7 on CD4+ T cell reconstitution after autologous transplantation of CD34+ cells in baboons. The authors observed a greater increase in memory/effector cells (CD45RAlo/−) than in naive CD4+ T cells (CD45RAhigh). They did not formally study the proliferative capacity of these cells, but they did not conclude in favor of de novo generation of CD4+ T cells because of the lack of higher TREC values in IL-7-treated animals compared with placebo-treated animals. Nevertheless, the lack of difference in TREC values in the presence of peripheral proliferation might again argue for an increased thymic output in IL-7-treated animals.

This T cell increase induced by rhIL-7 suggests a role of circulating IL-7, found in higher levels in HIV patients (18), in slowing down the decline of CD4+ T cells. This interpretation is supported by the fact that, under ART, IL-7 levels decrease along with an increase of thymic function-related markers (38). However, our data indicate that pharmacological doses of IL-7 are required to drastically increase the CD4+ T cell population.

In the perspective of an IL-7 therapy in humans, it is important to make sure that this cytokine does not directly increase the viral load. We report here that IL-7 exhibits the remarkable capacity to increase T cell number in monkeys, in particular by increasing the number of activated T cells. This suggests that IL-7 is able to compensate for the destruction of activated cells by infection.

Regarding the thymus, in situ hybridization, performed 11 wk after rhIL-7 treatment on macaques 3 and 4, showed no positive cells (Fig. 4). Furthermore, the thymus architecture was perfectly conserved, suggesting no insult caused by the virus at that time of infection (43 wk after infection in total).

Discussion

As a first step toward a possible use of IL-7 as an adjuvant immunotherapy in AIDS, we focused our study on two major questions. The first one was to determine whether IL-7 permits a restoration of T cell number even in the presence of an ongoing infection and the second was whether this cytokine modifies the level of virus replication in vivo. For this reason, we analyzed in SIV-infected macaques the effect of a 3-wk rhIL-7 treatment during the asymptomatic phase of infection in the absence of ART. The implications of this study are therefore different from those derived from the study published recently by Fry et al. (31), which reports the effect of IL-7 in infected animals treated with ART and immunization (therefore precluding the observation of the effect of IL-7 on viral load).

We report here that IL-7 exhibits the remarkable capacity to increase T cell number in monkeys, in particular by increasing the number of activated T cells. This suggests that IL-7 is able to compensate for the destruction of activated cells by infection.

FIGURE 4. rhIL-7 treatment modifies neither serum nor lymph node viral load in the situation where the thymus is not infected. The presence of the virus was searched for in the serum, lymph nodes, and thymus of the two infected macaques (animals 3 and 4). The viral load was determined by real-time quantitative RT-PCR in the serum and by in situ hybridization for SIVmac RNA in the lymph nodes and thymus. The photomicrographs were taken at the same original magnification (×40). The dark spots indicate the cells expressing the viral genome.
load, as might be predicted from in vitro studies (11, 20, 21–24). Regarding the serum viral load, no increase was observed in the four infected macaques (two young and two old animals) in response to IL-7, irrespective of the absolute value of the viral load at the start of the treatment. Although difficult to compare with our study since it deals with infected monkeys undergoing ART and immunization, the study by Fry et al. (31) concludes of the same lack of effect of IL-7 on the serum viral load. We did not determine the viral load in peripheral CD4+ T cells to limit the volume of blood samples. However, it seems likely that modification in T cells would be reflected in the serum during the 39 days of the experiment and particularly during IL-7 treatment. Besides viral load was also determined in T cells in lymph nodes, and no difference was observed irrespective of rhIL-7 treatment. However, this lack of increase in blood and lymph nodes was observed in a situation where the thymus remained uninfected. We have previously shown that rhIL-7 is able to sustain a viral reservoir in mature thymocytes (39). Therefore, it is not excluded that, in more advanced diseases, in the case of the viral insult to the thymus, rhIL-7 might indirectly increase the peripheral viral load. Of note, a study by Napolitano et al. (40) concludes that, under conditions of thymus infection in the model of HIV-infected SCIDβu mice, IL-7 does not increase viral replication in thymocytes.

In conclusion, our findings represent an encouraging step toward the use of IL-7 in the treatment of immunodeficiency associated with AIDS in human patients. In particular, an important feature of IL-7 treatment is that it can increase the number of CD4+ T cells even in the presence of the virus (particularly illustrated in the case of macaque 3). This is important not only for an immune reconstitution of infected individuals (who are currently under ART), but even more so in patients who ill-respond to the ART and whose levels of CD4+ T cells continue to decrease.

However, additional experiments are needed to confirm the long-term effects of rhIL-7 and to determine whether it will be necessary to proceed by cycles of treatment, for instance to allow neutrophil regeneration. Given the immunogenicity of the cytokine and the appearance of Abs against rhIL-7 at late time points of the experiments (data not shown), it would be wise to use the simian counterpart of rhIL-7 in studies exploring this effect.

Acknowledgments
We thank Dr A.-M. Aubertin (Institut National de la Sante et de la Recherche Médicale Unité 554) for providing us with the SIVmac251 isolate and the plasmid pGEM-SZ+ GAG and for helping us to set up the measurement of the viral load in the macaque by real-time RT-PCR. We thank Drs. J.-F. Delfraissy and D. Scott-Algara for helpful discussions. We thank Drs. G. Pancino and A Israel for careful reading of this manuscript.

References

We refer the reader for a complete list of references provided on the website www.jimmunol.org.

