Blockade of Airway Inflammation and Hyperresponsiveness by HIV-TAT-Dominant Negative Ras

Shigeharu Myou, Xiangdong Zhu, Saori Myo, Evan Boetticher, Angelo Y. Meliton, Jie Liu, Nilda M. Munoz and Alan R. Leff

J Immunol 2003; 171:4379-4384; doi: 10.4049/jimmunol.171.8.4379

http://www.jimmunol.org/content/171/8/4379

References

This article cites 34 articles, 16 of which you can access for free at:

http://www.jimmunol.org/content/171/8/4379.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at:

http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:

http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:

http://jimmunol.org/alerts
Blockade of Airway Inflammation and Hyperresponsiveness by HIV-TAT-Dominant Negative Ras

Shigeharu Myou,2* Xiangdong Zhu,2* Saori Myo,* Evan Boetticher,* Angelo Y. Meliton,* Jie Liu,* Nilda M. Munoz,* and Alan R. Leff3*†

We have reported previously that HIV-TAT-dominant negative (dn) Ras inhibits eosinophil adhesion to ICAM-1 after activation by IL-5 and eotaxin. In this study, we evaluated the role of Ras in Ag-induced airway inflammation and hyperresponsiveness by i.p. administration into mice of dnRas, which was fused to an HIV-TAT protein transduction domain (TAT-dnRas). Uptake of TAT-dnRas (t1/2 = 12 h) was demonstrated in leukocytes after i.p. administration. OVA-sensitization significantly increased eosinophil and lymphocyte numbers in bronchoalveolar lavage fluid 24 h after final challenge. Treatment of animals with 3–10 mg/kg TAT-dnRas blocked the migration of eosinophils from 464 ± 91 × 103/ml to 288 ± 79 × 103/ml with 3 mg/kg of TAT-dnRas (p < 0.05), and further decreased to 116 ± 63 × 103/ml after 10 mg/kg TAT-dnRas (p < 0.01). Histological examination demonstrated that inflammatory cell infiltration (largely eosinophils and mononuclear cells) and mucin production around the airways caused by OVA were blocked by TAT-dnRas. OVA challenge also caused airway hyperresponsiveness to methacholine, which was dose dependently blocked by treatment with TAT-dnRas. TAT-dnRas also blocked Ag-induced IL-4 and IL-5, but not IFN-γ, production in lung tissue. Intranasal administration of IL-5 caused eosinophil migration into the airway lumen, which was attenuated by pretreatment with TAT-dnRas. By contrast, TAT-green fluorescent protein or dnRas lacking the TAT protein transduction domain did not block airway inflammation, cytokine production, or airway hyperresponsiveness. We conclude that Ras mediates Th2 cytokine production, airway inflammation, and airway hyperresponsiveness in immune-sensitized mice. The Journal of Immunology, 2003, 171: 4379–4384.

Asthma is characterized by chronic inflammation that is mediated by Th2 lymphocytes (1) and consequent airway hyperresponsiveness. Th2 cytokine secretion is chemoattractive for eosinophils, which release bronchoactive eicosanoids and granular proteins following migration into airways (2). The major basic protein of eosinophils causes bronchial hyperresponsiveness and is capable of damaging airway epithelium (3). Other eosinophil products, such as oxygen metabolites (4), platelet-activating factor (5), and leukotriene C4 (6), also cause airway inflammation and hyperresponsiveness. IL-4 regulates allergic inflammation by promoting Th2 cell differentiation (7, 8), IgE synthesis and its receptor up-regulation (9, 10), VCAM-1 expression (11), and mucous hypersecretion (12). Another Th2 cytokine, IL-5, is specific for eosinophil chemotaxis; blockade of IL-5 action reduces eosinophilic inflammation and airway hyperresponsiveness in various species (13, 14). However, the intracellular mechanisms that regulate inflammatory cell infiltration and activation are not well established.

Ras proteins, consisting of H-Ras, K-Ras, and N-Ras, are important transmitters in cell-surface receptor signaling for cellular proliferation, differentiation, and apoptosis (15–17). TCR stimulation causes rapid activation of Ras (18), which causes Th2 cell differentiation (19). Ras signaling also mediates both IgE-activation of mast cells (20) and gene expression for IL-5 caused by occupation of the FcεRI receptor (21). Ras-induced extracellular signal-regulated kinase (ERK) activation is also essential for integrin-mediated eosinophil adhesion caused by cytokine, chemokine, and chemoattractant stimulation (22, 23). H-Ras has been reported to play a role in IL-5-mediated survival of eosinophils in vitro (24). Recent investigations have reported that group IV cytosolic phospholipase A2 (PLA2), which is phosphorylated and activated by ERK (25), plays an essential role in Ag-induced eosinophil migration and airway hyperresponsiveness in immune-stimulated mice (26) and guinea pigs (27).

Prior investigations have demonstrated the efficacy of in vivo transduction of TAT-fusion proteins in mice (28). Schwarze et al. (28) reported that the i.p. delivery of the denatured TAT-β-galactosidase fusion protein allowed the uptake into many tissues in mice, including heart, liver, and kidney, whereas skeletal muscle and the brain showed weaker signals. To assess the role of Ras in murine bronchial inflammation and airway hyperresponsiveness as asthma, we purified the TAT-dominant negative (dn) Ras fusion protein consisting of the six His residues, 11 aa of HIV-TAT protein transduction domain (PTD), and a N17 dn H-Ras (Fig. 1), and

*Section of Pulmonary and Critical Care Medicine, Department of Medicine, and
Department of Neurobiology Pharmacology and Physiology and Committees on Molecular Medicine, Clinical Pharmacology, and Cell Physiology, University of Chicago, Chicago, IL 60637

Received for publication February 27, 2003. Accepted for publication August 13, 2003.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

This work was supported by National Heart, Lung, and Blood Institute Grant HL-46368, National Heart, Lung, and Blood Institute Specialized Center of Research Grant HL-56399 (to A.R.L), National Institute of Allergy and Infectious Diseases Grant AI-52109 (to X.Z.), and by the Astra-Zeneca Traveling Fellowship (to S.M.).

1 This work was supported by National Heart, Lung, and Blood Institute Grant HL-46368, National Heart, Lung, and Blood Institute Specialized Center of Research Grant HL-56399 (to A.R.L), National Institute of Allergy and Infectious Diseases Grant AI-52109 (to X.Z.), and by the Astra-Zeneca Traveling Fellowship (to S.M.).

2 S.M. and X.Z. contributed equally to this work.

3 Address correspondence and reprint requests to Dr. Alan R. Leff, Section of Pulmonary and Critical Care Medicine, Department of Medicine, MC6076, University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637-1470. E-mail address: aleff@medicine.bsd.uchicago.edu

4 Abbreviations used in this paper: ERK, extracellular signal-regulated kinase; dn, dominant negative; PTD, protein transduction domain; SAV, small-animal ventilator; BAL, bronchoalveolar lavage; PLA2, phospholipase A2; GFP, green fluorescent protein; PAS, periodic acid-Schiff.
transduced TAT-dnRas into mice in vivo. We found that TAT-dnRas suppressed OVA-induced infiltration of eosinophils and lymphocytes, reduced Th2 cytokine secretion in the lung, and diminished airway hyperresponsiveness to methacholine.

Materials and Methods

Generation of TAT-dnRas and its in vivo administration

Generation of TAT dnRas protein was accomplished by a method we have described previously (23). Briefly, a cDNA fragment encoding dn H-Ras was amplified by PCR from the H-Ras cDNA (17N mutant) in pUSEamp (Upstate Biotechnology, Lake Placid, NY). The amplified PCR products were inserted into a pcDNA3.1/C-terminal-green fluorescent protein (GFP)-TOPO vector (Invitrogen, Carlsbad, CA). Site-directed mutagenesis was conducted to create an Age I cutting site in pcDNA3.1-dnRas, and the mutated plasmids were digested with Age I and ligated into an Age I digested pTAT vector kindly provided by Dr. S. Dowdy, University of California San Diego, La Jolla, CA) using T4 ligase. TAT-dnRas was purified by sonication of high expressing BL21(DE3)pLysS cells in 10 ml of buffer Z (8 M urea, 20 mM HEPES (pH 8.0), 100 mM NaCl). Cellular lysates were resolved by centrifugation, loaded onto 5-ml Ni-NTA columns in buffer Z, washed, and eluted with imidazole in buffer Z sequentially in 100, 250, and 500 mM concentrations. Urea and imidazole were removed from the resultant protein solution using a low-volume, 10,000 M.W. cut-off Slide-A-Lyzer dialysis cassette (Pierce, Rockford, IL). Each fusion protein was flash-frozen at −80°C.

Mice

Male C57BL/6 mice, 6–8 wk old, were purchased from The Jackson Laboratory (Bar Harbor, ME) and housed in a pathogen-free biohazard level 2 laboratory (Bar Harbor, ME) and housed in a pathogen-free biohazard level 2. Male C57BL/6 mice, 6–8 wk old, were purchased from The Jackson Laboratory (Bar Harbor, ME) and housed in a pathogen-free biohazard level 2

Collection and analysis of bronchoalveolar fluid cells

Airway inflammation was assessed 24 h after the final Ag challenge with OVA. Bronchoalveolar lavage (BAL) was performed by delivering 0.8 ml cold PBS into the airway through a trachea cannula and gently aspirating the fluid. The lavage was repeated three times to recover a total volume of 2–3 ml. The cells were stained with trypan blue to determine viability, and with Turko solution to obtain total nucleated cell counts using a hemocytometer. Cytospin (Cytospin 2; Thermo Shandon, Pittsburgh, PA) slides were prepared from the BAL, and were then fixed and stained using Diff-Quick (Dade Diagnostics, Aguada, PR). Differential cell counts were determined by counting a minimum of 300 cells/slide using standard morphological criteria in a single-blind method.

Measurement of cytokine concentrations in the lung

Whole lungs were excised from mice 24 h after the last OVA challenge. Frozen lung tissue was chopped after thawing, and was resuspended in 1 ml of 50 mM HEPES buffer containing 1 mM EDTA and 50 mM PMSF. Samples were homogenized for 30 s at 15,000 rpm in a Ultra-Turrax homogenizer and centrifuged at 16,000 × g for 10 min at 4°C. The concentrations of IL-4, IL-5, and IFN-γ were measured using a Mouse Th1/Th2 Cytokine CBA kit according to the manufacturer’s protocol (BD Biosciences). The detection limits were 5 pg/ml for IL-4, 5 pg/ml for IL-5, and 2.5 pg/ml for IFN-γ.

Lung histology

Lungs removed from the chest cavity were fixed by injection of 4% buffered paraformaldehyde into the tracheal cannula at a pressure of 20 cm H2O, and immersed in paraformaldehyde for 24 h. Lobes were sectioned sagittally, embedded in paraffin, cut into 5-μm sections, and stained with H&E for histological analysis. Additional sections were stained with Alcian blue/periodic acid-Schiff (PAS) to identify mucus-containing cells. The severity of peribronchial inflammation was graded semiquantitatively for the following features: 0, normal; 1, few cells; 2, a ring of inflammatory cells one cell layer deep; 3, a ring of inflammatory cells two to four cells deep; 4, a ring of inflammatory cells of more than four cells deep. The numerical scores for the abundance of PAS-positive mucus-containing cells in each airway were determined as follows: 0, <0.5% PAS-positive cells; 1, 5–25%; 2, 25–50%; 3, 50–75%; 4, >75% (31).

IL-5-induced airway eosinophil accumulation

TAT-dnRas (3 or 10 mg/kg) or a control dnRas protein (excluding TAT PTD) was i.p. injected 2 h before challenge with IL-5. Animals were anesthetized with i.p. 4.4 mg/kg xylazine and 65 mg/kg ketamine (32), and then challenged intranasally with 100 μl of 100 mg/ml IL-5 dissolved in
PBS through a 24-g catheter. BAL was performed 12 h after IL-5 instillation as described above.

Statistical analysis

Variation between three or more groups was analyzed using ANOVA followed by Fisher’s least protected difference test. Statistical significance was claimed whenever p < 0.05.

Results

Kinetics of TAT-dnRas transduction

Mice were injected i.p. with 10 mg/kg FITC-labeled TAT-dnRas or control dnRas protein lacking TAT PTD. Flow cytometry of whole blood leukocytes isolated 2–24 h after i.p. injection demonstrated the quantitative presence of TAT-dnRas. TAT-dnRas was maximally expressed at 2 h and returned to baseline over 24 h. The \(t_{1/2} \) for TAT-dnRas was 12 h. By contrast, dnRas protein lacking the TAT transduction domain was undetectable in blood leukocytes at any time (Fig. 2). Accordingly, TAT-dnRas was administered every 12 h in the subsequent experiments involving Ag challenge.

Ag-induced airway inflammation and mucus secretion

OVA inhalation significantly increased eosinophil (\(p < 0.01 \)) and lymphocyte numbers (\(p < 0.01 \)) in BAL fluid 24 h after challenge (Fig. 3). By trypan blue exclusion, cells in the BAL were ≥98% viable. Eosinophils were absent in BAL fluid collected from the saline-challenged group. After OVA challenge, the number of eosinophils in the BAL fluid increased to 464 ± 91 \(\times 10^3 \) cells (\(p < 0.01 \)). Treatment of animals with 3–10 mg/kg TAT-dnRas blocked the migration of eosinophils 24 h after OVA challenge in concentration-dependent manner. The eosinophil number decreased from 464 ± 91 \(\times 10^3 \) to 288 ± 79 \(\times 10^3 \)/ml with 3 mg/kg of TAT-dnRas (\(p < 0.05 \)), and further decreased to 116 ± 63 \(\times 10^3 \)/ml after 10 mg/kg TAT-dnRas (\(p < 0.01 \)). By contrast, neither dnRas protein lacking the TAT protein-transduction domain (Fig. 3A) nor TAT-GFP lacking dnRas (Fig. 3C) blocked OVA-induced eosinophilia in BAL fluid.

Lymphocytes in BAL increased from 0.19 ± 0.11 \(\times 10^3 \)/ml for saline-challenged control to 47.6 ± 9.9 \(\times 10^3 \)/ml 24 h after OVA challenge (\(p < 0.01 \)). TAT-dnRas also blocked the increase in lymphocytes in the airway lumen after OVA challenge in concentration-dependent manner. The number of lymphocytes decreased to 18.3 ± 6.5 \(\times 10^3 \) at 3 mg/kg (\(p < 0.01 \)) and 10.3 ± 5.1 \(\times 10^3 \)/ml at 10 mg/kg TAT-dnRas (\(p < 0.01 \) vs saline-challenged control, above). Neither dnRas protein lacking the TAT PTD (Fig. 3B) nor TAT-GFP lacking dnRas (Fig. 3C) block the OVA-induced increase in lymphocyte number in BAL fluid.

OVA challenge also induced inflammatory cell infiltration (largely eosinophils and mononuclear cells) around the airways and pulmonary blood vessels and in the interstitium (Fig. 4, A and B). Pretreatment with 3–10 mg/kg TAT-dnRas blocked cell infiltration progressively at 24 h (Fig. 4, A3 and B, left panel). Although many mucus-containing epithelial cells were apparent in OVA-challenged mice (Fig. 4A5), very few of these cells were detected in mice treated with 10 mg/kg TAT-dnRas (Fig. 4, A6 and B, right panel).

Ag-induced cytokine production

TAT-dnRas also blocked production of Th2 cytokines in OVA-challenged mice. The OVA-challenge alone caused a significant
increase in the concentration of IL-4 and IL-5, which was concentration dependently inhibited by TAT-dnRas (Fig. 5). There was no inhibition of production of these Th2 cell cytokines in control tissues receiving dnRas lacking the TAT domain. OVA challenge also increased concentration of INF-γ, a Th-1 cytokine, in lung tissue. TAT-dnRas at 10 mg/kg had no inhibitory effect on INF-γ production.

Ag-induced airway hyperresponsiveness

TAT-dnRas attenuated Ag-induced airway hyperresponsiveness to methacholine (Fig. 6). At 24 h, OVA challenge caused a substantial increase in the response to methacholine in Ag-sensitized mice. This response was blocked in dose-dependent manner by TAT-dnRas, but not by dnRas lacking the TAT-domain. We also established that TAT-GFP lacking dnRas had no effect on the airway response to methacholine. In both nonsensitized and OVA-sensitized mice, methacholine challenge curves were comparable for animals receiving either i.p. TAT-GFP or buffer (PBS).

IL-5-induced airway inflammation

Further studies were performed to determine the role of Ras in IL-5-induced eosinophil migration into airways. Eosinophils were not detected in BAL fluid in nonsensitized animals; 12 h after intranasal instillation of IL-5, the eosinophil count in BAL fluid was 4.8 ± 0.6 × 10³/ml (Fig. 7, p < 0.01). Pretreatment of animals with TAT-dnRas concentration dependently blocked BAL eosinophilia to 3.0 ± 0.7 × 10³/ml at 3 mg/kg TAT dnRas (p < 0.05) and 1.9 ± 0.6 × 10³/ml at 10 mg/kg TAT-dnRas (p < 0.01).

Effect of intranasal delivery of TAT-dnRas on airway inflammation

In further studies, we examined the effect of intranasal delivery of TAT-dnRas on OVA-induced eosinophil and lymphocyte accumulation in the airway (Fig. 8). Pretreatment of animals with TAT-dnRas blocked BAL eosinophila caused by OVA challenge from 503.0 ± 34.9 to 229.9 ± 47.0 × 10³/ml at 50 μg TAT-dnRas (p < 0.01). The number of lymphocytes in BAL decreased after pretreatment from 55.7 to 25.2 ± 4.4 × 10³/ml at 15 μg/kg TAT-dnRas (p < 0.05) and to 13.4 ± 3.8 × 10³/ml with 50 μg/kg TAT-dnRas (p < 0.01 vs positive control). By contrast, 50 μg/kg TAT-GFP had no effect on the increase of eosinophils and lymphocytes in BAL fluids (Fig. 8).

FIGURE 4. Histologic examination of lung tissues: A, Representative sections. The lung sections were obtained from saline- (1 and 4) or OVA- (2, 3, 5, and 6) challenged mice in the absence (1, 2, 4, and 5) or presence (3 and 6) of TAT-dnRas (10 mg/kg). Sections are stained with H&E (1–3) for morphological analysis of inflammation and with Alcian blue/PAS (4–6) for analysis of mucin-containing cells. Tissues were examined by light microscopy (original magnification ×400). B, Semiquantitative analysis of peribronchial inflammation and the abundance of PAS-positive mucus-containing cells. Total lung inflammation and PAS-positive cell were defined as the average of the scores as described in Materials and Methods. **,** p < 0.01 compared with positive control group.

FIGURE 5. Effect of TAT-dnRas on cytokine production after four OVA challenges on days 21, 22, 23, and 24. Whole lungs were excised 24 h after the last OVA challenge. Positive (●) and negative (□) controls are OVA- and saline-challenged animals, respectively, without any pretreatment. Note difference in scale on the ordinate. Each bar represents the mean ± SEM of four to six mice. **,** p < 0.01 compared with positive control group. N.D., not detectable.

FIGURE 6. Effect of TAT-dnRas on Ag-induced airway hyperresponsiveness to methacholine (MCh) in immunized mice following four OVA challenges on days 21, 22, 23, and 24. Airway responsiveness was measured 24 h after the last OVA challenge. Positive (●) and negative (△) controls are OVA- and saline-challenged animals, respectively, without any pretreatment. Each bar represents the mean ± SEM of four to six mice. *, p < 0.05 and **, p < 0.01 compared with positive control group.
Discussion

Our results show that TAT-dnRas dose dependently attenuated Ag-induced airway infiltration of eosinophils and lymphocytes, mucus secretion, Th2 cytokine production, and airway hyperresponsiveness to methacholine. These findings suggest that blockade of Ras-mediated events, which causes ERK phosphorylation and up-regulates integrin adhesion (23), also attenuates Ag-induced airway inflammation and hyperresponsiveness in mice.

TAT-dnRas administration blocked OVA-induced airway infiltration of eosinophils and lymphocytes (Figs. 3 and 4). The mechanism of these effects is unknown. Decreased eosinophil infiltration may result from one or more of the following: 1) decreased eosinophil adhesion to vascular endothelial cells (23), 2) decreased Th2 cytokine production, or 3) decreased eosinophil survival (24). We recently have demonstrated that the cytosolic group IV-PLA2 and its upstream activators, ERK and Ras, regulate β2-integrin-independent adhesion of eosinophils in vitro (22, 23). Ras activation of ERK signaling causes up-regulation of Mac-1 (CD11b/CD18) affinity and avidity caused by IL-5, fMLP, or eotaxin (23). Ras also has been shown to be involved in Th2 cell differentiation and Th2 cytokine secretion (19, 21). Yamashita et al. (19) demonstrated that Ras-induced mitogen-activated protein kinase activation is required for Th2 cell differentiation, and controls IL-4R-mediated signaling.

In this study, lung content of Th2 cytokines such as IL-4 and IL-5 increased after OVA challenge. This increase in Th2 cytokine was attenuated by TAT-dnRas. By contrast, TAT-dnRas had no effect on the Th1 cytokine, IFN-γ, in OVA-challenged mice (Fig. 5). These findings suggest that Ras may be involved in Ag-induced activation of Th2 lymphocytes, but not Th1 cells. However, IL-5-induced eosinophil migration was also blocked by TAT-dnRas (Fig. 7), suggesting that Ras not only is involved in Th2 cytokine production, but also in eosinophil migration induced by Th2 cytokines. Furthermore, Ras-induced ERK activation also is involved in IL-5-induced eosinophil survival (24). The relative contribution of each to the blockade of airway eosinophilic inflammation cannot be determined from this study.

Our data demonstrate that blockade of Ras protein by i.p. administration of TAT-dnRas also blocks nonspecific airway hyperresponsiveness to methacholine, which was not blocked by TAT-protein vehicle lacking dnRas or dnRas lacking TAT PTD. These data suggest that Ras regulates both the inflammatory component and subsequent airway hyperresponsiveness caused by Ag sensitization.

The use of TAT-dnRas affords a unique opportunity for intracellular transduction of protein directly into the inflammatory cells of living animals. This report is the first to use this approach in the examination of potential signaling pathways in the ontogeny of airway remodeling and hyperresponsiveness. In this study, TAT-dnRas had a profound inhibitory effect on Ag-induced airway hyperresponsiveness that could not be attributed to either the TAT-protein alone or dnRas, which did not cross the outer membrane of inflammatory leukocytes. Likewise, leukocytes remained fully viable after TAT-protein transduction, and there was a clear dose-response relationship in the reduction of airway hyperresponsiveness, cellular infiltration after Ag challenge, and cytokine production. Whereas prior investigations have demonstrated that pharmacological inhibitors of ERK phosphorylation (33) or phosphoinositide 3-kinase (34) attenuate Ag-induced airway reactions, the introduction of a highly specific dn protein inhibitor, i.e., dnRas, establishes specifically the role of this protein in the induction of airway inflammation and hyperresponsiveness. Ras is a known precursor for ERK1/2 phosphorylation and subsequent cytosolic group IV-PLA2, phospholipase in human eosinophils in vitro. Pharmacological inhibition of group IV-PLA2 in guinea pigs have been shown to prevent airway hyperresponsiveness and eosinophil infiltration (27). Our data comport with prior pharmacological suggestions that a Ras-mediated pathway may be critical in development of immune hyperresponsiveness in mice. They also may suggest potential targets for future therapeutic approaches for treatment of human asthma.

It is important to recognize specific limitations of our findings. Our data were obtained in mice with experimentally induced Ag-mediated airway hyperresponsiveness. Although the histological changes in these airways resemble those of human asthma, these data cannot be extrapolated to the human state. Nonetheless, these data suggest both a possible pathogenetic mechanism and potential for therapeutic intervention in human asthmatic states. For example, we have shown previously that TAT-dnRas blocks integrin-mediated adhesion of human eosinophils to ICAM-1 by a mechanism that prevents the focal clustering and active conformation of CD11b/CD18. We conclude that Ras-initiated signaling mediates...
Th2 cytokine production, airway inflammation, and airway hyperresponsiveness in sensitized, Ag-challenged mice. The specific effect on chemotaxis may relate to impaired integrin adhesion, but the precise pathways and mediators involved in this process remain to be defined.

Acknowledgments

We thank Dr. Steven Dowdy (University of California San Diego) for providing TAT expression vector and Dr. Julian Solway (University of Chicago) for advice in measurement of airway responsiveness.

References

Downloaded from http://www.jimmunol.org/ by guest on September 7, 2017