Immune Modulation in Multiple Sclerosis Patients Treated with the Pregnancy Hormone Estriol

Samantha S. Soldan, Ana Isabel Alvarez Retuerto, Nancy L. Sicotte and Rhonda R. Voskuhl

J Immunol 2003; 171:6267-6274; doi: 10.4049/jimmunol.171.11.6267

http://www.jimmunol.org/content/171/11/6267

References

This article cites 65 articles, 21 of which you can access for free at:
http://www.jimmunol.org/content/171/11/6267.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Immune Modulation in Multiple Sclerosis Patients Treated with the Pregnancy Hormone Estriol

Samantha S. Soldan, Ana Isabel Alvarez Retuerto, Nancy L. Sicotte, and Rhonda R. Voskuhl

The protective effect of pregnancy on putative Th1-mediated autoimmune diseases, such as multiple sclerosis and rheumatoid arthritis, is associated with a Th1 to Th2 immune shift during pregnancy. The hormone estriol increases during pregnancy and has been shown to ameliorate experimental autoimmune encephalomyelitis and collagen-induced arthritis. In addition, estrogens induce cytokine changes consistent with a Th1 to Th2 shift when administered in vitro to human immune cells and in vivo to mice. In a pilot trial, oral estriol treatment of relapsing remitting multiple sclerosis patients caused significant decreases in enhancing lesions on brain magnetic resonance imaging. Here, the immunomodulatory effects of oral estriol therapy were assessed. PBMCs collected longitudinally during the trial were stimulated with mitogens, recall Ags, and glatiramer acetate. Cytokine profiles of stimulated PBMCs were determined by intracellular cytokine staining (IL-5, IL-10, IL-12 p40, TNF-α, and IFN-γ) and cytometric bead array (IL-2, IL-4, IL-5, IL-10, TNF-α, and IFN-γ). Significantly increased levels of IL-5 and IL-10 and decreased TNF-α were observed in stimulated PBMC isolated during estriol treatment. These changes in cytokines correlated with reductions of enhancing lesions on magnetic resonance imaging in relapsing remitting multiple sclerosis. The increase in IL-5 was primarily due to an increase in CD4+ and CD8+ T cells, the increase in IL-10 was primarily due to an increase in CD64+ monocytes/macrophages with some effect in T cells, while the decrease in TNF-α was primarily due to a decrease in CD8+ T cells. Further study of oral estriol therapy is warranted in Th1-mediated autoimmune diseases with known improvement during pregnancy.

Copyright © 2003 by The American Association of Immunologists, Inc. 0022-1767/03/$02.00

pregnancy levels of estriol (36, 37). In addition, estriol has been shown to ameliorate experimental autoimmune encephalomyelitis (EAE) and collagen-induced arthritis when administered in vivo at pregnancy levels (38–40). Moreover, shifts in cytokine profiles of immune cells from estrogen-treated EAE mice have supported the concept that at least one mechanism of estrogen’s protection in these diseases involves a favorable alteration in cytokine production (38, 40, 41).

Collectively, the protective effect of pregnancy in MS and EAE and the anti-inflammatory effects of estriol have suggested that hormones associated with pregnancy, estriol in particular, may exert a beneficial influence on MS. Accordingly, a pilot clinical trial using oral estriol to treat 10 female MS patients (six with RRMS and four with secondary progressive MS (SPMS)) was completed (42). A cross-over design was used in which a pretreatment baseline was followed by a treatment period. Post-treatment and retreatment phases were also examined. During oral estriol therapy, RRMS patients demonstrated significantly decreased gadolinium-enhancing lesions on monthly cerebral magnetic resonance imaging (MRI), decreased delayed-type hypersensitivity responses to tetanus, and decreased IFN-γ message in unstimulated PBMC (42). Given these encouraging findings, it was of interest to determine whether the beneficial effect of oral estriol treatment observed in this small cohort of RR patients was associated with changes in cytokine profiles consistent with an anti-inflammatory, Th1 to Th2, shift in stimulated PBMCs. To our knowledge this is the first time alterations in cytokine production of stimulated PBMCs have been identified when an estrogen has been given in vivo to patients with an autoimmune disease.

Materials and Methods

Oral estriol trial design and patients

Ten female patients with clinically definite MS (six RR and four SP) completed the study. The patients had not received steroid treatment for at least 3 mo or IFN-β or glatiramer acetate for 6 mo before participating in the study. Patients who were pregnant, nursing, taking oral contraceptives, or receiving hormone replacement therapy were excluded. The mean age was 44 years (range, 28–50 years). The mean Expanded Disability Status Scale (EDSS) score was 3.3 (range, 1.0–6.5), with a clear differences between RRMS and SPMS groups (mean EDSS of RRMS = 2.2; mean EDSS of SPMS = 5.0). The cross-over design consisted of a 6-mo pretreatment period, a 6-mo oral estriol treatment period (8 mg/day), and a 6-mo post-treatment period with brain MRIs monthly and clinic visits with blood sample collection every 3 mo. In the RRMS cohort, the trial was extended by a 4-mo retreatment period. Oral estriol was tapered over 2 wk after the treatment period to avoid a precipitous drop in hormone levels. During the retreatment period, oral estriol was used in combination with progesterone (100 mg/day) to protect against endometrial hyperplasia. Estriol levels during treatment were shown to approximate those that occur naturally at 6 mo of pregnancy (42). The study was approved by the University of California-Los Angeles human subjects protection committee, and informed consent was obtained from all patients enrolled in the trial.

Cell proliferation assay

PBMCs were isolated by a conventional Ficoll-Hypaque method from freshly drawn blood specimens and cryopreserved. PBMCs from all time points from a given patient were assayed in parallel on the same day in the following manner. Cryopreserved PBMC were thawed and cultured in triplicate on a 96-well, round-bottom tissue culture plate at 1 × 10^5 cells/well for 48 h with media and Ags as described above for proliferation assays. Supernatants were harvested and stored at −70°C until cytokine testing was performed. IL-2, IL-3, IL-5, IL-10, TNF-α, and IFN-γ were detected simultaneously using the human Th1/Th2 cytokine cytometric bead array (CBA) kit (BD Pharmingen, San Diego, CA). Briefly, 50 μl of each sample was mixed with 50 μl of each cytokine specific PE detection reagent consisting of PE-conjugated anti-human IL-2, IL-3, IL-5, IL-10, TNF-α, and IFN-γ. The samples were incubated at room temperature for 3 h in the dark. After incubation with the PE detection reagent, the samples were washed once and resuspended in 300 μl of wash buffer before acquisition on the FACSCalibur (BD Biosciences, Sunnyvale, CA). Data were analyzed using CBA software (BD Pharmingen). Standard curves were generated for each cytokine using the mixed cytokine standard provided by the kit. The concentration for each cytokine in cell supernatant was determined by interpolation from the corresponding standard curve. The range of detection was 20–5000 pg/ml for each cytokine measured by CBA.

Intracellular cytokine and surface marker staining

Cryopreserved PBMC from all time points of a given patient were thawed in parallel and stained for cell surface markers with a panel of FITC-conjugated Abs, including CD4, CD8, CD19, CD64, CD27, CD54 (ICAM), and CD106 (VCAM), or with Cy5-conjugated Abs (CD45 Ra, CD45 Ro, CD80, CD86, and CD25). The other aliquot of cells was cultured in a 96-well, round-bottom tissue culture plate at 1 × 10^5 cells/well with media and Ags as described above for 24 h. Brefeldin A was added during the last 5 h of stimulation. Cells were washed in staining medium (1× PBS, 2% FCS, and 0.1% NaN₃) and stained with the same panel of FITC-conjugated Abs (CD4, CD8, CD19, CD64, CD27, CD54, and CD106) and Cy5-conjugated Abs (CD45Ra, CD45R0, CD80, CD86, and CD25) for 45 min at 4°C. Cells were washed twice with staining medium and fixed and permeabilized with Cytofix/Cytoperm solution (BD Pharmingen). Cells were then resuspended in perm/wash buffer (BD Pharmingen) and stained with PE-labeled Abs specific for IL-5, IL-10, IL-12p40, TNF-α, and IFN-γ (BD Pharmingen) for 20 min at room temperature. After intracellular cytokine staining, cells were washed twice in perm/wash buffer and resuspended in 400 μl of staining medium before three-color FACs analysis on a FACSDiVa instrument (BD Biosciences) using CellQuest software (BD Biosciences). For each experiment cells were also stained with isotype control Abs to establish background staining and to set photomultipliers before calculation of the percentage of positive cells.

Results

During treatment with the pregnancy hormone estriol, we previously observed a decrease in the delayed-type hypersensitivity response to a recall Ag, a decrease in IFN-γ message in unstimulated PBMCs, and a decrease in gadolinium-enhancing lesions on brain MRI (42). Since pregnancy had previously been associated with changes in cytokine production by stimulated immune cells and also with changes in subpopulations of circulating immune cells (40–42), we examined whether these changes also occurred in the above MS patients treated with estriol.

Alterations in subpopulations of circulating PBMCs during oral estriol treatment

PBMCs obtained during pretreatment, treatment, post-treatment, or retreatment phases of the estriol trial were stained ex vivo for cell surface marker expression (no in vitro culture). Subpopulations of circulating immune cells were altered during in vivo estriol treatment in both RRMS and SPMS groups; however, changes were slightly more robust in the RRMS group than in the SPMS group (Fig. 1. A and B). Oral estriol treatment was associated with significant decreases in CD14+ and CD8+ T cells and an increase in CD19+ B cells, with no changes in CD64+ monocytes/macrophages. Significant decreases in CD4+CD45Ro+ (memory T
In vivo estriol treatment alters intracellular cytokine production from stimulated PBMCs

To determine whether estriol affected cytokine production and as a complement to secreted cytokine determination in supernatants, intracellular production of IL-5, IL-10, IL-12p40, TNF-α, and IFN-γ was measured by FACS analysis after 24 h of stimulation with the same test Ags. As demonstrated in Fig. 3, intracellular IL-5 and IL-10 were again significantly increased, while TNF-α was again significantly decreased during treatment (mo 9 and 12), with changes generally more robust in the RRMS group (Fig. 3A) than in the SPMS group (Fig. 3B). Intracellular cytokine levels again returned to baseline during the post-treatment period (mo 15 and 18) in both MS groups. In the retreatment phase (mo 22) in the RRMS group, increased IL-5 and IL-10 with decreased TNF-α recurred. Oral estriol treatment did not have a statistically significant effect on IL-2, IL-4, or IFN-γ. There was, however, a trend that did not reach significance for decreased IFN-γ during treatment in the RRMS group. Similar changes in cytokine profiles were observed in supernatants from PBMC with positive lymphoproliferative responses to tetanus toxoid and COP-1 (data not shown).

Correlation between enhancing lesion volumes and changes in cytokine profiles during oral estriol therapy in RRMS

Significant decreases in enhancing lesion volume and number were observed with oral estriol treatment (mo 7–12) compared with pretreatment baseline (mo 1–6) on monthly MRI in the RRMS, but not the SPMS, group (42). In the RRMS group, lesion volumes and numbers increased to pretreatment baseline after treatment was
stopped (mo 13–18), then again significantly decreased with reinstitution of oral estriol therapy (mo 19–22). Therefore, it was of interest to determine whether these MRI findings, representing a clinical measure of disease activity, correlated with the changes in secreted cytokine profiles observed during oral estriol therapy. As demonstrated in Fig. 4, there was an inverse correlation between αCD3-stimulated levels of IL-5 and IL-10 with mean enhancing lesion volumes, while there was a direct correlation between TNF-α levels and enhancing lesions (cubic millimeters) in the RRMS group. Similar results were observed in PBMC from RRMS stimulated with PHA, COP-1, and C. albicans lysate (data not shown). Gadolinium-positive lesion volumes per scan were lower in the SPMS group (mean, 18.9; median, 0 mm³) than in the RRMS group (mean, 41.9; median, 19.5 mm³), and the above correlations between MRI and cytokine levels observed in the RRMS group were not observed in the SPMS group.

FIGURE 2. In vivo estriol treatment increased secreted IL-5 and IL-10 and decreased secreted TNF-α from stimulated PBMCs. Secreted cytokine levels (IL-2, IL-4, IL-5, IL-10, TNF-α, and IFN-γ) were assessed in culture supernatants 48 h after stimulation by CBA. PBMC from RRMS (A; n = 6) and SPMS (B; n = 4) were stimulated with αCD3, PHA, or C. albicans lysate (CA). Cytokine levels are expressed as the mean percent change of the level in the samples at the indicated treatment time point compared with the mean from two pretreatment baseline time points (mo 3 and 6), with error bars indicating the SEs between patients within each group. *, p < 0.005, by Wilcoxon/Kruskal-Wallis rank-sum analysis. The range of detection was 20–5000 pg/ml for each cytokine.

FIGURE 3. In vivo estriol treatment increased intracellular IL-5 and IL-10 and decreased intracellular TNF-α from stimulated PBMCs. Intracellular cytokine levels (IL-5, IL-10, IL-12p40, TNF-α, and IFN-γ) were measured in PBMC from patients in the RRMS group (A) and the SPMS group (B) following 24-h stimulation with α-CD3, PHA, and C. albicans lysate (CA). Levels of cells with positive cytokine staining after subtracting staining observed with negative control Ab were determined at each time point and expressed as the percent change from baseline as in Fig. 2. Error bars indicate the SEs between patients within each group. *, p < 0.005, by Wilcoxon/Kruskal-Wallis rank-sum analysis.
of increased production of IL-5 and IL-10 and decreased TNF-α regardless of whether a mitogen or recall Ag was used for stimulation. Cytokine profiles of CD4+ and CD8+ T cells and CD64+ monocytes/macrophages were all significantly affected by in vivo estriol treatment, while cytokine production by B cells was unaffected. Of interest, increased levels of IL-5 and IL-10 and decreased TNF-α production correlated with the mean volume of enhancing lesions on MRI in the RRMS group. This correlation between changes in cytokine profiles and lesion volume suggests that the anti-inflammatory effects of estriol may have an effect on disease in the target organ. The partial Th1 to Th2 immune shift observed in female MS patients treated with in vivo estriol is consistent with the general shift away from a Th1-biased response observed in males receiving in vivo ethinyl estradiol and an anti-androgen for gender reassignment (43). To our knowledge, our data are the first to describe cytokine changes induced by administration of an estrogen alone in patients with an autoimmune disease. These results are in agreement with previous in vitro studies of human immune cells and in vivo studies of mice that demonstrated an anti-inflammatory role for estriol. Specifically, increased expression of IL-10 and decreased TNF-α were reported in human T cell lines and in unprimed T cells cultured in vitro in the presence of estriol (36, 37). Further, in vivo estriol treatment was shown to ameliorate both collagen-induced arthritis and EAE (38–40, 44). In adoptive EAE, estriol treatment increased IL-10 production by splenocytes stimulated with autoantigen and increased autoantigen-specific IgG1 Ab production consistent with an up-regulation of Th2 responses (38), while in active EAE, estriol treatment decreased TNF-α and IFN-γ production by lymph node cells stimulated with autoantigen, consistent with a down-regulation of Th1 responses (40, 41).

Since an alteration in circulating immune cells could theoretically influence cytokine production upon stimulation of PBMCs ex vivo, and since an alteration in circulating immune cells has been previously reported during pregnancy (45–47), we ascertained whether an alteration in circulating immune cells occurred during in vivo treatment with the pregnancy hormone estriol. In addition to an alteration in cytokine production by immune cells, subpopulations of circulating immune cells were indeed significantly altered during in vivo estriol treatment. In both RRMS and SPMS, there were significant decreases in CD4+ and CD8+ T cells and increases in B cells. Further, there were significant decreases in CD4+CD45Ro+ (memory T cells) and increases in CD4+CD45Ra+ (naïve T cells). Together these data indicate that in vivo estriol treatment at pregnancy doses not only alters cytokine production from T cells and monocytes/macrophages, but also alters the repertoire of circulating cell types. Our findings of alterations in both cytokine production and circulating immune cell subpopulations have relevance to estrogen administration to patients with autoimmune diseases.

In addition to effects on cytokine production and on the repertoire of circulating immune cells, estriol may work through additional immune mechanisms. Recently, estriol has been shown to reduce trafficking of immune cells by inhibiting matrix metalloproteinase-9 (MMP-9) expression via down-regulation of the transcription factor NF-κB (37). MMP-9, an inducible form of MMP, is elevated in acute MS lesions and is thought to be important in T cell migration into the target organ in MS (48). Estriol may also operate through other immune molecules regulated by NF-κB, including several cytokines, chemokines, adhesion molecules, MHC molecules, and NO synthase. For example, the adhesion molecules ICAM and VCAM are induced by NF-κB, and their expression may also be down-regulated by estriol (49). While there was no

Identification of cell phenotypes affected by in vivo estriol treatment

Three-color flow cytometry with cell surface marker-specific Abs were used to determine which cells demonstrated the altered cytokine production during in vivo estriol treatment. As shown in Fig. 5, after stimulation with aCD3, the increase in IL-5 was primarily due to increases in CD4+ and CD8+ T cells. The increase in IL-10 during treatment was primarily due to an increase in CD64+ cells (macrophages), with a smaller increase in T cells. The decrease observed in TNF-α was primarily due to a decrease in CD8+ T cells, with a slight decrease in CD4+ T cells. No change in any of these cytokines was observed in the CD19+ population (B cells). Cell phenotype-specific changes in cytokine profiles were similar in RRMS (Fig. 5A) and SPMS (Fig. 5B), but were generally more robust in the RRMS group. Similar results were obtained for PBMC stimulated with PHA, C. albicans lysate, and COP-1.

Discussion

A partial Th1 to Th2 shift was observed in stimulated PBMCs from MS patients during in vivo estriol treatment, which consisted
significant effect of estriol treatment on VCAM or ICAM expression in PBMC from the relatively small cohort of patients examined in this study (data not shown), a direct influence of estriol on adhesion molecules at the blood-brain barrier could influence CNS permeability and disease activity. In MS, estriol may also work through additional mechanisms within the target organ, ranging from decreased microglial activation to protection from neuronal apoptosis (50–54).

The majority of MS patients have either RRMS or SPMS, representing a continuum of disease progression over decades. The early RR phase is characterized by frequent relapses and relatively little disability, with an MRI correlate of inflammation (enhancing lesions) and relatively less neuronal cell loss (atrophy and “T1 holes”). In contrast, the late SP phase is characterized by progressive disability in the absence of acute relapses, less inflammation, and more neuronal cell loss on MRI. The approved injectable treatments (the IFN-β drugs and copaxone) have all been shown to be of proven benefit in the early RRMS, but not the late SPMS. This is consistent with the fact that all of the above treatments are anti-inflammatory. It was interesting to compare the effects of estriol on the two distinct groups in our study (RRMS and late SPMS). In our previous study the SPMS group differed from the RRMS group in both the lack of a treatment effect on enhancing lesions on MRI and the lack of an effect on IFN-γ message levels in unstimulated PBMCs. This was consistent with the trend for a less robust effect of estriol treatment on cytokine production by mitogen and Ag-stimulated immune cells in SPMS compared with RRMS in this study. Together these data support observations that the immune dysregulation in RRMS and SPMS may differ and that the late SPMS group may ultimately become more refractory to some immunomodulatory therapies (55–59). Thus, the refractory nature of the SPMS stage may reside not only in the relatively greater contribution of neuronal cell loss to the pathogenesis of this stage, but also in the evolution of the immune dysregulation to a more refractory state.

Further studies are warranted in the treatment of RRMS with estriol. Treatment of other putative Th1-mediated autoimmune diseases should also be considered, since it is likely that estriol acts through anti-inflammatory mechanisms that may or may not involve additional neuroprotective effects. A neuroprotective role for estriol treatment remains speculative, requiring different MRI outcome measures and possibly longer treatment durations. On the other hand, an anti-inflammatory mechanism of action is supported not only by our findings, but also by the fact that other human autoimmune diseases that do not involve the CNS are improved during pregnancy when estrogen levels are increased. These include RA, uveitis, autoimmune thyroiditis, and psoriasis. Also, other experimental autoimmune disease models that do not involve the CNS are improved with estrogen treatment. These include collagen-induced arthritis, uveitis, and thyroiditis. Since estrogens can be administered orally, they would be a highly desirable treatment alternative. This may not be straightforward, however, since a retrospective study found that oral contraceptive use did not protect women from developing a first episode of MS (60). Also, in a prospective trial of 132 female patients with RA, oral contraceptive use did not significantly influence outcome in long term RA; however, there was a trend for patients with long term use to have less radiographic joint damage and a better functional level (61). Further, in a randomized, placebo-controlled trial in postmenopausal RA, hormone replacement therapy had no overall effect. However, 41.6% of the patients failed to achieve serum estradiol levels >100 pmol/liter and were considered poor compliers. In the remaining 58.4%, the compliers, there were significant improvements after 6 mo in articular index and visual analog pain scale compared with placebo results as well as reductions in erythrocyte sedimentation rate and early morning stiffness. This outcome suggested a potential beneficial effect in RA if sufficient estrogen levels were achieved (62).

Ultimately, the estrogen dose will need to be optimized for anti-inflammatory efficacy, then weighed against the known toxicities. Hormone replacement therapy is now considered to be of more risk than benefit in healthy menopausal women. While the risk/benefit ratio of estrogen treatment may be slightly of more risk.
than benefit in preventative medicine strategies in healthy menopausal women, in whom only minimum to no toxicity is tolerable, the risk/benefit ratio in patients with a chronic autoimmune disease is quite different, with modest toxicity tolerable. The use of pregnancy doses of estriol, the safest of the three estrogens (63–65), may provide an opportunity to optimize anti-inflammatory efficacy and minimize toxicity.

References

