Microsomal Prostaglandin E Synthase-1 Is a Major Terminal Synthase That Is Selectively Up-Regulated During Cyclooxygenase-2-Dependent Prostaglandin E₂ Production in the Rat Adjuvant-Induced Arthritis Model

David Claveau, Mirna Sirinyan, Jocelyne Guay, Robert Gordon, Chi-Chung Chan, Yves Bureau, Denis Riendeau and Joseph A. Mancini

J Immunol 2003; 170:4738-4744; doi: 10.4049/jimmunol.170.9.4738

http://www.jimmunol.org/content/170/9/4738

References This article cites 27 articles, 12 of which you can access for free at: http://www.jimmunol.org/content/170/9/4738.full#ref-list-1

Subscription Information about subscribing to *The Journal of Immunology* is online at: http://jimmunol.org/subscription

Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts
Microsomal Prostaglandin E Synthase-1 Is a Major Terminal Synthase That Is Selectively Up-Regulated During Cyclooxygenase-2-Dependent Prostaglandin E₂ Production in the Rat Adjuvant-Induced Arthritis Model

David Claveau,¹* Mirna Sirinyan,¹‡ Jocelyne Guay,* Robert Gordon,† Chi-Chung Chan,† Yves Bureau,† Denis Riendeau,* and Joseph A. Mancini²*

To better define the role of the various prostanooid synthases in the adjuvant-induced arthritis (AIA) model, we have determined the temporal expression of the inducible PGE synthase (mPGES-1), mPGES-2, the cytosolic PGES (cPGES/p23), and prostacyclin synthase, and compared with that of cyclooxygenase-1 (COX-1) and COX-2. The profile of induction of mPGES-1 (50- to 80-fold) in the primary paw was similar to that of COX-2 by both RNA and protein analysis. Quantitative PCR analysis indicated that induction of mPGES-1 at day 15 was within 2-fold that of COX-2. Increased PGES activity was measurable in membrane preparations of inflamed paws, and the activity was inhibitable by MK-886 to ≥90% with a potency similar to that of recombinant rat mPGES-1 (IC₅₀ = 2.4 μM). The RNA of the newly described mPGES-2 decreased by 2- to 3-fold in primary paws between days 1 and 15 post-adjuvant. The cPGES/p23 and COX-1 were induced during AIA, but at much lower levels (2- to 6-fold) than mPGES-1, with the peak of cPGES/p23 expression occurring later than that of COX-2 and PGE₂ production. Prostacyclin (measured as 6-keto-PGF₁α) was transiently elevated on day 1, and prostacyclin synthase was down-regulated at the RNA level after day 3, suggesting a diminished role of prostacyclin during the maintenance of chronic inflammation in the rat AIA. These results show that mPGES-1 is up-regulated throughout the development of AIA and suggest that it plays a major role in the elevated production of PGE₂ in this model. The Journal of Immunology, 2003, 170: 4738–4744.
and cPGESp23 in relationship with paw edema formation, COX-2 and COX-1 expression, and PGE2 production.

Materials and Methods

AIA model

All procedures used in the in vivo assays were approved by the Animal Care Committee at the Merck Frost Center for Therapeutic Research (Kirkland, Quebec, Canada), according to guidelines established by the Canadian Council on Animal Care.

The AIA model was performed with Harlan Sprague Dawley (Indianapolis, IN) rats. Animals were anesthetized with a ketamine/xylazine injection i.m., before an intradermal injection of 0.5 mg of Mycobacterium butyricum in mineral oil that was administered into the right hind footpad, as described previously (21). Paw volumes were determined using a water plethysmometer (Ugo Basile, Varese, Italy) at the indicated points in the time course. Rats were euthanized by carbon dioxide inhalation. The tissues were flash frozen in liquid nitrogen.

Total RNA isolation and reverse transcription

Frozen paws were pulverized with a mortar and pestle and dissolved in TRizol reagent (Canadian Life Technologies, Burlington, Ontario, Canada). Total RNA was isolated using TRizol reagent, according to the manufacturer’s instructions. After dissolving the RNA, an equal volume of RNAmate (BioChain Institute, Hayward, CA) was added to precipitate the RNA and eliminate potential polysaccharides and proteoglycan contamination. A cleanup of the RNA was then performed using the Rneasy mini kit (Qiagen, Chatsworth, CA), as described in the manufacturer’s instructions.

Reverse transcription of RNA (50 ng) was performed using Taqman reverse transcription reagents (PE Biosystems, Foster City, CA). The reaction was performed in the presence of 1× TaqMan reverse-transcription buffer, 5.5 mM magnesium chloride, 500 μM each dNTP, 2.5 μM random hexamers, 0.4 U/μl RNase inhibitor, and 1.25 U/μl Multiscribe reverse transcriptase. Every reaction set included RNA samples incubated in the absence of Multiscribe reverse transcriptase to serve as controls for genomic DNA contamination. The cycling parameters consisted of a primer incubation of 10 min at 25°C, reverse transcription for 30 min at 48°C, followed by inactivation at 95°C for 5 min.

Real-time quantitative PCR

PCR primers and TaqMan hydrolisis probes for all target genes except the 18S ribosomal RNA (18S rRNA) were designed using the Primer Express software (PE Biosystems, Foster City, CA) and synthesized at Integrated DNA Technologies (Corvalle, IA). Table I. The rat mPGEs-2 partial sequence was obtained by sequencing of a rat expressed sequence tag (GenBank BF558739). The sequences of the primers used are presented in Table I. Predeveloped rats were analyzed using the relative standard curve method. Briefly, PCR for all samples was performed in parallel to standardization series made with known dilutions of the cDNA of the secondary paw of one animal at day 0 as template. Measured fluorescent signal intensities were plotted against the number of PCR cycles on a semilogarithmic scale. The cycle number in which the PCR amplification was in its exponential phase was compared with the standardization series values to obtain the relative quantity of the sample. To normalize for the amounts of RNA, PCR for the target genes and for the 18S rRNA endogenous reference were performed in separate tubes for each sample, and the target relative quantities were divided by the 18S rRNA quantities to obtain normalized target values. To obtain the relative expression level of each sample, the normalized target values of each sample are divided by the normalized target value of the control, which was chosen as the secondary paw of one animal at day 0.

Table I. Primer and probe oligonucleotide sequences for real-time quantitative PCR

<table>
<thead>
<tr>
<th>Gene</th>
<th>Accession No.</th>
<th>Primers</th>
<th>Probe</th>
</tr>
</thead>
<tbody>
<tr>
<td>mPGEs-1</td>
<td>AB041998</td>
<td>Forward: 5’-GCCGAACTGGGCGACAGAACA-3’ 5’-CCCCGGAAGCGGATGGCGTGG-3’</td>
<td>Reverse: 5’-GCTTACCTGGGCGGCGGAATG-3’</td>
</tr>
<tr>
<td>COX-2</td>
<td>S67722</td>
<td>Forward: 5’-CATGATCCAGGCTTTCCCACCCG-3’ 5’-CCTGAGAAGCTTGGTCTGGTCT-3’</td>
<td>Reverse: 5’-CGACACAAAGGACTCTGTCCC-3’</td>
</tr>
<tr>
<td>mPGEs-2</td>
<td>—b</td>
<td>Forward: 5’-GCCAAGGTCCTGGCCGCGAG-3’ 5’-TGGGCTGGCAGCTCTACATCCC-3’</td>
<td>Reverse: 5’-GCGCAAGTGGGCGAGGATG-3’</td>
</tr>
<tr>
<td>COX-1</td>
<td>S67721</td>
<td>Forward: 5’-GCCCTTGGCTTGGTCTA-3’ 5’-CCAGATTCAGCTGGCCGGCAAG-3’</td>
<td>Reverse: 5’-TCCCGGCTTGGAGGAGCAGG-3’</td>
</tr>
<tr>
<td>cPGEs</td>
<td>—c</td>
<td>Forward: 5’-GAGCTCCTGGGCGCGGACAG-3’ 5’-GTCGCAATACGACAACTTGGGGG-3’</td>
<td>Reverse: 5’-ATCAGGAAAGGAGGCTGAGG-3’</td>
</tr>
<tr>
<td>PGIS</td>
<td>NM_031557</td>
<td>Forward: 5’-CAGCTTCCGAGCCTCC-3’ 5’-CCAGCTTGACTGATGCTGCTCC-3’</td>
<td>Reverse: 5’-ACTGAGAGAGGAGGCTGAGG-3’</td>
</tr>
</tbody>
</table>

All cDNA sequences except the cPGEs and mPGEs-2 sequence were obtained from the GenBank database. The Taqman hydrolisis probes are gene-specific oligonucleotides dually labeled with a 6-FAM reporter dye at the 5’ end and a Black Hole Quencher-1 quencher dye at the 3’ end.

The partial cDNA sequence of rat mPGEs-2 was obtained by PCR sequencing of rat expressed sequence tag GenBank BF558739.

The cDNA sequences of the rat cPGEs were kindly provided by L. Boulet at Merck Frosst.

Statistical analysis of data

The quantitative PCR analysis presented in Fig. 2 was analyzed by both a paired t test and 2 × 10 mixed (split-plot) ANOVA design. Because the adjuvant was administered to one rear paw (primary), whereas the other was used as a control (secondary), the treatment (adjuvant) variable was analyzed as a within-subjects factor. The time course variable in contrast was analyzed as a between-subjects factor. All analyses were conducted using SPSS (Chicago, IL) software, version 10. The induction of COX-2 mRNA expression was statistically significant and related to the adjuvant treatment (adjuvant main effect, F(1, 18) = 66.93, p < 0.001; time course main effect, F(9, 18) = 3.21, p < 0.05; interaction, F(9, 18) = 3.61, p < 0.05). The induction of mPGEs-1 was also statistically significant for all three parameters (adjuvant main effect, F(1, 18) = 109.35, p < 0.001; time course main effect, F(9, 18) = 4.68, p < 0.01; interaction, F(9, 18) = 4.86, p < 0.01). The analyses of mPGEs-2 mRNA demonstrates a slight reduction of expression with adjuvant treatment that is statistically significant (adjuvant main effect, F(1, 18) = 46.81, p < 0.001; interaction, F(9, 18) = 4.84, p < 0.01). We have analyzed cPGEs/p23 and COX-1 expression and found no statistically significant effect for cPGEs/p23, while the 3- to 5-fold increase in COX-1 was statistically significant (cPGEs/p23, adjuvant main effect, F(1, 18) = 0.001, p = NS; COX-1, adjuvant main effect, F(1, 18) = 106.81, p < 0.001; time course main effect, F(9, 18) = 3.48, p < 0.05; interaction, F(9, 18) = 4.27, p < 0.01).

Quantitation of gene expression

The quantification of the real-time PCR results was performed as described in User Bulletin 2 of the ABI Prism 7700 Sequence Detection System (PE Biosystems) using the relative standard curve method. Briefly, PCR for all samples was performed in parallel to standardization series made with known dilutions of the cDNA of the secondary paw of one animal at day 0 as template. Measured fluorescent signal intensities were plotted against the number of PCR cycles on a semilogarithmic scale. The cycle number in which the PCR amplification was in its exponential phase was compared with the standardization series values to obtain the relative quantity of the sample. To normalize for the amounts of RNA, PCR for the target genes and for the 18S rRNA endogenous reference were performed in separate tubes for each sample, and the target relative quantities were divided by the 18S rRNA quantities to obtain normalized target values. To obtain the relative expression level of each sample, the normalized target values of each sample are divided by the normalized target value of the control, which was chosen as the secondary paw of one animal at day 0.

4739 The Journal of Immunology
Protein preparation and immunoblot analysis

Frozen rat paws were pulverized using a mortar and pestle, resuspended in PBS (Invitrogen, San Diego, CA) with 2.6 mM DTT and 1× Complete Protease Inhibitor mixture (Roche, Mannheim, Germany), and sonicated three times for 30 s at 4°C using a Cole Parmer 4710 Ultrasonic Homogenizer. Disrupted paws were subjected to centrifugation at 1,000 × g for 10 min, and the supernatant was further centrifuged at 100,000 × g for 1.5 h. The membrane pellet was resuspended in PBS with 2.6 mM DTT and 1× Complete Protease Inhibitor mixture, and protein concentrations were determined using a Bio-Rad protein assay (Bio-Rad, Hercules, CA). Protein samples were resolved by SDS-PAGE using 4–20% gradient gels supplied by Novex (Invitrogen) and transferred electrophoretically to polyvinylidene difluoride (PVDF) membranes using a Novex immunoblot transfer apparatus, according to the manufacturer’s instructions. Nonspecific sites on PVDF membranes were blocked with 5% nonfat dry milk in PBST for 1 h at room temperature, followed by two 5-min washes with PBST. The PVDF membrane was probed with either a 1/300 dilution of PGES antisera (Cayman Chemical, Ann Arbor, MI), or a 1/450 dilution of COX-2 antisera (Cayman Chemical), or a 1/1000 dilution of cPGE2/p23 antisera (Afinity BioReagents, Golden, CO) in 1% milk/PBST for 1 h. The blot was washed once for 15 min with PBST, followed by four times for 5 min with PBST, and then incubated with a 1/3000 dilution of HRP-linked secondary Ab (Amersham Pharmacia Biotech, Piscataway, NJ) in 1% milk/PBST for 1 h. The washing steps were repeated, and subsequently, ECL detection was performed, according to the manufacturer’s instructions (PerkinElmer Life Sciences, Wellesley, MA). Detection and quantitative analysis were performed using a Fuji Film LAS-1000 charge-coupled device and Image Gauge software.

Results

Inflammatory response in paws during AIA

AIA in rats is a model of inflammation that has been demonstrated to contain a significant PG component through the induction of COX-2 and of PGE2 synthesis. The present study was performed with SD rats injected with 0.5 mg of M. butyricum into the hind foot pad (primary paw), and the inflammatory response was followed over 25 days. During this time period, the paw volume increased from 1.5 ml on day 0 to a maximum of 5.0 ml by day 25 postadjuvant treatment in the primary paw (Fig. 1). The secondary paw (uninjected hind paw) also increased in volume, but at a much slower rate, with a maximum volume of 3.0 ml on day 25. Additional controls with rats treated with saline vehicle were analyzed on days 15 (15N) and 25 (25N) of the study (Fig. 1). The primary and secondary paws were collected and analyzed for RNA, protein expression, and PG production to examine the temporal expression of mPGES-1, mPGES-2, cPGE2/p23, COX-1, COX-2, and prostacyclin synthase (PGIS).

RNA expression of the terminal synthases during AIA

The oligonucleotide sequences of Taqman primer probe sets used for the RNA analysis for mPGES-1, cPGE2/p23, mPGES-2, COX-2, COX-1, and PGIS are described in Table I. RNA analyses were performed on samples from paws collected at different time points (Fig. 2) following adjuvant treatment, and were calculated as relative expression to the secondary paw at day 0 (18S ribosomal RNA was used to normalize the RNA levels from the various samples). The mPGES-1 RNA level was increased 49-fold by the 4-h time point in the primary paw following adjuvant administration. The induction of mPGES-1 was maximal during the first 3 days (50- to 76-fold), remained elevated during the progression of inflammation (20- to 40-fold up to day 15), and decreased over time to a 10-fold relative induction at day 25. This increase in expression was statistically significant throughout the time course (see all ANOVA analyses in Materials and Methods). COX-2 mRNA was also increased at 4 h, achieving a maximal relative induction of 92-fold within the first 3 days and decreasing at longer time points to 18- to 30-fold at days 21–25. In the secondary paws, lower levels of mPGES-1 and COX-2 were detected with a maximal induction of 3- to 4-fold. COX-1 RNA expression was not induced at the 4-h and 1-day time points, but showed a 3- to 5-fold induction from days 3–25 in the primary paw. The cPGE2, which has been shown to preferentially couple with COX-1 (5) for the synthesis of PGE2, also showed a slight induction at the RNA level (up to 2- to 3-fold) during the 25-day time course. There was no significant main effect for time course or time course by treatment interaction, indicating that treatment did not have a differential effect on cPGE2/p23 RNA levels over time. The RNA expression of mPGES-2 was also analyzed over this time course, and mPGES-2 levels were decreased ~2-fold between days 1 and 12 and at day 21. The prostacyclin receptor knockout demonstrated that PGH2 may play a role in an acute model of rodent inflammation (22). We analyzed PGIS RNA expression and observed a decrease of 3- to 9-fold in the primary paw from days 3 to 25.

We have also quantitated the amount of COX-1, COX-2, mPGES-1, and cPGE2/p23 RNA transcripts using standard curves obtained with the same Taqman primers and corresponding cDNA fragments (Fig. 3). The quantitation indicates that at day 15, in the primary paw, the number of RNA transcripts of COX-2 exceeds those of COX-1 by ~10-fold. In addition, the COX-2 and mPGES-1 RNA levels are induced to within 2-fold of each other, 5.9 and 9.5 pmol mRNA/g total RNA, respectively.

![FIGURE 1.](http://www.jimmunol.org/DownloadedFrom)
Induction of mPGES-1 protein in adjuvant-treated paws

Membrane and soluble fractions were prepared from the soft tissue of the adjuvant- and vehicle-treated rat paws. Proteins were electrophoresed on 4–20% SDS-PAGE gels, and analyzed for mPGES-1, COX-2, or COX-1 protein expression by immunoblot analysis with specific antisera for each protein (Figs. 4 and 5). In the absence of any adjuvant administration, mPGES-1 and COX-2 protein levels were close to the lower limit of detection with the antisera used. The induction of mPGES-1 was detected on day 1 and persisted to day 25 following adjuvant treatment in the primary paw. The maximum induction was measured at days 1–3 with a 60- to 80-fold increase of mPGES-1 as compared with the secondary paw at time zero (Fig. 5A). COX-2 protein induction was detected at all time points starting from day 1, with maximal induction of COX-2 measured at days 3 and 6. Constitutive levels of COX-1 protein were detected on day 0 in both the primary and secondary paws. A 2- to 4-fold increase of COX-1 was detected in the primary vs secondary paw during the time course of AIA (Fig. 5C).

The expression of cPGES/p23 protein was also analyzed in the corresponding supernatant fractions remaining from the membrane preparations analyzed for mPGES-1, COX-1, and COX-2 expression. In contrast to mPGES-1, constitutive levels of cPGES/p23 were detected in both primary and secondary paws (day 0, Fig. 4B). The levels of cPGES/p23 protein increased 2- to 6-fold following adjuvant treatment (Figs. 4B and 5B). The increase in protein expression for cPGES/p23 was similar to that of COX-1 and ~10-fold lower than that observed for mPGES-1 (Fig. 5).
Production of PGE₂ and PGL₃ in inflamed paws

The soluble extracts of paws from the AIA time course were also analyzed for PGE₂ and 6-keto-PGF₁α, a measure of PGL₃ content (Fig. 6). PGE₂ amounts were at the limit of detection at time zero, but reached a peak of 4 ng/mg protein at day 1 (>40-fold induction). The levels of PGE₂ remained elevated throughout the time course and decreased to ~1 ng/mg protein at day 25. By day 25, an increase in PGE₂ in the secondary paw, which is several fold above the vehicle control, was also detected. A 2.5- and 5.5-fold increase in prostacyclin was only detectable at the 4-h and 1-day time points, respectively, in the primary paw. In contrast to PGE₂, the increase in prostacyclin was transient and returned to basal levels from days 3 to 25.

Induction of PGES activity and inhibitor sensitivity

The cytosolic and membrane fractions of both the primary and secondary paws on days 1 and 3 postadjuvant treatment were analyzed for PGES activity with exogenous PGH₂. The cytosolic and membrane fractions in the secondary paw and the cytosolic fraction of the primary paw contained very low, if any, PGES activity above nonenzymatic degradation of PGH₂. In contrast, the membrane fractions of the primary paw on days 1 and 3 had a >4-fold increase in PGES activity above the activity measured in the secondary paw. This PGES activity was inhibited to at least 90% with MK-886 and with a potency (IC₅₀) of 2.5 ± 0.4 μM (n = 4, day 1) and 2.4 ± 0.3 μM (n = 3, day 3) that is comparable to that of the recombinant rat mPGES-1 (IC₅₀ = 3.2 μM) (7). These data suggest that all of the increased PGES activity in adjuvant-treated rat paws is membrane associated and MK-886 inhibitable, which is consistent with a major role for mPGES-1 in this model. Although MK-886 shows a reasonable potency as an inhibitor of mPGES-1 in vitro in microsomal assays, its potency is affected by binding to serum proteins. For example, MK-886 is a potent inhibitor of FLAP in human polymorphonuclear leukocytes with an IC₅₀ of 2.5 nM for the inhibition of leukotriene biosynthesis that is significantly shifted to an IC₅₀ of 1.1 μM in human whole blood (23). This 440-fold protein shift precludes the use of MK-886 as an inhibitor of mPGES-1 for in vivo experiments.

Discussion

The rat AIA model is a rodent model of joint inflammation that has been used for the preclinical development of nonsteroidal anti-inflammatory drugs and COX-2 inhibitors. Selective COX-2 inhibitors reduce the pain and inflammation in AIA along with a corresponding decrease of PGE₂ in the inflamed paw in this model (24, 25). It has recently been shown that a selective COX-1 inhibitor that does not inhibit the inflammation in AIA also does not result in inhibition of PGE₂ in the paw (26). These results demonstrate that COX-2-mediated PGE₂ production is the major pathway of PG formation that causes pain and inflammation in the AIA model. With the discovery of several terminal PGES, including mPGES-1 (4), mPGES-2 (10), and cPGES/p23 (5), it has become intriguing to determine which of these synthases is involved in the formation of the proinflammatory PGE₂ in AIA.

We have demonstrated using quantitative PCR that mPGES-1 and COX-2 are both significantly induced at early time points and to the same relative extent in the AIA model. COX-1 and cPGES/p23 are only slightly increased in the AIA model, and the relative maximal increase is at least 10-fold lower than for either COX-2 or mPGES-1. Levels of mPGES-2 RNA are slightly decreased during the time course analyzed in the AIA model. Interestingly, constitutive levels of cPGES/p23 RNA are >8-fold above either COX-2 or mPGES-1 resting RNA levels. Prostacyclin has been shown to play a role in acute inflammation (22). No significant induction of PGIS is detected in AIA; in fact, a decrease in PGIS RNA is detected over the 25-day time course in the primary paw.

At the protein level, neither mPGES-1 nor COX-2 is detectable to any appreciable extent in the rat paw in the absence of any...
inflammatory stimulus. This is in contrast to cPGES/p23, which is present in the nonadjuvant-treated paw. In the adjuvant-treated primary paw, mPGES-1 is coinduced with COX-2, with increased levels detected by 4 h and remained elevated for 15 days after administration of adjuvant. The pattern of induction observed by Taqman analysis is quite similar to the pattern of protein expression by immunoblot and suggests a reasonable correlation of elevated RNA and protein expression in the AIA model for mPGES-1. The cPGES/p23 enzyme was also slightly induced at the protein level between days 1 and 15, but the maximal induction was only 5- to 6-fold and is relatively low compared with the 70- to 80-fold induction of mPGES-1 in AIA. It is of interest that the increase in cPGES/p23 was also accompanied by a similar increase in COX-1 because these two enzymes have been suggested to preferentially couple for PGE2 production. Measurement of PGES activity in the cytosolic and membrane fraction showed that only the membrane fraction contained any appreciable increase in PGES activity. The latter suggests that cPGES/p23, which is primarily expressed in cytosolic fractions, might not significantly contribute to PGE2 synthesis at the site of inflammation in this model. Also, the PGES activity associated with the membrane fraction was inhibited by MK-886 (IC50 = 2.4 μM) with a potency similar to that of the recombinant rat mPGES-1 enzyme (IC50 = 3.2 μM) (7). These data suggest that the major PGES enzyme in the inflamed paws of the AIA model is mPGES-1.

FIGURE 5. Densitometric analysis of protein expression of mPGES-1 (A), cPGES/p23 (B), and COX-1 (C) in rat AIA. Results are expressed as mean ± SEM of relative protein levels in rat paws relative to those of the secondary paw at $t = 0$ ($n = 2$).

FIGURE 6. Measurement of PGE2 and 6-keto-PGF1α during the development of AIA. Soluble fractions of extracts prepared from the soft tissue of the rat paws were analyzed for levels of PGE2 (A) and 6-keto-PGF1α (B) by enzyme immunoassay. Data are presented as the mean ± SEM ($n = 3$ or $a, n = 2$).

<table>
<thead>
<tr>
<th>Time</th>
<th>Paw Fraction</th>
<th>Primary paw</th>
<th>Secondary paw</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td>S100</td>
<td>32 ± 3 (4)</td>
<td>27 ± 6 (4)</td>
</tr>
<tr>
<td></td>
<td>P100</td>
<td>138 ± 26 (4)</td>
<td>32 ± 1 (4)</td>
</tr>
<tr>
<td>Day 3</td>
<td>S100</td>
<td>27 ± 7 (4)</td>
<td>30 ± 6 (4)</td>
</tr>
<tr>
<td></td>
<td>P100</td>
<td>152 ± 19 (3)</td>
<td>33 ± 3 (3)</td>
</tr>
<tr>
<td></td>
<td>Nonenzymatic</td>
<td>21 ± 4 (4)</td>
<td></td>
</tr>
</tbody>
</table>

Table II. PGES activity in fractions from paws of AIA rats a

a Soluble (S100) and microsomal membrane fractions (P100) were prepared from pulverized rat paw tissue extracts and characterized for production of PGE2. Protein samples (0.1 mg of protein/ml) were incubated with 1 μM PGH2 for 40 s in 100 mM phosphate buffer, pH 7.4, 2 mM EDTA, and 2.5 mM GSH, and the reaction was terminated with 0.1 N HCl and 1 mg/ml stannous chloride. PGE2 production was analyzed by immunoassay, and all results are reported as means ± SEM ($n = 3$ or 4).
To correlate the production of mediators of inflammation with the variations in the expression of terminal synthases, we also measured tissue levels of PGE\textsubscript{2} and PGL\textsubscript{3}. The early induction of PGE\textsubscript{2} suggests a contribution of this mediator to the initial increase in paw edema measured over the first 6 days postadjuvant treatment. PGL\textsubscript{3} demonstrated an early initial spike, and this may suggest an acute role for PGL\textsubscript{3} and a more sustained chronic role in inflammation for PGE\textsubscript{2}.

The AIA model has been demonstrated to contain an inflammatory component produced by COX-2-mediated PGE\textsubscript{2} production using a selective COX-2 inhibitor (24) and anti-PGE\textsubscript{2} Ab treatment (2). A recent report has also demonstrated mPGES-1 induction in brain endothelial cells and in the parenchyma of the paraventricular hypothalamic nucleus in the AIA model, suggesting a CNS component of PGE\textsubscript{2} that may be regulated by mPGES-1 (27). We have demonstrated a significant induction of mPGES-1 during the development of inflammation and increased PGE\textsubscript{2} production in the rat AIA, and the measurable activity in the treated primary paw is inhibitable by MK-886. These data suggest that mPGES-1 plays a significant role in joint inflammation in rat AIA, and that this model may be suitable for the evaluation of pharmacological agents that specifically inhibit mPGES-1.

References