A Broad-Spectrum Caspase Inhibitor Attenuates Allergic Airway Inflammation in Murine Asthma Model

Akiko Iwata, Kazumi Nishio, Robert K. Winn, Emil Y. Chi, William R. Henderson, Jr. and John M. Harlan

J Immunol 2003; 170:3386-3391; doi: 10.4049/jimmunol.170.6.3386
http://www.jimmunol.org/content/170/6/3386

References
This article cites 40 articles, 22 of which you can access for free at:
http://www.jimmunol.org/content/170/6/3386.full#ref-list-1

Subscription
Information about subscribing to The Journal of Immunology is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts

The Journal of Immunology is published twice each month by
The American Association of Immunologists, Inc.,
1451 Rockville Pike, Suite 650, Rockville, MD 20852
Copyright © 2003 by The American Association of Immunologists All rights reserved.
Print ISSN: 0022-1767 Online ISSN: 1550-6606.
A Broad-Spectrum Caspase Inhibitor Attenuates Allergic Airway Inflammation in Murine Asthma Model

Akiko Iwata, Kazumi Nishio, Robert K. Winn, Emil Y. Chi, William R. Henderson, Jr., and John M. Harlan

Asthma is characterized by acute and chronic airway inflammation, and the severity of the airway hyperreactivity correlates with the degree of inflammation. Many of the features of lung inflammation observed in human asthma are reproduced in OVA-sensitized/challenged mice. T lymphocytes, particularly Th2 cells, are critically involved in the genesis of the allergic response to inhaled Ag. In addition to antiprotective effects, broad-spectrum caspase inhibitors inhibit T cell activation in vitro. We investigated the effect of the broad-spectrum caspase inhibitor, N-benzoylcarbonyl-Val-Ala-Asp-fluoromethylketone (z-VAD-fmk), on airway inflammation in OVA-sensitized/challenged mice. OVA-sensitized mice treated with z-VAD-fmk immediately before allergen challenge showed marked reduction in inflammatory cell infiltration in the airways and pulmonary blood vessels, mucus production, and Th2 cytokine production. We hypothesized that the caspase inhibitor prevented T cell activation, resulting in the reduction of cytokine production and eosinophil infiltration. Treatment with z-VAD-fmk in vivo prevented subsequent T cell activation ex vivo. We propose that caspase inhibitors may offer a novel therapeutic approach to T cell-dependent inflammatory airway diseases. The Journal of Immunology, 2003, 170: 3386–3391.

Airway hyperreactivity has been attributed to chronic airway inflammation and the severity of this hyperreactivity correlates with the number of Th2 cytokine-producing T lymphocytes and eosinophils in the airways. Th2 cells secrete IL-4, IL-5, and IL-13, which promote IgE production and eosinophil development, release, and survival. It is known that eosinophils and T cells express very late Ag-4 (VLA-4; α4β1; CD49d/CD29) on their surface and bind to VCAM-1 (CD106) on endothelium and fibroblast in matrix. VLA-4-dependent adhesion has been shown to make an important role for eosinophil and T cell infiltration to inflammatory sites (3–5). In a previous study, we reported that intranasal administration of an anti-VLA-4 mAb blocked inflammatory cell infiltration, Th2 cytokine release, and hyperresponsiveness to methacholine in a mouse asthma model (6). Since VLA-4 signaling transduces survival signals as well (7–9), we hypothesized that VLA-4 blockade might trigger T lymphocyte or eosinophil apoptosis and diminish airway inflammation.

To test this hypothesis, we sought to prevent inflammatory cell apoptosis by administration of a broad-spectrum caspase inhibitor along with anti-VLA-4 mAb, reasoning that the caspase inhibitor would abrogate the inhibitory effect of VLA-4 blockade. We used N-benzoylcarbonyl-Val-Ala-Asp-fluoromethylketone (z-VAD-fmk), which prevents apoptosis in various animal models such as ischemia-reperfusion injury (10), sepsis (11), hepatitis (12), and fibrosis (13). Of great surprise, we found that z-VAD-fmk administration by i.v. injection before VLA-4 mAb treatment led to a further reduction in leukocyte infiltration. Most notably, pretreatment with the caspase inhibitor alone immediately before allergen challenge markedly attenuated eosinophil accumulation, mucus production, and Th2 cytokine release. This result was counterintuitive, since inhibition of apoptosis should exacerbate inflammation by preventing apoptosis of effector cells. Therefore, we investigated whether caspase inhibition (i.e., treatment with z-VAD-fmk) was directly anti-inflammatory, apart from modulation of apoptosis. We found that treatment of nonsensitized mice with i.v. z-VAD-fmk significantly inhibited subsequent ex vivo T lymphocyte activation induced by CD3 cross-linking. In summary, we report that allergen-induced airway inflammation in OVA-sensitized/challenged mice was reduced by the broad-spectrum caspase inhibitor z-VAD-fmk, consistent with an important role of caspases in T cell activation.

Materials and Methods

Animals

BALB/c mice were purchased from Charles River Breeding Laboratories (Wilmington, MA). All animal use procedures were approved by the University of Washington Animal Care Committee (Seattle, WA).

Allergen sensitization and challenge

Mice were sensitized and later challenged with OVA (Pierce, Rockford, IL) as previously described (14). Mice were immunized with OVA (100 μg) complexed with aluminum potassium sulfate in a 0.2-ml volume, administered by i.p. injection on day 0. On days 8, 15, 18, and 21, mice were anesthetized with 0.2 ml of ketamine (10 mg/ml) and xylazine (1 mg/ml) diluted in 0.9% saline. Mice received 250 μg of OVA by intratracheal (i.t.) administration. Intratracheal challenges were performed as previously described (15, 16). Mice were anesthetized by i.p. injection of a 0.2 ml of a mixture of ketamine and xylazine (10 and 1 mg/ml, respectively) in normal saline and were placed on board in the supine position. Two hundred fifty micrograms (100 μl of a 2.5 mg/ml of OVA on days 8) and 125 μg (50 μl of 2.5 mg/ml of OVA on days 15, 18, and 21) were placed on the back.

Copyright © 2003 by The American Association of Immunologists, Inc.

0022-1767/03/$02.00
of the tongue of each animal. The control group received normal saline with aluminum potassium sulfate by i.p. route on day 0 and 0.05 ml of 0.9% saline by i.t. route on days 8, 15, 18, and 21.

Ab treatment

Mice were given 2 µg/g weight of blocking CD49d mAb dose (BD Pharmingen, San Diego, CA) by the i.t. route at 30 min before OVA challenge on days 15 and 21 (6). For control mice, CD16/CD32 mAb (BD Pharmingen) was given.

Assay of T lymphocyte activation ex vivo

Two hours after z-VAD-fmk or DMSO administration, spleens were aseptically removed and mechanically dissociated in cold PBS, followed by depletion of erythrocytes with lysis buffer containing NH4Cl. Splenocytes were suspended at a concentration of 1 × 107 cells/ml in RPMI 1640 (Life Technologies, Gaithersburg, MD) containing 10% FCS, 2 mM l-glutamine, 100 U/ml penicillin, 100 µg/ml streptomycin, 10 mM HEPES (Life Technologies), and 20 µM 2-ME (Sigma-Aldrich, St. Louis, MO).

Splenocytes were incubated at 37°C in a 5% CO2 atmosphere and stimulated for 48 h in anti-mouse CD3 T cell activation 96-multwell plates (BD Biocat; BD Pharmingen). Briefly, 5 × 105 cells/200 µl were seeded to each well. After 48 h of incubation, cell-free culture supernatants were collected and stored at −70°C until cytokine analyses were performed.

Results

Mice were sensitized with OVA i.p. on day 0 and challenged on days 8, 15, 18, and 21 by the i.t. route. Mice treated with DMSO and control mAb at days 18 and 21 before OVA challenge showed a marked infiltration of total leukocytes and eosinophils into BAL fluid 24 h after the last i.t. challenge (Fig. 1). Treatment with anti-VLA-4 mAb reduced eosinophil infiltration in BAL fluid by 40% compared with CD16/CD32 (p = 0.043), z-VAD-fmk administration (5 µg/g weight) 30 min before anti-VLA-4 mAb treatment further inhibited eosinophil infiltration, with a 74% reduction in BAL fluid eosinophils compared with mice treated with DMSO and anti-VLA-4 mAb (p = 0.045, by Student’s two-tailed t test). Mice treated with z-VAD-fmk and control mAb had an 82% reduction in eosinophils compared with animals treated with DMSO and control mAb (p = 0.003).

FIGURE 1. Anti-VLA-4 mAb and z-VAD-fmk reduce inflammatory cell infiltration in BAL fluid of OVA-sensitized/challenged mice. BAL fluid was obtained from mice treated with z-VAD-fmk (5 µg/g weight) or DMSO (0.1 µg/g weight) by i.v. administration at 1 h before OVA challenge on days 18 and 21, followed 30 min later by i.t. administration of anti-VLA-4 mAb or control CD16/CD32 mAb (2 µg/g weight). Total leukocytes (A) and eosinophils (B) per milliliter of lavage fluid are shown (mean ± SEM). *p < 0.05 vs DMSO in anti-VLA-4 or anti-CD16/CD32 mAb-treated groups and **, p < 0.05 vs CD16/CD32 mAb-treated control mice using Student’s two-tailed t test.
In additional experiments, z-VAD-fmk was administered i.v. at 1 or 5 μg/g weight on days 18 and 21 at 1 h before the OVA challenge, and total leukocyte and eosinophil cell counts were determined in BAL fluid (Fig. 2). On day 22, 24 h after the last OVA challenge, total leukocytes and eosinophils were reduced by 62 and 65%, respectively, in mice receiving z-VAD-fmk at 5 μg/g compared with the control group treated with DMSO \((p < 0.001)\). z-VAD-fmk at 1 μg/g weight also reduced leukocyte infiltration (total leukocytes and eosinophils in z-VAD-fmk vs DMSO groups; \(p = 0.02\) and \(p = 0.007\) by Student’s two-tailed \(t\) test, respectively).

IL-4 and IL-5 levels in BAL fluid

Th2 cytokine levels in BAL fluid were measured by ELISA (Fig. 3). IL-4 and IL-5 levels in lavage fluid were reduced in z-VAD-fmk-treated mice vs DMSO-treated animals by 57.0% (\(p = 0.001\), by Student’s two-tailed \(t\) test) and 65.0% (\(p = 0.013\)), respectively.

Histology

Twenty-four hours after the final i.t. OVA challenge, BAL was performed on the right lung and left lung tissue was obtained to assess the effect of z-VAD-fmk on airway inflammation histologically. Mice treated with z-VAD-fmk at 5 μg/g weight, 1 h before OVA challenge on days 18 and 21, showed a dramatic reduction of both inflammatory cell infiltration of the airway parenchyma and surrounding blood vessels and airway mucus production (Fig. 4A). In contrast, an intensive infiltration of eosinophils and other leukocytes in the lung parenchyma and blood vessels was observed in OVA-sensitized/challenged, DMSO-treated mice (Fig. 4B).

The number of infiltrated cells in the airways and blood vessels, mucus occlusion of airway diameter, edema, Alcian blue-positive mucus cells in the airway epithelium, and eosinophils per unit area (2200 μm²) were determined by morphometric analysis (Fig. 5). z-VAD-fmk treatment significantly reduced the total inflammatory cell and eosinophil infiltration into the airways and perivascular area of pulmonary blood vessels by 69% (\(p < 0.001\), by Student’s two-tailed \(t\) test) and 75% (\(p < 0.001\), respectively (Fig. 5A and B). Mucus occlusion of the airway diameter and the number of mucus-secreting cells in airway epithelia were reduced by z-VAD-fmk treatment (Fig. 5C and D). The degree of edema was also attenuated by z-VAD-fmk (Fig. 5E).

Comparison of z-VAD-fmk with other fluoromethylketone inhibitors

To control for potential nonspecific effects of the fluoromethylketone moiety, we tested z-FF-fmk, which is a cathepsin-B and -L inhibitor. We also examined y-VAD-fmk, a more selective caspase inhibitor, which is directed primarily at caspase-1 and caspase-4. In comparison to z-VAD-fmk, y-VAD-fmk and z-FF-fmk did not reduce leukocyte infiltration in BAL fluid (Fig. 6) or improve methacholine-induced airway hyperreactivity (Fig. 7). y-VAD-fmk reduced the level of IL-4, but not IL-5, protein in BAL fluid, whereas z-FF-fmk was without any effect on Th2 cytokine protein levels (Fig. 6).

Effect of z-VAD-fmk on OVA-induced airway hyperreactivity to methacholine

Airway hyperreactivity to aerosolized methacholine was determined by noninvasive in vivo plethysmography 24 h following the
last i.t. challenge with OVA. Airway hyperreactivity was observed in the OVA-treated mice after challenge with methacholine at 5, 10, and 25 mg/ml, with significant increases in Penh (percentage of air). By regression analysis, z-VAD-fmk reduced airway hyperreactivity in OVA-treated mice compared with z-FF-fmk and y-VAD-fmk \((p < 0.05)\), although there was no statistical difference between z-VAD-fmk and DMSO (Fig. 7).

Effect of z-VAD-fmk on T lymphocyte activation ex vivo

To investigate the potential mechanism(s) of action of z-VAD-fmk, we examined isolated splenocytes ex vivo. Mice were given z-VAD-fmk by i.v. injection at 2 h before sacrifice and splenocytes were isolated. T lymphocytes in the mixture of splenocytes were activated by incubating with anti-CD3 for 48 h, and cytokine levels were then measured in supernatant medium (Fig. 8). Levels of the Th2 cytokines IL-4 and IL-5, which were released into supernatant medium, were reduced in splenocytes obtained from z-VAD-fmk-treated animals vs DMSO-treated animals by 45.2% \((p = 0.049, \text{by Student’s two-tailed } t\text{ test})\) and 59.5% \((p = 0.001)\), respectively.

Discussion

We anticipated that inhibition of apoptosis by administration of a broad-spectrum caspase inhibitor would exacerbate allergen-induced lung inflammation by prolonging survival of T lymphocytes or eosinophils. Surprisingly, systemic injection of the pan-caspase inhibitor z-VAD-fmk immediately before OVA challenge reduced inflammatory cell accumulation, mucus hypersecretion, and Th2 cytokine release in OVA-sensitized/challenged mice. The effects of the caspase inhibitor in this model are likely due to its anti-inflammatory activities, rather than inhibition of apoptosis. As a broad-spectrum caspase inhibitor, z-VAD-fmk may inhibit the processing of pro-IL-1 and pro-IL-18 to the mature cytokines by caspase-1 (21). IL-1\(\alpha\) activates NF-κB, which, in turn, induces inflammatory gene expression and leads to eosinophil recruitment (22, 23). In allergic lung responses IL-18 has been reported to enhance eosinophil infiltration, accompanied by an elevation of Th2 cytokine expression in the lungs (24–26). Caspase-3 is involved in the processing of pro-IL-16 to the mature cytokine (27).
were measured.

Splenocytes were isolated and then activated by incubating with Th2 cytokine release from CD3-stimulated T lymphocytes. Treatment with z-VAD-fmk in vivo reduces subsequent caspase and inflammation.

FIGURE 8. Treatment with z-VAD-fmk in vivo reduces subsequent Th2 cytokine release from CD3-stimulated T lymphocytes ex vivo. Mice were given z-VAD-fmk (5 μg/g weight) by i.v. injection at 2 h before sacrifice. Splenocytes were isolated and then activated by incubating with anti-CD3 for 48 h. IL-4 and IL-5 protein levels in supernatant medium were measured. * p < 0.01 vs DMSO by Student’s two-tailed t test (n = 4). ND, Not detected.

and IL-16 has been implicated in allergen-induced airway hyperreactivity and up-regulation of IgE (28). It is possible that these effects of caspases on cytokine processing and secretion contribute to the anti-inflammatory effects of z-VAD-fmk in the OVA-sensitized/challenged mice. In addition to cytokine production and apoptosis, caspases play a role in cell differentiation. Treatment with z-VAD-fmk blocked terminal differentiation of lens epithelial cells (29) and keratinocytes (30), the differentiation of monocytes into macrophages (31), and the differentiation of erythroid progenitors (32). However, it is unlikely that modulation of cell differentiation contributes to the inhibitory effects of z-VAD-fmk in this acute model.

The most likely target of the caspase inhibitor in the OVA-sensitized/challenged mice is the T lymphocyte. CD4 T lymphocytes play a critical role in the response to Ag challenge (33), and z-VAD-fmk treatment markedly reduced production of the Th2 cytokines IL-4 and IL-5. Attenuated T cell activation with decreased elaboration of these cytokines could account for reduced cellular infiltration and mucous production (34). This possibility was supported by studies in which we investigated the effect of z-VAD-fmk administered in vivo on cultured splenocytes stimulated ex vivo. IL-4 and IL-5 production, induced by cross-linking of CD3 on T lymphocytes, was significantly reduced in splenocytes isolated from mice treated with z-VAD-fmk 2 h before. This result is consistent with z-VAD-fmk preventing T cell activation by inhibiting caspase activity. Furthermore, since any free z-VAD-fmk was removed when splenocytes were isolated and since z-VAD-fmk binds to active caspases not to procaspases (35), the inhibitory effect on subsequent CD3-triggered T cell activation ex vivo suggests that its target was an active caspase (or cysteine protease) in resting T cells.

Caspases are involved in activation of several effector cell functions of T lymphocytes. In Jurkat cells, caspase-mediated cleavage of calcineurin contributed to IL-2 production during T cell activation by PHA (36). Notably, Kennedy et al. (37) showed that CD3 activation of T cells led to processing of caspase-8 but not caspase-3 and that z-VAD-fmk blocked CD3-induced T cell proliferation and IL-2 production. Similarly, Alam et al. (38) reported that z-VAD-fmk blocked proliferation, MHC class II expression, and blastic transformation during stimulation of PBL. Finally, Fas-associated death domain (FADD) is required for recruitment of caspase-8 and activation of downstream caspase-3. T lymphocytes from FADD-deficient mice (39) and from transgenic mice overexpressing a FADD-dominant negative (40) exhibited a defect in proliferation to mitogens.

Our study shows that the broad-spectrum caspase inhibitor z-VAD-fmk reduced cell infiltration in BAL and airway hyperresponsiveness in OVA-sensitized/challenged mice, but two other fluoromethylketone inhibitors, y-VAD-fmk and z-FF-fmk, did not show inhibition at equivalent dosing. Although y-VAD-fmk is a more selective caspase-1 and caspase-4 inhibitor and z-FF-fmk is a cathepsin-B and -L inhibitor, the in vivo results do not determine which specific caspase(s) (or cysteine protease(s)) is involved. Further studies are required to determine how caspases are activated in T cells without inducing apoptosis and the mechanism by which they regulate T cell effector functions.

By regression analysis, there was a significant difference between z-VAD and two other fluoromethylketone inhibitors in terms of an inhibitory effect on methacholine-induced airway hyperresponsiveness. However, there was no statistical difference between z-VAD and DMSO. Previously, we observed that reagents (i.e., leukotriene synthesis inhibitors, soluble IL-4R and CD49 mAb administered i.p.), which prevent eosinophil infiltration into the lungs, did not always prevent airway hyperreactivity to methacholine in OVA-sensitized/challenged mice (6, 17, 20). Thus, caspase inhibitors might be also a class of drugs that prevent eosinophil infiltration into lung but do not prevent airway hyperreactivity. In summary, the broad-spectrum caspase inhibitor z-VAD-fmk attenuated allergen-induced airway inflammation and hyperreactivity. Treatment with z-VAD-fmk in vivo also prevented subsequent T cell activation ex vivo. Together, these results suggest that caspase inhibitor treatment prevents T cell activation, resulting in reduction of Th2 cytokine production, and inflammatory cell infiltration. Although further investigation is needed to elucidate the detailed mechanisms of action, caspase inhibitors may represent a new class of drugs to treat allergic airway inflammation.

Acknowledgments

We thank Gertrude Chiang, Falaah Jones, and Ying-Tzang Tien for excellent technical assistance.

References

