Lipopolysaccharide Down-Regulates the Leukotriene C4 Synthase Gene in the Monocyte-Like Cell Line, THP-1

Kenneth J. Serio, Scott C. Johns, Linda Luo, Craig R. Hodulik and Timothy D. Bigby

J Immunol 2003; 170:2121-2128; doi: 10.4049/jimmunol.170.4.2121
http://www.jimmunol.org/content/170/4/2121

Why The JI?

• Rapid Reviews! 30 days* from submission to initial decision
• No Triage! Every submission reviewed by practicing scientists
• Speedy Publication! 4 weeks from acceptance to publication

References This article cites 69 articles, 24 of which you can access for free at: http://www.jimmunol.org/content/170/4/2121.full#ref-list-1

Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription

Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts
Lipopolysaccharide Down-Regulates the Leukotriene C₄ Synthase Gene in the Monocyte-Like Cell Line, THP-1

Kenneth J. Serio, Scott C. Johns, Linda Luo, Craig R. Hodulik, and Timothy D. Bigby

We studied the effects of LPS on cysteinyl leukotriene (LT) synthesis and LTC₄ synthase expression in mononuclear phagocytes. Conditioning of the monocyte-like cell line, THP-1, with LPS for 7 days resulted in significantly decreased ionophore-stimulated LTC₄ release. The putative LPS receptor, Toll-like receptor 4, was expressed in THP-1 cells. LPS down-regulated LTC₄ synthase mRNA in THP-1 cells in a dose- and time-dependent manner, with down-regulation observed as early as 4 h. Conditioning of actinomycin D-treated cells with LPS resulted in no change in the rate of LTC₄ synthase mRNA decay. LPS treatment of THP-1 cells, transiently transfected with a LTC₄ synthase promoter (1.35 kb)-reporter construct, decreased promoter activity. Neutralization of TNF-α and inhibition of mitogen-activated protein kinase kinase/extracellular signal-regulated kinase did not inhibit the effect of LPS. Treatment of cells with a Toll-like receptor 4-blocking Ab and an inhibitor of NF-κB activation resulted in inhibition of the LPS effect, while activation of NF-κB and p50/p65 overexpression down-regulated the LTC₄ synthase gene. LPS down-regulates cysteinyl LT release and LTC₄ synthase gene expression in mononuclear phagocytes by an NF-κB-mediated mechanism. The Journal of Immunology, 2003, 170: 2121–2128.
Materials and Methods

Cell culture

THP-1 cells were obtained from American Type Culture Collection (Manassas, VA). The monocyte-like cell line, THP-1, has been used as an effective model for the study of regulation of the 5-LO pathway in previous studies (34, 35). THP-1 cells were grown at 37°C with 5% CO₂ in RPMI 1640 medium supplemented with 10% heat-treated FCS, 100 U/ml penicillin, 100 µg/ml streptomycin, and 250 µg/ml gentamicin. The media were changed every 2 days for all experiments.

ELISA for LTC₄ release from LPS-conditioned THP-1 cells

THP-1 cells were conditioned for 7 days with Salmonella minnesota Re595 LPS (Re LPS) at 100 ng/ml. The cells were harvested and subsequently resuspended in HBSS at a concentration of 10⁵ cells/ml. The cells were incubated at 37°C with catabase (at 60 ng/ml) (Sigma-Aldrich, St. Louis, MO) for 15 min to inhibit conversion of LTC₄. The calcium ionophore, A23187 (at 1 µM), was added and the cells were incubated for 15 min at 37°C. Supernatants were assayed for LTC₄ release by ELISA (Oxford Biomedical Research, Oxford, MI), per the manufacturer’s instructions.

RT-PCR determination of TLR expression in THP-1 cells

Total RNA was extracted from THP-1 cells by a single-step guanidinium thiocyanate method (29). A reverse-transcriptase reaction was performed on 5 µg of extracted total RNA using the Superscript II Kit (Life Technologies, Gaithersburg, MD) according to the manufacturer’s instructions. Following cDNA synthesis, a PCR was then performed with primers specific for THP-1, 5′-GGGCCGGCGCCGATCTCA GAG-3′ and reverse 5′-AAATCCCAATTGAGCAAGC-3′, with expected product size of 212 bp; TLR3: forward 5′-GGCCAGCAAATTACCTGTTG-3′ and reverse 5′-TTTCCACCCAGGATTTGACC-3′, with expected product size of 298 bp; TLRS; forward 5′-GGGCGGAAGACTGCTGTATG-3′ and reverse 5′-GGAACTGAGCTGTTATGC-3′, with expected product size of 300 bp; and TLR5: forward 5′-GGGCGGAAGACTGCTGTATG-3′ and reverse 5′-GGAACTGAGCTGTTATGC-3′, with expected product size of 167 bp; and TLRS; forward 5′-GGGACAGCTGCTTGTCTG-3′ and reverse 5′-AACGAGGAGACCCAGCAG AA-3′ with expected product size of 196 bp). Thirty cycles of PCR were performed, with each cycle consisting of denaturation at 94°C for 45 s, annealing at 60°C for 45 s, and extension at 72°C for 45 s. The PCR products were electrophoresed through an agarose gel and visualized by ethidium bromide staining.

Northern blot analysis for LTC₄ synthase mRNA

THP-1 cells were conditioned with Re LPS at doses ranging from 0–100 ng/ml and for periods up to 24 h. Additional experiments were performed using the following: the NF-κB activation inhibitor, parthenolide; the NF-κB activator, bisperoxyvanadium (phen); the MAP kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) inhibitor, PD98059; the J1D9 anti-TNF-α neutralizing Ab (30); the monoclonal HTA414 anti-TLR4 Ab (31); and/or actinomycin D. Re LPS was used in the studies (Refs. 11, 12, 26). Where indicated, additional reagents included the calcium ionophore A23187 (ATCC, Rockville, MD), was added to the media and the cells were incubated for 15 min at 37°C. Supernatants were assayed for LTC₄ release by ELISA (Oxford Biomedical Research, Oxford, MI) per the manufacturer’s instructions.

Reporter gene assay

Transfected cells were harvested and lysed with 100 µl of Promega passive lysis buffer (Madison, WI). The extracts were assayed for firefly and Renilla luciferase activities using the Promega Dual Luciferase Assay System, according to the manufacturer’s instructions. Measurements were made using an Opticon 1 luminometer (MGM Instruments, Hamden, CT). Firefly luciferase activity was normalized to Renilla luciferase activity to account for transfection efficiency. All values were normalized to the activity of the pGL3 basic vector.

Materials

FCS, penicillin, streptomycin, sodium pyruvate, and gentamicin were obtained from the University of California Cell Culture Facility (San Diego, CA). RPMI 1640 medium was obtained from BioWhittaker (Walkersville, MD). S. minnesota Re595 LPS was generously provided by Dr. T. Kirkland (Veterans Affairs San Diego Healthcare System and the University of California, San Diego, CA). LPS was prepared, as has been described previously (36, 37). PD98059, parthenolide, and A23187 were obtained from Calbiochem (La Jolla, CA). The HTA414 anti-TLR4 Ab was generously provided by Dr. P. S. Tobias (The Scripps Research Institute, La Jolla, CA). The J1D9 anti-TNF-α neutralizing Ab was obtained from Alexis Biochemicals (San Diego, CA) and has been shown to neutralize the biologic activity of TNF-α. Bisperoxyvanadium (phen) was obtained from Alexis Biochemicals (San Diego, CA). All restriction enzymes were obtained from Life Technologies (Gaithersburg, MD). All synthesized oligo-nucleotides were obtained from Cruachem (Dulles, VA). Autoradiographic film was purchased from Eastman Kodak (Rochester, NY). The pGEM-T, pGL3 basic, pHRL-TK, and pGL3 control vectors were obtained from Promega. All other reagents were from Sigma-Aldrich and were of the finest grade available.

Data analysis

Data are expressed as the mean ± SEM in all circumstances where mean values are compared. Data were analyzed by unpaired Student’s t test (InStat, version 2.03; GraphPad Software, San Diego, CA). Differences were considered significant when p < 0.05.

Results

LPS conditioning decreases calcium ionophore-stimulated LTC₄ release from THP-1 cells

To determine the effect of LPS conditioning on cysteinyl LT release, THP-1 cells (at 0.5 × 10⁵ cells/ml) were conditioned with Re LPS (at 100 ng/ml) for 7 days. The cells were harvested and stimulated with the calcium ionophore, A23187 (at 1 µM), with LTC₄ release quantitated by ELISA. Calcium ionophore stimulation has been shown to elicit LT release in previous studies (38, 39). LPS conditioning for 7 days significantly decreased ionophore-stimulated LTC₄ release from THP-1 cells, as compared with control (0.33 ± 0.03 vs 1.13 ± 0.03 ng LTC₄ released per million cells; mean ± SEM; n = 4, p < 0.0001, respectively) (Fig. 1). LPS conditioning of THP-1 cells for 7 days at the lower Re LPS dose of 10 ng/ml less potently, but significantly, decreased ionophore-stimulated LTC₄ release to 71% of control (mean ± SEM; n = 4, p < 0.05).

TLR expression in THP-1 cells

To determine the pattern of expression of the putative LPS receptor, TLR4, and the other TLRs in the THP-1 cell line, RT-PCR was performed on THP-1 cells treated with or without LPS for 7 days. The expression of TLR4 mRNA was seen in THP-1 cells treated with LPS, but not in THP-1 cells treated with control media. The expression of the other TLRs in the THP-1 cell line was not significantly affected by LPS treatment, as compared with control media.
performed on 5 μg of extracted total RNA, followed by a PCR using primers specific for each of the TLRs 1–5. The mRNAs for TLR 1, 2, and 4 were detected in THP-1 cells (Fig. 2).

**LPS down-regulates LTC4 synthase mRNA accumulation in a dose-dependent manner in THP-1 cells**

To determine the effect of LPS on LTC4 synthase mRNA accumulation, THP-1 cells (at 0.5 × 10^6 cells per ml) were conditioned for 24 h with Re LPS (at 10 ng/ml). Treatment with Re LPS resulted in a dose-dependent decrease in LTC4 synthase mRNA accumulation with an IC_{so} of −1 ng/ml (Fig. 3).

**LPS down-regulates LTC4 synthase mRNA accumulation in a time-dependent manner in THP-1 cells**

To determine the time course of the effect of LPS on LTC4 synthase mRNA accumulation, THP-1 cells (at 0.5 × 10^6 cells per ml) were conditioned for periods up to 24 h with Re LPS (at 10 ng/ml). Treatment with Re LPS resulted in a time-dependent decrement in LTC4 synthase mRNA, with a significant decrease observed as early as 4 h (0.83 ± 0.09 densitometric units normalized to control; mean ± SEM; n = 3, p < 0.0001) (Fig. 4, A and B).

**LPS does not modulate the rate of LTC4 synthase mRNA decay in THP-1 cells**

To determine whether the down-regulatory effect of LPS on LTC4 synthase mRNA was associated with enhanced mRNA degradation, THP-1 cells (at 0.5 × 10^6 cells per ml) were conditioned with Re LPS (at 10 ng/ml) and actinomycin D (at 2 ng/μl). Conditioning with Re LPS did not result in shortened LTC4 synthase mRNA half-life, as determined by the slope of mRNA decay of the LPS-treated cells, as compared with the slope for control cells (Fig. 4, C and D). These data suggest that LPS does not accelerate the rate of LTC4 synthase mRNA decay, indicating a likely transcriptional mechanism. In addition, at early time points, actinomycin appears to block the effect of LPS, suggesting that transcription of an intermediary gene may be required for the effect of LPS (Fig. 4, C and D).

**LPS down-regulates LTC4 synthase promoter activity in THP-1 cells**

To determine whether LPS down-regulates LTC4 synthase gene transcription, THP-1 cells were transiently transfected with the 1.35LTC4s-pGL3 construct and were subsequently conditioned with Re LPS (at 100 ng/ml). The dose of 100 ng/ml was chosen for the transfection experiments because it was deemed to be well above the IC_{so} (of 1 ng/ml) that was observed for the LPS effect on LTC4 synthase mRNA. Conditioning with Re LPS conditioning resulted in a significant decrease in reporter activity, suggesting that the down-regulatory effect of LPS is mediated by an inhibition of LTC4 synthase gene transcription (Fig. 5).

**Neutralization of TNF-α does not inhibit the down-regulatory effect of LPS on LTC4 synthase mRNA accumulation in THP-1 cells**

To determine whether TNF-α secretion by THP-1 cells mediates the down-regulatory effect of LPS on LTC4 synthase mRNA via an autocrine/paracrine effect, cells (at 1 × 10^6 cells per ml) were preconditioned with anti-TNF-α neutralizing Ab (at 5 μg/ml), followed by the further addition of Re LPS (at 10 ng/ml) for an additional 12 h. In the presence of anti-TNF-α, the down-regulatory effect of LPS on LTC4 synthase mRNA was not inhibited (Fig. 6). These data suggest that the down-regulatory effect of LPS on the LTC4 synthase gene acts via a TNF-α-independent mechanism. Anti-TNF-α treatment alone had no effect on LTC4 synthase mRNA (0.96 densitometric units, normalized to control; mean, n = 1).
Blockade of TLR4 inhibits the down-regulatory effect of LPS on LTC₄ synthase mRNA accumulation in THP-1 cells

To determine whether LPS acts via TLR4 to down-regulate LTC₄ synthase mRNA, THP-1 cells (at 1 x 10⁶ cells per ml) were preconditioned with anti-TLR4 Ab (at 5 µg/ml), for 2 h, followed by the further addition of Re LPS (at 10 ng/ml) for an additional 12 h. In the presence of anti-TLR4, the down-regulatory effect of LPS on LTC₄ synthase mRNA was inhibited (Fig. 6). These data suggest that the down-regulatory effect of LPS on the LTC₄ synthase gene acts via the putative LPS receptor, TLR4. Anti-TLR4 treatment alone minimally increased LTC₄ synthase mRNA (1.17 densitometric units, normalized to control; mean; n = 2).

Inhibition of MEK/ERK activity does not inhibit the down-regulatory effect of LPS on LTC₄ synthase mRNA accumulation in THP-1 cells

To determine whether the ERK pathway mediates the down-regulatory effect of LPS on LTC₄ synthase mRNA, THP-1 cells (at 1 x 10⁶ cells per ml) were preconditioned with the MEK/ERK inhibitor, PD98059 (at 10 µM), for 4 h, followed by the further addition of Re LPS (at 10 ng/ml) for an additional 16 h. In the presence of PD98059, the down-regulatory effect of LPS on LTC₄ synthase mRNA was not inhibited (Fig. 7). These data suggest that the MEK/ERK pathway does not mediate the down-regulatory effect of LPS on the LTC₄ synthase gene. In addition, MEK/ERK

FIGURE 6. The down-regulatory effect of LPS on LTC₄ synthase mRNA accumulation in THP-1 cells is mediated by TLR4 but not by TNF-α. THP-1 cells were transiently cotransfected with the 1.35 LTCS-pGL3 construct and a Renilla luciferase pHRL-TK construct. The cells were conditioned for 24 h with Re LPS at 100 ng/ml, lysed, and assayed for luciferase activities. The addition of LPS resulted in a significant decrease in promoter activity, indicating that Re LPS decreases LTC₄ synthase gene transcription. Data represent the firefly luciferase values normalized to Renilla luciferase values, mean ± SEM, n = 10 (∗, p < 0.0001).

FIGURE 5. LPS down-regulates LTC₄ synthase promoter activity in THP-1 cells. THP-1 cells were transiently cotransfected with the 1.35 LTCS-pGL3 construct and a Renilla luciferase pHRL-TK construct. The cells were conditioned for 24 h with Re LPS at 100 ng/ml, lysed, and assayed for luciferase activities. The addition of LPS resulted in a significant decrease in promoter activity, indicating that Re LPS decreases LTC₄ synthase gene transcription. Data represent the firefly luciferase values normalized to Renilla luciferase values, mean ± SEM, n = 10 (∗, p < 0.0001).
inhibition independently increases LTC₄ synthase mRNA accumulation, suggesting that basal activation of this pathway may serve to constitutively inhibit LTC₄ synthase gene expression.

**Inhibition of NF-κB activation blocks the down-regulatory effect of LPS on LTC₄ synthase mRNA in THP-1 cells**

To determine whether the down-regulatory effect of LPS on LTC₄ synthase mRNA was mediated by the transcription factor, NF-κB, THP-1 cells (at 1 × 10⁶ cells per ml) were preconditioned for 2 h with the NF-κB activation inhibitor, parthenolide, at 10 μM, followed by the addition of Re LPS at 10 ng/ml for an additional 12-h incubation. Inhibition of the NF-κB pathway increased LTC₄ synthase mRNA accumulation (PD98059). Data represent mean ± SEM, n = 3 (⁎, p < 0.001; ⁋, p < 0.05).

**Bisperoxynavadium (phen) down-regulates LTC₄ synthase mRNA in a time-dependent manner in THP-1 cells**

To determine the functional role of the transcription factor, NF-κB, in the LPS-induced down-regulation of LTC₄ synthase promoter activity, THP-1 cells (at 1 × 10⁶ cells per ml) were conditioned with the NF-κB activator, bisperoxynavadium (phen) (10 μM), for periods up to 24 h. The addition of bisperoxynavadium (phen) resulted in a time-dependent decrease in LTC₄ synthase mRNA accumulation, occurring as early as 8 h (Fig. 9).

**Overexpression of p50 and p65 down-regulates LTC₄ synthase promoter activity in THP-1 cells**

To determine the functional role of the NF-κB component proteins, p50 and p65, THP-1 cells were transiently cotransfected with the 1.35LTCS-pGL3 construct, a Renilla luciferase pHRL-TK construct, and pRSV-p50 and pRSV-p65 expression vectors. Following transfection, the cells were incubated for 24 h, lysed, and assayed for luciferase activities. Overexpression of the NF-κB components, p50 and p65, resulted in significant decreases in LTC₄ synthase promoter activity (Fig. 10).

**FIGURE 7.** MEK/ERK inhibition does not block the down-regulatory effect of LPS on LTC₄ synthase mRNA in THP-1 cells. THP-1 cells were preconditioned for 4 h with the MEK/ERK inhibitor, PD98059 at 10 μM, followed by the addition of Re LPS at 10 ng/ml for an additional 16-h incubation. A, Representative Northern blot probed for LTC₄ synthase and G3PDH. B, Densitometric analysis of Northern blot for LTC₄ synthase, relative to G3PDH mRNA and normalized to control. Suppression of the MEK/ERK pathway activity does not inhibit the down-regulatory effect of LPS on LTC₄ synthase mRNA (Re LPS + PD98059). Inhibition of the MEK/ERK pathway increases LTC₄ synthase mRNA accumulation (PD98059). Data represent mean ± SEM, n = 3 (⁎, p < 0.0001; ⁋, p < 0.05).

**FIGURE 8.** Inhibition of NF-κB activation blocks the down-regulatory effect of LPS on LTC₄ synthase mRNA in THP-1 cells. THP-1 cells were preconditioned for 2 h with the NF-κB activation inhibitor, parthenolide, at 10 μM, followed by the addition of Re LPS at 10 ng/ml for an additional 12-h incubation. A, Representative Northern blot probed for LTC₄ synthase and β-actin. B, Densitometric analysis of Northern blot for LTC₄ synthase, relative to β-actin mRNA and normalized to control. Suppression of NF-κB activation inhibited the down-regulatory effect of LPS on LTC₄ synthase mRNA (Re LPS + Parth). Data represent the mean ± SEM, n = 3 (⁎, p < 0.001).

**FIGURE 9.** Activation of NF-κB down-regulates LTC₄ synthase mRNA in a time-dependent manner in THP-1 cells. THP-1 cells were conditioned with the NF-κB activator, bisperoxynavadium (phen) at 10 μM for periods up to 24 h. A, Representative Northern blot probed for LTC₄ synthase and β-actin. B, Densitometric analysis of Northern blot for LTC₄ synthase, relative to β-actin mRNA and normalized to control. Activation of NF-κB results in time-dependent decrease in LTC₄ synthase mRNA accumulation, with a decrease observed as early as 8 h. Data represent n = 2.
LPS DOWN-REGULATES LTC₄ SYNTHASE

FIGURE 10. Overexpression of p50 and p65 down-regulates LTC₄ synthase promoter activity in THP-1 cells. THP-1 cells were transiently co-transfected with the 1.35 LTC₄-pGL3 construct, a Renilla luciferase pHR-L-TK construct, and pRSV-p50 and pRSV-p65 expression vectors. The cells were incubated for 24 h, lysed, and assayed for luciferase activities. Overexpression of the NF-κB components, p50 and p65, resulted in a significant decrease in LTC₄ synthase promoter activity. Data represent the firefly luciferase values normalized to Renilla luciferase values, mean ± SEM, n = 6 (∗, p < 0.05; ∗∗, p < 0.01).

Discussion

In this report, we demonstrate that prolonged exposure to the bacterial component, LPS, inhibits cysteinyl LT release by the monocyte-like cell line, THP-1. LPS down-regulates LTC₄ synthase mRNA at biologically relevant concentrations (40). We demonstrate that the effect of LPS on LTC₄ synthase mRNA is dose- and time-dependent, occurring as early as 4 h after exposure. Transfection assays and actinomycin D half-life studies indicate that LPS acts to suppress LTC₄ synthase gene transcription but does not affect the rate of mRNA degradation. The effect of LPS on LTC₄ synthase mRNA does not appear to be mediated via the MEK/ERK pathway or by TNF-α acting through an autocrine/paracrine mechanism. However, blockade of TLR4, as well as inhibition of NF-κB activation, results in inhibition of the effect of LPS. Further defining the important role of NF-κB in mediating the effect of LPS, NF-κB activation and p50/p65 overexpression inhibit LTC₄ synthase gene expression and promoter activity, respectively.

LPS has been extensively described to modulate the release of arachidonic acid metabolites and other inflammatory mediators from monocytes/macrophages (14–17). Prior studies using short-term exposure indicate that LPS primes peripheral blood monocytes for arachidonic acid release and increases formation of the 5-LO pathway metabolite, LTBA (41). A recent report demonstrates that prolonged, high dose (1 μg/ml) LPS exposure (for periods of up to 16 h) inhibits LTBA synthesis in rat alveolar macrophages, but not in human monocytes, through an NO-mediated mechanism (39). Although the majority of prior studies have addressed the effects of acute LPS exposure, our studies demonstrate that LPS exposure decreases LTC₄ synthase gene expression within hours (with an effect persisting through 24 h) and that prolonged LPS exposure (for up to 7 days) results in a sustained decrease in the capacity for LTC₄ synthesis by THP-1 cells. The observed effects of LPS on the LTC₄ synthase gene stand in the context of prior work that implicates the LTs in the pathogenesis of the sepsis syndrome. Previous studies investigating the role of the cysteinyl LTs in animal sepsis models (24, 25, 42) suggest that these mediators may function in sepsis to mediate alterations in systemic vascular tone and permeability. Prior work suggests that LTs derived from the 5-LO pathway may serve a protective role in response to bacterial infection (43) and the decreased capacity to synthesize cysteinyl LTs has been associated with increased mortality in sepsis (7). However, the biologic consequences of altered cysteinyl LT synthesis by monocytes/macrophages in response to LPS exposure is unclear. Importantly, our data provide a possible mechanism for the observed findings in sepsis, in that LPS suppression of LTC₄ gene expression in mononuclear phagocytes may contribute to the observed in vivo decrease in synthetic capacity.

Specific autocrine/paracrine mechanisms of mediator release are believed to account for the biologic effects of LPS. LPS acts on inflammatory cells to enhance generation of arachidonic acid (44, 45) and its metabolites (16), as well as to increase the formation of NO (17). LPS exposure also induces the release of various cytokines/growth factors, such as IL-1, IL-6, IL-8, TNF-α (46–48). The specific induction of TNF-α by LPS (47) may significantly contribute to the observed biologic effects ascribed to LPS in various cell systems (48) and in sepsis (49, 50). In response to LPS, THP-1 cells have been demonstrated to release TNF-α (51). Importantly, our studies indicate that the down-regulatory effect of LPS on expression of the LTC₄ synthase gene does not involve a TNF-α-dependent autocrine/paracrine mechanism. In addition, our findings suggest that LPS acts via the LPS receptor, TLR4, to elicit intracellular signaling events that result in the decreased transcription of LTC₄ synthase mRNA.

We demonstrate the presence of mRNA for the LPS receptor, TLR4, in THP-1 cells, consistent with previous reports (52). Our studies indicate that LPS acts via TLR4, which is believed to be responsible for LPS signal transduction in monocytes/macrophages (53–56), to down-regulate LTC₄ synthase gene expression. Following LPS binding to TLR4, activation of various MAP kinase pathways in monocytes/macrophages may occur, such as ERK (57), p54 stress-activated protein kinase/c-Jun N-terminal kinase (58), and p38 MAP kinase (59). Our studies indicate that the MEK/ERK pathway does not mediate the observed LPS inhibition of LTC₄ synthase gene expression in THP-1 cells. However, our data indicate that phosphorlolic inhibition of the MEK/ERK pathway increases LTC₄ synthase mRNA accumulation. These findings suggest that a basal level of ERK activation functions to inhibit constitutive LTC₄ synthase expression. Although previous studies have not specifically examined the role of MEK/ERK activation in the regulation of LTC₄ synthase gene expression, prior work suggests that ERK activation (by fMet-Leu-Phe in IL-5-primed human eosinophils) enhances immediate LTC₄ synthesis (60). The contrasting effects of ERK activation on LTC₄ synthase gene expression and/or activity may be related to differences in cell type, type of bacterial stimulus, or the time-course of ERK activation. Elucidation of the mechanisms involved in inhibition of constitutive LTC₄ synthase gene expression requires further study.

The molecular mechanisms that mediate the downstream effects of LPS may involve the activation of multiple classes of transcription factors, including NF-κB (61–63), Sp1 (59), c-Jun (58, 64), Ets (64), and Egr-1 (64). Results obtained from the actinomycin D and transient transfection studies indicate that LPS does not alter the rate of LTC₄ synthase mRNA degradation, but does down-regulate gene transcription through an element located within the first 1.35 kb of the 5’-UTR. The demonstration of LPS inhibition of LTC₄ synthase mRNA expression within hours is consistent with a transcriptional mechanism of action. Our studies implicate NF-κB in this mechanism, as suppression of NF-κB activation inhibits the effect of LPS on LTC₄ synthase gene expression and induction of NF-κB activation by itself produces a similar effect (with a similar time-course) to that of LPS. Pharmacologic activation (by bisperoxyvanadium) of NF-κB by tyrosine phosphorylation may be accompanied by the phosphorylation of other proteins, as well. However, our data further support the role of NF-κB in mediating the effect of LPS by demonstrating that overexpression of the NF-κB components, p50 and p65, decreases LTC₄ synthase promoter activity. Although database analysis reveals that
the LTC₄ synthase promoter contains multiple partial NF-κB consensus sites, no functional NF-κB sites have been identified. Although NF-κB has been reported to up-regulate the transcription of over 150 genes (61), the demonstration of repression of gene transcription by NF-κB family members has been reported to a more limited extent (65, 66). Our data does not specifically address the direct binding of NF-κB to the LTC₄ synthase promoter or the potential synergistic or antagonistic interaction with other transcription factors (67–69). A large body of evidence indicates that LPS induces NF-κB activation in THP-1 and other monocyte cells (61) and a correlation has been demonstrated between NF-κB binding activity and sepsis mortality (62). However, other studies indicate that levels of the active NF-κB heterodimer, p50-p65, are decreased in the monocytes of patients with sepsis (70). These conflicting data suggest that further study of the effects of LPS and other bacterial components on the regulation of inflammatory mediator genes in monocytes/macrophages is necessary. Future studies will examine whether NF-κB acts by direct inhibition of LTC₄ synthase gene transcription or by induction of an intermediary suppressor gene/protein.

Our findings demonstrate that cysteinyl LT synthesis is down-regulated by the bacterial component, LPS, in mononuclear phagocytes via an NF-κB-mediated mechanism. This mechanism involves TLR4-mediated down-regulation of LTC₄ synthase mRNA expression that occurs in a TNF-α-independent manner. We believe that this observation may have important implications for the modulation of cysteinyl LT synthesis and the role of these potent mediators in the systemic response to inflammatory conditions such as the sepsis syndrome. The molecular mechanisms that mediate LPS modulation of the LTC₄ synthase gene remain to be determined.

Acknowledgments

We thank Dr. Theo Kirkland (Veterans Affairs San Diego Healthcare System and the University of California, San Diego, CA) for his helpful discussions and the provision of LPS used in the studies. We thank Dr. Peter S. Tobis (The Scripps Research Institute, San Diego, CA) for his helpful discussions and the provision of anti-TLR4 Ab used in the studies.

References


