The β-Glucan Receptor, Dectin-1, Is Predominantly Expressed on the Surface of Cells of the Monocyte/Macrophage and Neutrophil Lineages

Philip R. Taylor, Gordon D. Brown, Delyth M. Reid, Janet A. Willment, Luisa Martinez-Pomares, Siongan Gordon and Simon Y. C. Wong

J Immunol 2002; 169:3876-3882; ;
doi: 10.4049/jimmunol.169.7.3876
http://www.jimmunol.org/content/169/7/3876

References

This article cites 39 articles, 23 of which you can access for free at:
http://www.jimmunol.org/content/169/7/3876.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
The β-Glucan Receptor, Dectin-1, Is Predominantly Expressed on the Surface of Cells of the Monocyte/Macrophage and Neutrophil Lineages

Philip R. Taylor, Gordon D. Brown, Delyth M. Reid, Janet A. Willment, Luisa Martinez-Pomares, Siamon Gordon, and Simon Y. C. Wong

We recently identified dectin-1 (βGR) as a major β-glucan receptor on leukocytes and demonstrated that it played a significant role in the non-opsonic recognition of soluble and particulate β-glucans. Using a novel mAb (2A11) raised against βGR, we show here that the receptor is not dendritic cell-restricted as first reported, but is broadly expressed, with highest surface expression on populations of myeloid cells (monocyte/macrophage (Mo) and neutrophil lineages). Dendritic cells and a subpopulation of T cells also expressed the βGR, but at lower levels. Alveolar Mo, like inflammatory Mo, exhibited the highest surface expression of βGR, indicative of a role for this receptor in immune surveillance. In contrast, resident peritoneal Mo expressed much lower levels of βGR on the cell surface. Characterization of the nonopsonic recognition of zymosan by resident peritoneal Mo suggested the existence of an additional β-glucan-independent mechanism of zymosan binding that was not observed on elicited or bone marrow-derived Mo. Although this recognition could be inhibited by mannan, we were able to exclude involvement of the Mo mannan receptor and complement receptor 3 in this process. These observations imply the existence of an additional mannan-dependent receptor involved in the recognition of zymosan by resident peritoneal Mo. The Journal of Immunology, 2002, 169: 3876–3882.

L

eukocyte β-glucan receptors were first described nearly 20 yr ago as opsonin-independent receptors for particulate activators of the alternative complement activation pathway (1, 2). These receptors are thought to mediate the potent biological effects of β-1,3-α-glucans, including anti-tumor and anti-infective properties (3–7). Receptors for these fungal-derived polymers have been reported on cells of the monocyte (Mo)/macrophage (Mo)/lineage (including microglia), neutrophils, NK cells, and fibroblasts (8, 9). To date four β-glucan receptors have been identified as candidates mediating these activities, namely complement receptor 3 (CR3; CD11b/CD18) (10, 11), lactosylceramide (12), selected scavenger receptors (13), and dectin-1 (βGR) (14).

We identified dectin-1 (βGR) as a β-glucan receptor after screening a retroviral cDNA library derived from the Mo cell line RAW264.7 with the β-glucan-rich particle zymosan (14). βGR consists of a single C-type, lectin-like, carbohydrate recognition domain, a short stalk, and a cytoplasmic tail possessing an immunoreceptor tyrosine-based activation motif (15). The receptor recognized particles such as zymosan, Saccharomyces cerevisiae, and heat-killed Candida albicans in a β-glucan-dependent manner (14). The receptor could also bind to T cells, promoting cellular proliferation in the presence of suboptimal concentrations of anti-CD3 (15). T cell recognition was β-glucan independent, indicating the presence of a second binding site on this receptor (14). The human homologue of βGR has also been cloned (16–19) and was found to exhibit similar properties (18).

We recently assessed the role of βGR in the recognition of soluble and particulate (zymosan) β-glucans by macrophages (20). Using a novel anti-βGR mAb (2A11) that has the ability to block the β-glucan binding activity of the receptor, we found that βGR was a major receptor on Mo for the nonopsonic recognition of these carbohydrates, defining βGR as the missing leukocyte β-glucan receptor. Furthermore, we demonstrated that CR3 played no obvious role in this process (20), in contrast to previous reports (10, 21). βGR was initially considered dendritic cell (DC) restricted (15), a finding not consistent with the distribution ascribed to the leukocyte β-glucan receptor activity. However, we isolated βGR from a mouse Mo cell line and observed βGR transcript in murine and human Mo and peripheral blood neutrophils (14, 18, 20). Given the potential importance of the leukocyte β-glucan receptor in innate immunity, we sought to clarify the expression pattern of βGR and performed a comprehensive analysis of the distribution of this receptor in mice. We show, using mAb 2A11, that βGR is predominantly expressed on cells of the Mo/Mφ and neutrophil lineages, but also on DC, as previously noted. Furthermore, a subset of splenic T cells that expressed the Gr-1 Ag also expressed βGR, albeit at low levels. Examination of βGR expression on various freshly isolated primary Mo showed that alveolar and peritoneal inflammatory Mo expressed high levels of the receptor, whereas resident peritoneal cells expressed relatively low levels. As βGR is responsible for the nonopsonic recognition of zymosan by other Mo populations (20), we studied zymosan...
recognition by the low βGR-expressing resident peritoneal cells. While βGR was responsible for β-glucan-dependent zymosan recognition by these cells, a second β-glucan-independent, mannan-inhibitable, nonopsonic recognition mechanism was also present.

Materials and Methods
RNA analysis
For RT-PCR analysis, total RNA from various cell lines (RAW264.7, J774, P388D1, and NIH-3T3) and primary cell types (BMDMφ and BMDDC) was prepared using the guanidine isothiocyanate-based RNA isolation kit (Stratagene, La Jolla, CA), as described by the manufacturer. The βGR transcript was subsequently amplified using primers corresponding to the region of the cDNA encoding residues 66–244 of the primary protein sequence. Dihydrofolate reductase-specific primers (Stratagene) were used as a positive control. Commercially available membranes containing poly(A) mRNA isolated from various mouse tissues were purchased from OriGene Technologies (Rockville, MD) and were probed as described by the manufacturer using a full-length βGR cDNA probe.

Tissue and cell preparation
All mice used in this study were C57BL/6J, unless otherwise stated, and were between 8 and 12 wk of age. Animals were kept and handled in accordance with institutional guidelines. Splenocytes were harvested by standard methods using a combination of digestion with Liberase Blendzyme II in RPMI (Roche, Indianapolis, IN) and mechanical dissociation. Femurs were collected, and fresh bone marrow was flushed from within using Liberase Blendzyme II and incubated for 10 min at 37°C to disaggregate cells. Enzymatic activity was quenched with RPMI/20% FCS, and enzymatically dissociated cells were then recovered by centrifugation through FCS as described above.

Isolation of peripheral blood leukocytes
Mice were sacrificed, and peripheral blood was collected by cardiac puncture into 0.1 vol 100 mM EDTA. Cells were harvested by centrifugation and resuspended in 50 vol Gey’s solution to lyse erythrocytes. Peripheral blood leukocytes were then recovered by centrifugation through FCS as described above.

Isolation of alveolar Mφ
Bronchoalveolar lavage was performed by repeated washes with 1 ml PBS/5 mM EDTA. Resident alveolar Mφ, the major leukocyte population in the lungs, were identified by size and autofluorescence using flow cytometry as previously described (22).

Induction of sterile peritonitis and recovery of peritoneal cells
To induce sterile peritonitis, mice were injected i.p. with 4% thioglycolate (BD Biosciences, Franklin Lakes, NJ) up to 4 days before peritoneal lavage. After humane killing of the animals, inflammatory cells were collected by peritoneal lavage with ice-cold 5 mM EDTA in PBS. Resident peritoneal cells were collected in the same way from untreated animals. Peritoneal Mφ were identified by their expression of F4/80 and CR3 and were distinguished from eosinophils by forward scatter (FSC)/side scatter (SSC) profiles. To confirm the cellular composition of peritoneal exudates, differential counts were performed on cytocentrifuged preparations stained with Hema Gurr (VWR International, Poole, U.K.).

FACS analysis
FACS was performed according to conventional protocols at 4°C in the presence of 2 mM NaN3. Cells were blocked with 5% heat-inactivated rabbit serum, 0.5% BSA, 5 mM EDTA, and 4 μg/ml 2.4G2 (anti-FcγRII) before addition of primary Abs. Biotinylated Abs were detected using streptavidin-allophycocyanin (BD PharMingen). Cells were fixed with 1% formaldehyde in PBS before analysis.

The following Abs were used in this study: B220-CyChrome (RA3-6B2; BD PharMingen), CD3-CyChrome (17A2; BD PharMingen), F4/80-PE (Serotec), CD11c-PE (HL3; BD PharMingen), Gr-1-PE (anti-Ly6C/G; BD PharMingen), CD49b-PE (DX5-Pan NK-cell; BD PharMingen), BMDDC (anti-CR3/CD11b) (23), 2A11-biotin (rat IgG2b anti-βGR) (20), 5D3-biotin (rat IgG2a anti-Mφ mannose receptor (MR)) (L. Martinez-Pomares), D. M. Reid, G. D. Brown, P. R. Taylor, R. Stillion, S. A. Linehan, S. Gordon, and S. Y. C. Wong, unpublished observations), and irrelevant rat IgG2b-biotin, IgG2a-biotin, and IgG2b-FITC control Abs.

In vitro non-opsonic zymosan binding assay
In vitro zymosan binding assays were performed as previously described (14, 18, 20). In brief, resident or 4-day thioglycollate-elicited peritoneal Mφ were recovered, as described above, and plated at 5 × 10^5 and 2.5 × 10^5 cells/well, respectively, in 24-well plates in RPMI/10% FCS overnight. The following day the cells were cooled to 4°C and washed three times with prechilled medium. All experiments were performed at 4°C to prevent receptor internalization, to provide a direct measure of surface receptor involvement, and to prevent local release of opsonins, including complement (24, 25). Zymosan-FITC (Molecular Probes) was added to the Mφ at a ratio of 25 particles/cell for 1 h on ice. For in vitro blocking assays, carbohydrates (laminarin, β-methylglucoside, and mannan; all from Sigma (St. Louis, MO) and used at 100 μg/ml or Abs (2A11 (20); 5C6 (23), which has been shown to block the CR3-mediated lectin activity (26); or an irrelevant rat IgG2b control; all used at 100 μg/ml) were added to the chilled cells 20 and 60 min, respectively, before the addition of zymosan. After incubation, unbound zymosan was removed by extensive washing with medium, and cells were lysed with 3% Triton X-100. FITC in lysates was quantified using a Titer-Tek Fluoroskan II (Labsystems Group, Baslington, U.K.) as previously described (14, 18). For Ab modulation experiments poly-β-lysine-conditioned tissue culture plates were coated with Ab at 100 μg/ml as previously described (27). All experiments were repeated at least three times.

Statistical analysis
Statistics were calculated using GraphPad PRISM (version 2.0; GraphPad Software, Berkeley, CA). One-way ANOVA with Bonferroni multiple comparison test was applied throughout.

Results
Expression of βGR mRNA in macrophages and multiple mouse tissues
We studied the expression of βGR by RT-PCR in several Mφ cell lines and in primary Mφ and DCs. All Mφ cell lines as well as bone marrow-derived Mφ and DC showed evidence of βGR expression, whereas βGR transcript was not detectable in the mouse fibroblast cell line NIH-3T3 (Fig. 1A). Using the full-length coding sequence to screen a multiple tissue Northern blot, we found βGR expression in most murine tissues with the exception of brain, muscle, and skin (Fig. 1B). Notably there was only one discernible transcript detectable in these tissues.

FIGURE 1. Expression of βGR by primary macrophages and in selected tissues. A, RT-PCR analysis showed the presence of βGR transcript in Mφ cell lines (RAW264.7, J774, and P388D1) and primary Mφ (BMDMφ and DC (BMDDC), but not in a mouse fibroblast cell line (NIH-3T3). The housekeeping gene dihydrofolate reductase (DHFR) was used as a PCR control. B, A multiple tissue Northern blot probed with βGR cDNA showed widespread expression of βGR in the mouse. Control probing with β-actin confirmed equivalent loading between lanes (data not shown).
Distribution of βGR surface expression in the spleen

We examined the surface expression of βGR using 2A11 on freshly isolated splenocytes (Fig. 2). CD11chigh DC were found to express βGR (population 1) in a similar pattern to that reported previously (15). Notably, however, other CD11clow/neg cells in the spleen, particularly those expressing CR3, exhibited high surface expression of βGR (population 2). To further delineate which cell types were expressing βGR, the cells were subdivided into six populations based on their expression of CR3 and Gr-1 (an mAb recognizing Ly-6G and Ly-6C) and their FSC/SSC profiles (Fig. 2B). Gr-1lowCR3highSSChigh neutrophils (population 3) exhibited high surface expression of βGR, as did Gr-1lowCR3highMhigh (population 4B), which also expressed F4/80 (data not shown). A second, unidentified, population of Gr-1lowCR3high splenocytes with very high SSC (population 4A) did not show evidence of βGR surface expression. CR3lowGr-1low splenocytes, a mixed population containing DC (CD11chigh), NK cells, and other Mph (both CD11cint), showed heterogeneity in expression of βGR (population 5). NK cells, which have been shown to recognize β-glucans (8) and are identified by high expression of the DX5 Ag (CD49b) (28), did not show significant labeling with the 2A11 Ab (data not shown). Gr-1lowCR3low splenocytes (population 6), previously reported to be a T cell subset (29), expressed CD3 and low levels of surface βGR (Fig. 2C). Analysis of all splenic T cells (CD3int) and B cells (B220int) for βGR surface expression, however, indicated that only a distinct subset of T cells exhibited significant surface expression of βGR (Fig. 2C). βGR+CD3+ T cells were predominantly Gr-1low and CD8+, but CD4+ cells were also observed (data not shown). Splenic autofluorescent F4/80ph Mph also expressed βGR, but at very low levels (data not shown). Plasmacytoid DC in the spleen, which were identified by their Gr-1+B220+CD11cintCR3ph phenotype and analyzed in 129/SvEv and BALB/c mice because of the

FIGURE 2. Distribution of βGR surface expression on freshly isolated splenocytes. A, CD11chigh DC (population 1; purple) were confirmed to express βGR, but highest surface expression was observed on most CR3+CD11clow/neg splenocytes (population 2; brown). B, Gr-1lowCR3highSSChigh neutrophils (population 3; red) exhibited high surface expression, as did Gr-1highCR3lowMhigh (population 4B; light green), which were also F4/80ph (data not shown). CR3+Gr-1+ splenocytes (population 5; yellow), a mixed population that contains DC, Mph, and NK cells, showed heterogeneous βGR expression. Gr-1lowCR3+ splenocytes (population 6; pink) also exhibited βGR surface expression, albeit at a relatively low level, and these cells were confirmed to express CD3. C, Analysis of all T cells (gated on CD3+; orange) showed that only a subset of T cells expressed βGR. B220+ B cells (gray) had no obvious βGR surface expression. Unshaded histograms, Control Ab staining; shaded histograms, correspond to the marker indicated.
relative scarcity of these cells in C57BL/6 (30), also exhibited low, but detectable, levels of βGR expression (data not shown).

Expression of βGR on peripheral blood leukocytes

We and others have observed expression of βGR/dectin-1 on both human and mouse PBL by Northern blot (17, 18). We confirmed these observations by FACS by identifying a significant population of PBL that expressed βGR (data not shown). Consistent with the data obtained from the spleen, peripheral blood neutrophils (identified as Gr-1^{high} SSC^{high}) and peripheral blood M_e (identified as CR3^{high} F4/80^{low} SSC^{low}) exhibited high surface expression of βGR (Fig. 3A).

Surface expression of the βGR on myeloid cells in the bone marrow

Since we have previously observed the βGR transcript in human bone marrow (18), we examined murine bone marrow for the expression of βGR (Fig. 3B). Gr-1^{high}CR3⁺ neutrophils were subdivided into two populations. Approximately one-third of the bone marrow Gr-1^{high} neutrophils had high βGR surface expression; the remaining two-thirds showed intermediate or marginal expression (populations 1 and 2, respectively; Fig. 3B). The βGR^{high} neutrophils had higher SSC and higher CR3 surface expression than the βGR^{low} neutrophils (data not shown), suggesting that the βGR^{high} neutrophils may be in a more advanced state of maturation. This is consistent with the high βGR surface expression detected on circulating peripheral blood neutrophils (Fig. 3A). The Gr-1^{low} subgroup of bone marrow cells that has been reported to include cells of the M_e/M_φ lineage, myeloid precursors, and hematopoietic stem cells (31) contained cells with the highest βGR surface expression (population 3). The expression of CR3 and F4/80 indicated that these high βGR-expressing cells most likely belonged to the M_e/M_φ lineage (data not shown). Additional unidentified Gr-1^{low} and Gr-1⁺ bone marrow cells also showed evidence of βGR expression, but these were not characterized further (Fig. 3B).

Expression of βGR by isolated primary M_φ

Freshly isolated resident and thioglycolate-elicited peritoneal M_φ were assayed for surface expression of βGR. We also looked for βGR expression on alveolar M_φ, as we had found a high level of transcript in the lung (Fig. 1). Both freshly isolated alveolar M_φ and thioglycolate-elicited M_φ expressed high surface levels of βGR, whereas resident peritoneal M_φ exhibited lower expression (Fig. 4). Interestingly, we observed an up-regulation of βGR on the surface of resident peritoneal M_φ after 1 day of culture (Fig. 4). Surface expression of βGR on thioglycolate-elicited M_φ was relatively unaffected by 1 day of culture (data not shown). Since the M_φ MR is also a candidate receptor for the nonopsonic recognition of zymosan by resident peritoneal M_φ (see below), we analyzed the surface expression of this receptor on the same cells. Similar to βGR, we found the highest surface expression of the MR on thioglycolate-elicited M_φ; moderate expression on resident alveolar M_φ, but only very limited expression on the surface of...
residual peritoneal cells (Fig. 4). Unlike βGR, however, the expression of MR on resident peritoneal cells was relatively unaffected by 1 day of culture (Fig. 4). As reported previously, we found that alveolar Mφ expressed negligible CR3 (22) (Fig. 4) and low levels of F4/80 (data not shown).

Surface expression of βGR during peritoneal inflammation

To study the expression of βGR in an inflammatory context, we examined peritoneal exudate cells 18 h after the i.p. administration of thioglycolate, a model of sterile peritonitis. F4/80^{Gr-1}-Mφ, F4/80^{Gr-1}-neutrophils, and F4/80^{Gr-1}-SSC_{high} eosinophils (32) were then tested for βGR surface expression (Fig. 5). Elicited peritoneal Mφ exhibited the highest βGR expression, and significant amounts were also present on the inflammatory neutrophils. In contrast, recruited eosinophils showed no obvious surface expression of βGR (Fig. 5).

Non-opsonic binding of zymosan to resident peritoneal Mφ

We observed that freshly isolated resident peritoneal Mφ had a lower level of surface βGR expression than that on other Mφ studied (Fig. 4). As we had previously shown that βGR was a major receptor for zymosan on thioglycolate-elicited and BMDM (20), we wanted to determine whether this was also true for resident peritoneal Mφ. We compared the contribution of βGR on both resident and elicited Mφ and found that the binding of unopsonized zymosan to elicited Mφ was significantly inhibited by β-glucans, as previously reported (Fig. 6) (20). βGR was still a major receptor for zymosan on resident Mφ, but it contributed less to this process than in the thioglycolate-elicited cells. Furthermore, we found that mannan had an inhibitory effect on the binding of zymosan to the resident Mφ, but not to the thioglycolate-elicited cells (Fig. 6A). The combination of β-glucans and mannan did not have an additive effect (data not shown). As with the elicited Mφ, methylglucoside failed to inhibit the initial binding of zymosan to resident peritoneal Mφ, suggesting no involvement of CR3 in this process (data not shown). These results implied that a secondary β-glucan-independent, mannan-inhibitable, nonopsonic binding mechanism was operational on resident Mφ, but was not present on other Mφ examined.

![FIGURE 5. Expression of βGR during inflammation. Sterile peritonitis was induced by i.p. administration of thioglycollate broth 18 h before analysis. Peritoneal exudate cells were examined by FACS with the M_φ/Gr-1⁻ eosinophil marker F4/80 and the neutrophil marker Gr-1⁻ for the expression of βGR. F4/80⁻Gr-1⁻ Mφ (M_φ) exhibited very high βGR surface expression. Gr-1⁻F4/80⁻ neutrophils (Neut) also expressed βGR, but F4/80⁻Gr-1⁻ SSC_{high} eosinophils (Eo) did not show evidence of surface expression of this receptor.](http://www.jimmunol.org/)

![FIGURE 6. β-Glucan binding by resident and elicited Mφ. A. Non-opsonic binding of zymosan particles to resident and thioglycollate-elicited Mφ (□ and □, respectively). Data are expressed as the mean ± SD as a percentage of the binding to control untreated Mφ measured as relative fluorescence units (RFU). Laminarin significantly inhibited the nonopsonic recognition of zymosan by both cell types. Mannan, however, only inhibited recognition by resident peritoneal Mφ. B, Ab-mediated blocking of nonopsonic zymosan binding by resident peritoneal Mφ. Nonopsonic binding assays were performed, as described in Materials and Methods, after preincubating the Mφ with the mAbs, 2A11 (anti-βGR) and 5C6 (a mAb against CR3 that has been shown to block the lectin activity of CR3 (26)), or the soluble β-glucans, laminarin and glucan phosphate (not shown). Only 2A11 inhibited nonopsonic zymosan binding to resident peritoneal Mφ. Data are expressed as the mean ± SD percentage of binding to control untreated Mφ, measured as relative fluorescence units (RFU).](http://www.jimmunol.org/)

To find out which specific receptors were involved, we performed Ab blocking experiments on the resident peritoneal Mφ (Fig. 6B). The anti-βGR mAb 2A11, blocked the nonopsonic binding of zymosan to resident peritoneal Mφ to the same degree as the soluble β-glucans laminarin (Fig. 6B) and glucan phosphate (data not shown), consistent with βGR being a major β-glucan receptor on Mφ. Anti-CR3 (5C6, which blocks the lectin activity of CR3 (26)), had no inhibitory effect (Fig. 6B) consistent with our previous results (20). As surface expression of Mφ MR was low on resident peritoneal Mφ and higher on thioglycollate-elicited Mφ, which do not have a mannan-inhibitable component of zymosan binding, the MR appears not to be involved in the nonopsonic recognition of zymosan by the Mφ (Fig. 4) (20). We also performed Ab modulation experiments using specific mAb to deplete surface receptors from the upper ligand binding surface. Only 2A11, anti-βGR-coated tissue culture wells inhibited the nonopsonic binding of zymosan; anti-Mφ MR and anti-CR3, did not (data not shown).

Discussion

We recently demonstrated that βGR is a principal β-glucan receptor on primary Mφ (20). As our data (14, 18, 20) did not agree with the previously reported DC-restricted expression of dectin-1 (15), and as the leukocyte β-glucan receptor is believed to be more broadly expressed (8), we re-examined the distribution of dectin-1 using the novel anti-βGR mAb 2A11. While we confirmed expression of dectin-1 by splenic DC, we discovered that a significant proportion of CR3⁺ splenocytes exhibited higher surface expression of βGR. These cells were of the M_φ/Mφ lineage and...
neutrophils. Furthermore, we also found that peripheral blood M, and neutrophils expressed high surface levels of βGR. In the bone marrow, cells of the M/MΦ lineage were also the major surface expressers of βGR, but heterogeneous expression was evident on Gr1-high neutrophils. This heterogeneity appeared to be related to maturation, as βGRGr1-high cells had higher levels of CR3 and higher SSC. Overall, these results were consistent with the expected distribution of the β-glucan receptor (8).

Although NK cells are thought to recognize β-glucans (33), we detected no obvious surface expression on freshly isolated splenic NK cells. We cannot exclude, however, that expression of βGR on the surface of these cells may be regulated by activation. Surprisingly we also observed surface expression of dectin-1 on the Gr-1+ subset of splenic T cells, although it is not without precedent that NK-like C-type lectins can be expressed on T cells (reviewed in Ref. 34). It is plausible that the expression of βGR, as a T cell binding receptor, on a subset of T cells may be part of a novel mechanism for the regulation of the T cell response by specific subsets of T cells as well as by APC.

We have postulated that βGR may play a fundamental role in the immunomodulatory effects of β-glucans and the host response to fungal pathogens (14), and so looked for expression of this receptor on inflammatory cells. Consistent with this, in a model of peritonal inflammation, elicited MΦ and neutrophils exhibited high βGR surface expression. Although freshly isolated resident peritoneal MΦ exhibited low 2A11 binding, the levels of the receptor were up-regulated within 1 day of culture (Fig. 4), indicating that βGR surface expression on MΦ can be regulated. High levels of βGR were also detected on the CR3+ resident alveolar MΦ, highlighting the important role this receptor may play in immune surveillance and host defense at this portal of entry, where the availability of complement and Ig is restricted.

Our recent studies with elicited MΦ (both thioglycollate and Bio-Gel) and BMDMΦ indicated that βGR was a major nonopsonic receptor for binding of the β-glucan-rich particle zymosan (20). The observation of lower βGR surface expression on resident peritoneal MΦ compared with the other MΦ we have studied prompted us to determine whether βGR was the major β-glucan receptor on this cell type. Although, we found that β-glucan-dependent binding of unopsonized zymosan to resident peritoneal MΦ was mediated by βGR, these cells also exhibited a second nonopsonic, mannan-inhibitable binding mechanism that was not found on all other MΦ examined (20). The surface expression pattern of the MΦ MR was not consistent with a role for the MR in this process. Our observations have hence uncovered the existence of a second β-glucan-independent, nonopsonic mechanism of binding zymosan used by resident peritoneal MΦ (but not by other MΦ tested) that was inhibitable by mannan. This additional receptor could represent the mannan-dependent yeast receptor previously observed on resident peritoneal MΦ (35, 36) and implicates this receptor as a pattern recognition receptor with a potentially important role in host defense. The presence of this receptor activity specifically on resident peritoneal MΦ may also explain the controversy surrounding the contribution of a mannan-dependent receptor to yeast/zymosan recognition (35–37). Candidate receptors that may play a role in this process and have demonstrated mannose binding capabilities are DC-SIGN/DC-SIGNR (38) and NKCL (39).

In summary, we have shown that the major surface expression of βGR is on cells of the M/MΦ lineage and neutrophils and to a lesser extent on splenic DC. We have also observed low surface expression of βGR on a specific subset of splenic T cells. This analysis of the surface expression of βGR has provided novel insights into the biology of this receptor and into the recognition of β-glucans by leukocytes.

