Complement-Induced Impairment of Innate Immunity During Sepsis

J Immunol 2002; 169:3223-3231; doi: 10.4049/jimmunol.169.6.3223

http://www.jimmunol.org/content/169/6/3223

References

This article *cites 49 articles*, 18 of which you can access for free at:

http://www.jimmunol.org/content/169/6/3223.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at:

http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:

http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:

http://jimmunol.org/alerts
Complement-Induced Impairment of Innate Immunity During Sepsis

Markus S. Huber-Lang,* Ellen M. Younkin,* J. Vidya Sarma,* Stephanie R. McGuire,† Kristina T. Lu,* Ren Feng Guo,* Vaishalee A. Padgaonkar,* John T. Curnutte,‡ Richard Erickson,† and Peter A. Ward*‡

This study defines the molecular basis for defects in innate immunity involving neutrophils during cecal ligation/puncture (CLP)-induced sepsis in rats. Blood neutrophils from CLP rats demonstrated defective phagocytosis and defective assembly of NADPH oxidase, the latter being due to the inability of p47phox to translocate from the cytosol to the cell membrane of neutrophils after cell stimulation by phorbol ester (PMA). The appearance of these defects was prevented by in vivo blockade of C5a in CLP rats. In vitro exposure of neutrophils to C5a led to reduced surface expression of C5aR and defective assembly of NADPH oxidase, as defined by failure in phosphorylation of p47phox and its translocation to the cell membrane, together with failure in phosphorylation of p42/p44 mitogen-activated protein kinases. These data identify a molecular basis for defective innate immunity involving neutrophils during sepsis. The Journal of Immunology, 2002, 169: 3223–3231.

The innate immune system exists as a protective shield after tissue injury and in the presence of bacterial pathogens. This system can be rapidly activated via cells (the phagocytic cell system) or by plasma components (complement proteins, coagulation factors, etc.) (1–3). It is also recognized that the innate immune system can be perturbed during sepsis, as reflected by extensive activation of the inflammatory, complement, and clotting systems, together with the appearance in plasma of cytokines and chemokines (1, 4). Such perturbations occur in humans and in experimental models of sepsis (5, 6). During sepsis in humans, unregulated activation of the complement system results in excessive generation of anaphylatoxins, especially C3a and C5a (4, 7), and ensuing dysfunction of neutrophils (3, 4, 8, 9). In later stages of sepsis, neutrophils have suppressed chemotactic responsiveness (3, 4, 10), depressed enzyme release (3, 4, 8, 9), alterations of intracellular pH (11), and a defective respiratory burst (diminished production of reactive oxygen species, especially \(\text{H}_2\text{O}_2 \)) (3, 4, 12, 13), together with failure of NADPH oxidase. Neutrophils from healthy human volunteers incubated with plasma from patients with sepsis or severe trauma have exhibited suppressed superoxide (\(\text{O}_2^- \)) production (7, 14, 15), suggesting that a plasma factor may be responsible for suppression of the respiratory burst. During experimental sepsis, we have recently found that blood neutrophils have a greatly diminished ability to bind C5a (16). In addition, these cells demonstrate impaired chemotactic responses to C5a (14) and a loss of \(\text{H}_2\text{O}_2 \) production (12), all defects being prevented by treatment of cecal ligation/puncture (CLP)* animals with anti-C5a Abs (12, 16). This treatment caused reduced bacteremia and greatly improved survival, suggesting that sepsis induces excessive generation of C5a, which, in turn, leads to serious functional defects in neutrophils.

The oxygen-dependent antimicrobial arsenal in neutrophils is generated by the multicomponent enzyme, NADPH oxidase (17, 18). This oxidase system, which catalyzes the reduction of oxygen to \(\text{O}_2^- \), is dormant in unstimulated cells, but in stimulated neutrophils undergoes activation by phosphorylation and translocation to the cell membrane of a major cytosolic component, p47phox, also accompanied by translocation of p67phox, p21ras, and p40phox to the integral membrane protein, flavocytochrome b\textsubscript{558} (19–21). After assembly, electron transfer from NADPH to oxygen occurs, generating \(\text{O}_2^- \), which undergoes dismutation to \(\text{H}_2\text{O}_2 \), a key product for phagocyte killing of ingested bacteria (17, 18). Little is known about the status of NADPH oxidase during sepsis. Increased levels of cytosolic p47phox in neutrophils have been reported in humans with sepsis occurring after severe trauma (22). In vitro exposure of neutrophils to bacterial LPS does not activate NADPH-oxidase, but primes neutrophils for enhanced assembly of NADPH oxidase when cells are subsequently stimulated with the bacterial chemotactic peptide, IMLP (23). To elucidate the linkage between complement activation and neutrophil dysfunction during sepsis, we evaluated the status of NADPH oxidase in blood neutrophils from CLP rats treated with either preimmune IgG or anti-C5a IgG, and also used in vitro approaches in which neutrophils were incubated with C5a. Treatment of CLP rats with anti-C5a has been shown to be protective against the lethal consequences of sepsis (12). The current studies define the molecular basis for C5a-induced loss of the respiratory burst in neutrophils during sepsis.

*Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109; and ‡DNAX, Palo Alto, CA 94304

Received for publication March 11, 2002. Accepted for publication July 8, 2002.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 This work is supported by National Institutes of Health Grants GM29507 and GM61656.

2 Address correspondence and reprint requests to Dr. Peter A. Ward, Department of Pathology, University of Michigan Medical School, 1301 Catherine Road, Ann Arbor, MI 48109-0602. E-mail address: pward@umich.edu

3 Abbreviations used in this paper: CLP, cecal ligation/puncture; ERK, extracellular signal-regulated kinase; hufC5a, human C5a; MAPK, mitogen-activated protein kinase; MEK, mitogen-activated protein/Erk kinase; PKA, protein kinase A; PKC, protein kinase C; PLC, phospholipase C; PMN, polymorphonuclear cell; SOD, superoxide dismutase.
Materials and Methods

Reagents

Unless otherwise indicated, all reagents were purchased from Sigma-Aldrich (St. Louis, MO).

Experimental sepsis induced by CLP

Male Long-Evans-specific pathogen-free rats (275–300 g body weight; Harlan, Indianapolis, IN) were anesthetized by i.p. administration of ketamine (20 mg/100 g body weight). Via a 2-cm abdominal midline incision, the cecum was tightly ligated below the ileocecal valve, carefully avoiding bowel obstruction. The cecum was then punctured through and through with a 21-gauge needle. After repositioning the bowel, the abdominal incision was closed in layers (4-0 silk suture and skin clips; Ethicon, Somerville, NJ). Immediately after CLP (time 0), animals received either 400 ng preimmune rabbit IgG or 400 ng rabbit anti-C5a peptide IgG i.v., the latter generated against the middle peptide region of rat C5a (corresponding to amino residues 17–36). This Ab is described elsewhere (10). Before and after surgery, rats had unrestricted access to food and water.

Neutrophil isolation

Human or rat neutrophils were isolated from whole blood by the traditional techniques of Ficoll-Paque gradient centrifugation (Pharmacia Biotech, Uppsala, Sweden) and dextran sedimentation, followed by hypotonic lysis of residual RBCs. Blood was drawn using 10% anticoagulant citrate dextrose (Baxter, Deerfield, IL).

Phagocytosis assay

Rat neutrophils (50 × 10^6 cells/ml HBSS; Life Technologies, Bethesda, MD) were layered onto adhesion reaction fields on glass slides (Bio-Rad, Munich, Germany) and allowed to settle down. After washing, the adherent cells were then incubated in absence or presence of different amounts of C5a (0.01–100 nM) for 1 h at 37°C, followed by a 30-min incubation step with IgG-coated zymosan particles (100/polymorphonuclear cells (PMN)). After additional washing, cells were stained with May-Gruenwald stain and trypan blue. Phagocytotic uptake was evaluated by light microscopy by scoring random fields.

Measurement of respiratory burst

O2– generation was measured by the superoxide dismutase (SOD)-inhibitable reduction of ferricytochrome c. Neutrophils (5 × 10^6 cells/ml) were preincubated with ferricytochrome c (80 μM) ± SOD (24 μg/ml) in the presence or absence of human C5a (huC5a) for 60 min at 37°C. As indicated, cells were subsequently stimulated by PMA (100 ng/ml for 10 min). Then absorbance of the supernatant fluids was measured at 550 nm, and the amount of O2– calculated was based on the amount of reduced ferricytochrome c in the presence or absence of SOD. Hydrogen peroxide (H2O2) generation was determined in the presence of 1 mM sodium azide. As indicated, neutrophils (2 × 10^6 cells/ml) were pretreated with various concentrations of huC5a (0.1–100 nM) for 60 min at 37°C. To stimulate neutrophils, cells were incubated with various concentrations of PMA (10–1000 ng/ml) for additional 10 min. The reaction was stopped by addition of TCA (50% v/v). Then, ferrous ammonium sulfate (1.5 mM) and potassium thiocyanate (0.25 M) were added to the supernatant fluid. The absorbance of the ferrithiocyanate complex was measured at 480 nm and compared with a standard curve generated from dilutions of reference solutions of H2O2.

Translocation of p47phox and immunoblotting

After stimulation, neutrophil lysates were centrifuged (400 × g, 5 min) to remove nuclei and unbroken cells. The resulting supernatant fluids were further centrifuged (15,000 × g, 45 min) to isolate the crude cytosol-derived fraction (supernatant) and the crude membrane fraction (pellet). Equal amounts of protein of the crude subcellular fractions were separated under reducing conditions by 10% SDS-PAGE and transferred onto polyvinylidene fluoride membrane. The membrane was blocked in 5% milk (in PBS) for 1 h and then incubated with rabbit anti-p47phox IgG Ab at a concentration of 1 μg/ml (Genentech, San Francisco, CA). As a secondary Ab, alkaline phosphatase-conjugated goat anti-rabbit IgG (1:1000; Jackson ImmunoResearch Laboratories, West Grove, PA) was added, and the blot was developed using alkaline phosphatase color development system (Bio-Rad, Hercules, CA). For determination of the phosphorylation state of p47phox, anti-p47phox mAb was used to immunoprecipitate from equal amount of cell lysates (100 μg). After Western blotting, anti-phosphoserine Ab (Zymed Labora-
cells were stimulated in vitro with PMA (lane 9). When these neutrophils were first exposed in vitro to C5a, followed by addition of PMA, the p47phox band in the cell membrane fraction was undetectable (Fig. 1, lane 10). These data indicate that PMA-induced translocation of p47phox is defective in neutrophils from CLP rats, that the in vivo acquisition of this defect is C5a dependent, and that this defect can be reproduced by in vitro exposure of normal blood neutrophils to C5a.

Exposure of rat neutrophils in vivo or in vitro to C5a induces a defect in phagocytic function

To evaluate the status of phagocytic function in neutrophils, two separate experiments were conducted. In the first, blood neutrophils were obtained from normal rats (ctrl) or from CLP rats (at 24 h) that received at time 0 either 400 μg preimmune IgG (pre IgG) or 400 μg affinity-purified anti-rat C5a IgG. The results are shown in Fig. 2A. Neutrophils were incubated with IgG-opsonized zymosan particles (100 particles/PMN, 30 min at 37°C), and the number of intracellular particles in neutrophils was determined after this period of incubation. Neutrophils from control rats contained 3.0 ± 0.30 particles/cell, while neutrophils from CLP rats pretreated with preimmune IgG showed a significantly lower level of particle ingestion (1.2 ± 0.31 particles/cell), indicating sepsis-induced dysfunction. In CLP rats treated with anti-C5a, uptake of particles was the same as in neutrophils from normal rats (Fig. 2A). These results indicate that the phagocytic defect acquired by neutrophils during CLP-induced sepsis is C5a related. In companion experiments (B), in vitro exposure of blood neutrophils from normal rats to increasing amounts (0.01–100 nM) of rat C5a (at 37°C for 60 min), followed by incubation of cells with particles (for 30 min at 37°C), led to a progressive reduction in numbers of zymosan particles taken up into neutrophils as a function of the concentration of C5a. The IC_{50} for C5a was ~0.1 nM C5a.

In vitro exposure of neutrophils reduces detection of C5aR

For these and all subsequent experiments, human neutrophils were exposed to human rC5a, and the effects on C5aR and on signaling pathways were evaluated. For the first series of experiments, human neutrophils were exposed to 100 nM C5a at different periods of time and at different temperatures, and then the cells were evaluated for C5aR content by flow cytometry. As shown in Fig. 3A, there was a measurable reduction in detectable C5aR content on neutrophils exposed to C5a at 25°C for 30 min. In Fig. 3B, as can be seen in the upper panel, there was virtually no difference in C5aR content (mean channel fluorescence) over a 1-h period when neutrophils were or were not exposed to 100 nM C5a, indicating that presence of C5a does not affect detection of C5aR at 4°C. In the lower panel, there was a striking reduction (nearly 40%) in C5aR content on neutrophils exposed to C5a at either 25 or 37°C. By 15 min, the reduction in detectable C5aR was complete, at least over a 1-h period. These data are consistent with other studies that suggest the C5a/C5aR complex is partially internalized.

In vitro exposure of neutrophils to C5a suppresses the assembly of NADPH oxidase and the respiratory burst in PMA-stimulated neutrophils

As shown in Fig. 4, H2O2 production was used as an indicator for activation of NADPH oxidase. In A, human blood neutrophils were incubated with 0.01–100 nM huC5a for 60 min at 37°C and the amount of H2O2 generated was determined. At doses of 1.0, 10, and 100 nM C5a, small but statistically significant increases in H2O2 were noted. In B, a dose response for PMA-induced generation of H2O2 revealed sharp increases between 10 and 1000 ng PMA/ml, with no further increase at 1.0 μg/ml. In C, neutrophils were exposed to C5a (0.01–100 nM) for 60 min at 37°C, and the subsequent amount of H2O2 generated after addition of PMA (100 ng/ml for 10 min) was determined. When exposed to 0.1–100 nM C5a (60 min at 37°C), neutrophils showed a progressive loss in production of H2O2 generation. Finally, exposure of neutrophils to 10 nM C5a for 0–60 min revealed a time-dependent loss in H2O2 production by these neutrophils after addition of PMA (Fig. 4D).

In Fig. 5, neutrophils were exposed in vitro to buffer alone or 10 nM C5a for 60 min at 37°C, followed by addition (where indicated) of PMA (100 ng/ml for 10 min at 37°C). As shown in Fig. 5A, C5a induced a modest, but significant increase in O2− production in neutrophils that were not otherwise treated. Addition of PMA to neutrophils not exposed to C5a caused the expected robust increase in O2−. In C5a-exposed neutrophils that were then stimulated with PMA, the production of H2O2 was reduced by nearly 60%. When companion studies were done with the same batch of
neutrophils, effects of the same manipulations on H$_2$O$_2$ generation were similar (Fig. 5B), with pre-exposure of neutrophils to C5a (10 nM) causing an 81% reduction in H$_2$O$_2$ after stimulation by PMA. Thus, the effect of C5a exposure to neutrophils causes similar inhibitory effects on O$_2^-$/H$_2$O$_2$ and H$_2$O$_2$ generation following cell stimulation with PMA.

As indicated above, assembly (activation) of NADPH oxidase requires translocation of cytosolic p47phox to the cell membrane. Human neutrophils were untreated or exposed to 10 nM huC5a for 60 min at 37°C. Where indicated, cells were then exposed to PMA (100 ng/ml) for 10 min at 37°C. Some neutrophils not otherwise treated were incubated with PMA under conditions described above. Then crude cytosolic and crude membrane fractions were obtained, and equal amounts of protein from each fraction were evaluated in Western blots for p47phox. The results are shown in Fig. 6. In normal (ctrl) neutrophils, a strong cytosolic band for p47phox was found, together with a faint band in the cell membrane fraction (lower panel, lane 2). When normal neutrophils were exposed to PMA, cytosolic p47phox was detected, but there was also a strong band detected in the membrane fraction (lane 5). When neutrophils were exposed only to C5a, the cytosolic band for p47phox remained, but no membrane band was detected (lane 3). In neutrophils exposed to C5a followed by PMA, the intensity of the cytosolic band for p47phox diminished in intensity and no translocation to the cell membrane could be detected (lane 4). As shown in this and in other blots, fragmentation products of p47phox were not detected, and supernatant fluids failed to contain detectable p47phox (data not shown). The defect in translocation of p47phox after PMA stimulation could be detected after an exposure time of cells to C5a of only 10 min (data not shown). Thus, in vitro exposure of neutrophils to C5a under the conditions described induces a defect in the ability of p47phox to translocate to the cell membrane after addition of PMA.

Naturally occurring mediators suppress H$_2$O$_2$ responses of neutrophils

Studies were conducted using naturally occurring mediators to determine whether the effects of C5a were mediator specific. The mediators used and effects on H$_2$O$_2$ responses are shown in Table I. The concentrations of various mediators used were based on preliminary data in which a dose of each mediator that elicited a robust H$_2$O$_2$ response in neutrophils was determined (data not shown). In experiment A, the suppressive effects of C5a on the PMA-induced H$_2$O$_2$ response of human neutrophils were confirmed (79% suppression). It was also shown that the fMLP-induced H$_2$O$_2$ response could be reduced by 97% in cells that had been pre-exposed to C5a. In experiment B, exposure of neutrophils to C5a...
suppressed the TNF-α-induced response by 88%. Prior cell exposure to platelet-activating factor resulted in a 92% reduction in the PMA-induced H2O2 response. Finally, prior cell exposure to platelet-activating factor reduced the H2O2 response to fMLP by 93%.

These data indicate that, when neutrophils are exposed to a variety of naturally occurring mediators, the H2O2 responses induced by other naturally occurring mediators are also suppressed. The importance of the potent ability of C5a to suppress the respiratory burst in neutrophils may relate to the fact that high concentrations (10 nM) of C5a have been found in sera of humans with sepsis (4, 7).

C5a causes inhibition in PMA-induced phosphorylation of p47phox in stimulated neutrophils

To determine the possible basis for the failure of p47phox to translocate in stimulated neutrophils exposed to C5a, experiments were conducted to assess by Western blots the status of phosphorylation of p47phox, using Ab to phosphoserine after immunoprecipitation using mAb to p47phox. Immunoprecipitation was performed using equivalent amounts of cell lysates (100 µg protein). The results are shown in Fig. 7. Faint evidence for phosphorylation of p47phox was found in unstimulated (ctrl) neutrophils (lane 1). When neutrophils were exposed to 10 nM C5a for 60 min at 37 °C, no increase in phosphorylation of p47phox occurred (lane 2), in striking contrast to p47phox that was immunoprecipitated from PMA (100 ng/ml, 37 °C, 10 min)-stimulated neutrophils, in which strong evidence of phosphorylation was found (lane 3). When neutrophils were first exposed to C5a, followed by stimulation with PMA, there was no evidence of increased phosphorylation of p47phox (lane 4). Thus,
C5a blocks both phosphorylation of p47\(^{phox}\) as well as its translocation (Fig. 6) to the cell membrane in PMA-stimulated neutrophils.

Inhibition of mitogen-activated protein/Erk kinase-1 (MEK-1) reduces the respiratory burst; C5a inhibits phosphorylation of p42/p44 MAPK (Erk 1/2)

Recently, extracellular signal-regulated kinase 1/2 (p42/p44 MAPK, Erk 1/2) has been shown to be required for phosphorylation of p47\(^{phox}\) in neutrophils exposed to the bacterial chemotactic peptide, fMLP (24). In addition, PD98059 has been described to be a selective inhibitor of MEK-1 (25), which immediately precedes p42/p44 MAPK (Erk 1/2) in the signaling pathways of neutrophils. Therefore, two separate experiments were conducted. In the first, neutrophils were exposed to PD98059 (50 \(\mu\)M) for 10 min, then to the second agonist for 10 min at 37°C; or exposed to PMA (100 ng/ml) alone (10 min). Equal amounts (100 \(\mu\)g) of cell lysates were immunoprecipitated with a mAb, Western blotted, and probed with anti-phosphoserine Ab. Data are representative of at least three independent experiments.

![FIGURE 7. Detection of phosphoserine p47\(^{phox}\) in neutrophils. Cells were untreated (ctrl); exposed to C5a (10 nM) for 60 min at 37°C; stimulated with PMA (100 ng/ml) for 10 min at 37°C; or exposed first to C5a, followed by stimulation with PMA. p47\(^{phox}\) was first immunoprecipitated with a mAb, Western blotted, and probed with anti-phosphoserine Ab. Data are representative of at least three independent experiments.](http://www.jimmunol.org/)

FIGURE 8. Requirement of MEK-1 for generation of H\(_2\)O\(_2\); loss of phosphorylation of MAPK in neutrophils exposed to C5a. A. H\(_2\)O\(_2\) generation from unstimulated (open bars) or PMA-stimulated (filled bars) neutrophils in presence or absence of the MEK-1 inhibitor PD98059 (50 \(\mu\)M for 1 h at 37°C). B. Cells were stimulated with huC5a (10 \(\mu\)M) for the indicated lengths of time at 37°C or with PMA (100 ng/ml) alone (10 min). Cells were also pre-exposed to C5a for 60 min, followed by PMA for 10 min. Equal amounts (100 \(\mu\)g) of cell lysates were immunoblotted with both anti-p42/44 MAPK Ab as well as anti-phospho-p42/p44 MAPK Ab. Signal obtained for the anti-phospho-Ab was normalized to the signal obtained for the nonphospho-Ab by image analysis, and the ratio obtained was graphed. The Western blot and the graph are representative of at least three separate and independent experiments.

![TABLE 1. Suppression of H\(_2\)O\(_2\) responses of human neutrophils

<table>
<thead>
<tr>
<th>Expt</th>
<th>First Exposure</th>
<th>Second Exposure</th>
<th>H(_2)O(_2) Response (OD 450)</th>
<th>Inhibition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>None</td>
<td>None</td>
<td>0.199 ± 0.008</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PMA</td>
<td>None</td>
<td>1.35 ± 0.25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C5a</td>
<td>None</td>
<td>0.255 ± 0.011</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C5a</td>
<td>PMA</td>
<td>0.438 ± 0.020</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>fMLP</td>
<td>None</td>
<td>0.920 ± 0.027</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C5a</td>
<td>fMLP</td>
<td>0.223 ± 0.011</td>
<td>97</td>
</tr>
<tr>
<td>B</td>
<td>None</td>
<td>None</td>
<td>1.187 ± 0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PMA</td>
<td>None</td>
<td>1.124 ± 0.002</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TNF-(\alpha)</td>
<td>None</td>
<td>0.804 ± 0.027</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C5a</td>
<td>TNF-(\alpha)</td>
<td>0.258 ± 0.011</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>PAF</td>
<td>None</td>
<td>1.12 ± 0.003</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PAF</td>
<td>PMA</td>
<td>0.212 ± 0.001</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>PAF</td>
<td>fMLP</td>
<td>0.564 ± 0.011</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PAF</td>
<td>fMLP</td>
<td>0.252 ± 0.015</td>
<td>93</td>
</tr>
</tbody>
</table>

*Concentrations of agonists: PMA, 100 ng/ml; C5a, 10 nM; fMLP, 10 \(^{-6}\) M; platelet-activating factor, 10 \(^{-5}\) M; TNF-\(\alpha\), 1 nM. Neutrophils were exposed to the first agonist for 60 min at 37°C (with the exception of PMA, TNF, and fMLP, which were for 10 min), then to the second agonist for 10 min at 37°C. Conditions were similar to those described in Fig. 4. The data are representative of three or more separate and independent experiments performed in triplicate for each condition.

were not exposed to PD98059, suggesting that MEK-1 activation is required for PMA-induced generation of H\(_2\)O\(_2\) in neutrophils.

The effect of neutrophil exposure to C5a was assessed on the basis of phosphorylation of p42/44 MAPK (Erk). Equal amount of cell lysates (100 \(\mu\)g) from cells exposed to C5a for various lengths of time and from cells exposed to C5a for 60 min and then PMA for 10 min or with PMA alone for 10 min was electrophoresed on SDS-PAGE. After Western blotting, blots were probed with Abs to phosphorylated and nonphosphorylated p42/44 MAPK, as per the manufacturer’s instructions. The signal obtained from the blots probed with the phosphorylated p42/44 MAPK Ab was normalized to the signal obtained when probed with the nonphosphorylated Ab and the ratio obtained was graphed (Fig. 8B). As shown, when anti-phospho-Ab was used, neutrophils at 0 time point showed little evidence of phosphorylation of p42/44 MAPK (Fig. 8B, upper panel). However, when cells were exposed to C5a, there was an increase in phosphorylation by 2 min, with a decline by 15 min and no signal by 60 min. Similarly, an increase in phosphorylation was observed when cells were treated with PMA. But, when neutrophils were first exposed to 10 nM C5a, followed by PMA, all evidence of phospho-p42/44 disappears (Fig. 8B, upper panel), indicating that neutrophil contact with C5a inhibits phosphorylation of Erk (p42/44 MAPK) or triggers dephosphorylation of Erk.
Proposed pathways leading to neutrophil dysfunction during sepsis

Fig. 9 depicts proposed mechanisms of C5a-induced neutrophil dysfunction during sepsis, focusing on intracellular signal transduction pathways involved in NADPH oxidase activation. In non-stimulated (resting) neutrophils, the multicomponent NADPH oxidase is dormant in its unassembled state and consists of cytoplasmatic components (p21^{rac}, p40^{bax}, and p47^{phox}), or cytoskeletal component (p67^{phox}), and the integral membrane protein, flavocytochrome b_{558} (Fig. 9A). The response of neutrophils to C5a (and to other agonists such as FMLP or TNF-α) involves interaction with transmembrane receptors. Separate intracellular signaling pathways (especially involving protein kinase C (PKC) and MAPK) are known to be activated, leading within minutes to phosphorylation and activation of numerous target proteins. To simulate cell activation in vitro, PMA was used as an in vitro stimulus of PKC and MAPK. Whereas phosphorylation and translocation of p47^{phox} are considered key for assembly of NADPH oxidase, generation of arachidonic acid also appears to play a key role in activation events, which mainly involve the PKC and MAPK pathways (Fig. 9B). In an attempt to simulate conditions of sepsis, exposure of neutrophils to amounts of C5a (10 nM) that have been found in serum during sepsis (3, 4, 7) paralyzed the process, leading to assembly (activation) of NADPH oxidase. Using PMA-stimulated neutrophils, C5a-induced defects were associated with the appearance of at least three different events: greatly reduced phosphorylation of Erk 1/2, reduced phosphorylation of p47^{phox}, and failure of p47^{phox} to translocate to the cell membrane. It is also possible that C5a-induced dysfunction in neutrophils might be linked to production of cAMP, which could activate protein kinase A (PKA). In turn, PKA would inhibit both Raf-1 and B-Raf (and reduce intracellular levels of extracellular Ca^{2+}). Under these conditions, it would also be predicted that downstream phosphorylation of Erk 1/2 (p42/p44 MAPK) and phosphorylation and translocation of p47^{phox} would be suppressed. It is also possible that the generation of phospholipase A_2-dependent arachidonic acid in neutrophils exposed to C5a was inhibited by neutrophil exposure to C5a, resulting in suppressed activation of NADPH oxidase. Collectively, these events would lead to defective bacterial killing. To what extent the suppressive effects of C5a are tied to the cAMP and PKA pathways or have direct effects on the Raf-1/B-Raf pathway remains to be determined. Such an outcome could occur by generation of cAMP and PKA-induced inhibition of phospholipase C (PLC), PKC, and Raf-1/B-Raf; inhibition of p42/p44 MAPK (Erk 1/2) phosphorylation; blockade of the p47^{phox} phosphorylation and translocation; and, possibly, inhibition of phospholipase A_2-dependent arachidonic acid, finally resulting in the inability to assemble NADPH oxidase and generate an effective respiratory burst, resulting in impaired bacterial killing (Fig. 9C).

Discussion

In the early period (<24 hour) following trauma, burn injury, or sepsis, neutrophils have been reported to be "primed" and hyperactive (on the basis of in vitro stimulation) potentially putting patients at increased risk of neutrophil-mediated tissue injury (3, 4, 8). At later time points (48 h), neutrophils are unresponsive to activation and exhibit a variety of depressed functions: chemotactic responses (3, 4, 10, 16), enzyme release (3, 4), microtubular reorientation (26), phagolysosomal acidification (11), and respiratory burst activity (3, 4, 8, 9, 13–15). Collectively, this compromise of innate immunity leads to a loss of oxygen-dependent bacterial killing, causing these individuals to be at high risk for bacterial infections (3, 4, 8). The mechanisms involved in sepsis-induced neutrophil dysfunction are poorly understood, precluding definitive specific therapeutic interventions.

In the present study, experimental sepsis was induced by CLP. This model, which closely simulates events in human sepsis (5, 6), was used to investigate mechanisms of neutrophil dysfunction during sepsis. Two aspects of innate immunity were found to be seriously compromised in blood neutrophils: phagocytosis and the ability to mount a respiratory burst. We have recently demonstrated that in the CLP model of sepsis, a third component of innate immunity is defective in neutrophils: chemoattractant responsiveness (16). All three acquired defects have now been shown to be C5a dependent. Phagocytic activity (ingestion of IgG-opsonizedzymosan particles) was suppressed in neutrophils from CLP animals, but this response was completely restored when complement activation product, C5a, was blocked in vivo by anti-C5a Abs (Fig. 2). When normal neutrophils were exposed in vitro to C5a at levels found during sepsis, there was a dose-dependent impairment of in vitro phagocytosis (Fig. 2). Recently, it has been shown during phagocytosis that the onset of the respiratory burst (featuring generation of reactive oxygen species O_2^−, H_2O_2) is linked to phosphorylation of the NADPH oxidase cytosolic subunit, p47^{phox}, which is then translocated to the cell membrane of the phagosome (27). A dysfunction of the NADPH-dependent respiratory burst during sepsis has been described in clinical (8, 9, 13, 14, 22) and in experimental settings (12, 16). To elucidate the mechanisms involved, neutrophils were activated in vitro by PMA, which bypasses conventional membrane receptors often defective during sepsis (3, 16) and which leads to direct activation of intracellular PKC. As expected, activation of normal neutrophils by PMA induced robust O_2^− and H_2O_2 production. Exposure of neutrophils to C5a induced the expected reduction in C5aR content (Fig. 3), presumably due to partial internalization of C5a/C5aR complexes. Our recent report of greatly reduced binding of rat C5a to blood neutrophils obtained from CLP rats (16) appears to be due to both receptor occupancy as well as loss of receptors due to internalization. After in vitro exposure of neutrophils to C5a, O_2^− and H_2O_2 production in PMA-activated cells was greatly inhibited in a dose- and time-dependent manner, indicating that exposure to C5a in vitro or in vivo can result in impairment of the respiratory burst (Fig. 4). Exposure of neutrophils in vitro to C5a alone caused very modest production of O_2^− and H_2O_2. These responses are known to be greatly magnified in the presence of cytochalasin B, which amplifies the oxidative response by inhibiting internalization of NADPH oxidase subunits (28). Similar to our demonstration of a C5a-induced defect in the PMA-induced respiratory burst in neutrophils, a recent study has demonstrated that C-reactive protein, which activates the classical complement cascade, inhibits chemotaxis and the PMA-induced respiratory burst by affecting PKC-dependent translocation and phosphorylation of p47^{phox} (29). Phosphorylation of at least two serine residues on p47^{phox} and translocation of this molecule from the cytosol to the membrane (which takes place after phosphorylation) are required to initiate assembly and activation of NADPH oxidase (21, 30). The proline-rich region of cytochrome b_{558} is considered to interact with the Src homology 3 domains of p47^{phox} and p67^{phox}, enabling the docking process (19, 20). The subsequent electron transfer from NADPH to O_2 generates O_2^− and is charge compensated by the opening of a proton channel in the cell membrane of the neutrophil (19, 31). In the current study, the presence of small amounts of p47^{phox} in the membrane fraction of nonstimulated neutrophils suggests the presence of basal oxidase activity, in accordance with earlier reports (19, 20, 24). This could represent an artifact of neutrophil isolation. After PMA stimulation, enhanced p47^{phox}
translocation was observed, which was completely abolished in neutrophils that had been pre-exposed to C5a (Fig. 6), indicating a C5a-induced defect in NADPH oxidase activation via blockade of p47phox translocation. LPS, which is often present during sepsis, primes neutrophils for an enhanced respiratory burst after subsequent stimulation of these cells (27). The MAPK pathway has recently been shown in neutrophils to be involved in the fMLP-induced phosphorylation of p47phox (24). Because both phosphorylation and translocation of p47phox alone are not sufficient enough to fully activate NADPH oxidase (32–34), it was of interest to determine whether the MAPK pathway was also involved in activation of NADPH oxidase. Using the potent and selective MEK-1 inhibitor, PD 98059 (35), the H2O2 response of neutrophils after PMA stimulation was significantly suppressed, indicating that MEK-1 in the MAPK pathway is involved in activation of NADPH oxidase (Fig. 8). Some studies have suggested that IMLP and C5a may activate the MAPK pathway via tyrosine phosphorylation of p42/p44 MAPK (35–37), which has been shown to occur in human astrocytes incubated with C5a. This process is time dependent, with a peak at 15 min (37). Exposure of neutrophils to C5a virtually abrogated all signs of PMA-induced p47phox phosphorylation as well as p42/p44 MAPK (Erk 1/2) phosphorylation (Figs. 7 and 8). Whereas transient stimulation of neutrophils with C5a may activate the MAPK pathway, the present data suggest that a persistent presence of C5a or the presence of relatively high concentrations (10 nM or higher) of C5a results in an inhibition of the MAPK pathway. This is consistent with other findings that C5a causes the activation of Raf-1 and B-Raf, which are upstream stimulators of MEK-1 in human neutrophils, with a peak of activation at 5 min, followed by suppressed activation thereafter (38). Activated p42/p44 MAPK (Erk 1/2) is known to phosphorylate p47phox (24) and, thereby, to initiate NADPH oxidase assembly in a PKC-independent way (34). When assembled, p47phox undergoes a continuous cycle of phosphorylation and dephosphorylation throughout the period of O2− release, with the phosphorylation reaction predominating (20). Termination of oxidase activity correlates with dissociation of p47phox/p67phox from flavocytochrome b558 (20, 27). It is possible that events that occur during internalization of C5a/C5aR and receptor recycling perpetrate the MAPK pathway, interfering with the ability of PMA to induce generation of H2O2.

Whereas many in vitro studies of NADPH oxidase exist, little is known about alterations of NADPH oxidase occurring during sepsis. In the present study, we demonstrated in later stages (12 h) of CLP-induced sepsis nearly complete loss of p47phox translocation after activation of neutrophils by PMA (Fig. 1). The loss of the respiratory burst, which is essential for bacterial killing, could be reversed in animals that had been treated with an anti-C5a Ab preparation. In our recent studies, such treatment has greatly improved survival rates during CLP-induced sepsis and has reduced the accompanying multiorgan failure (12, 16). These in vivo data strongly suggest that in the sepsis model, C5a is a major contributor to NADPH oxidase dysfunction, and that this defect can be reversed by treatment of animals with a blocking Ab to C5a. The current studies establish that C5a blocks three critical steps in the pathway leading to activation of NADPH oxidase: phosphorylation of the p42 MAPK (Erk 2); phosphorylation of p47phox; and translocation of p47phox to the cell membrane.

Possible pathways involved in C5a-induced neutrophil dysfunction are demonstrated in a hypothetical model (Fig. 9). Despite the persistent presence of complement activation products (7) and inflammatory mediators during sepsis (3, 4), the intracellular signaling events are often transient (Ras, Raf-1, B-Raf, Erk-1, PLC, etc.), with activation of these factors occurring within minutes (37–40). The brief duration of these events may result from the loss of receptors through their phosphorylation and rapid internalization (41). Lack of phosphorylation of C5aR (42) was found to result not only in sustained Ca2+ mobilization and MAPK activity, but also in enhancement of the respiratory burst (43, 44), suggesting that phosphorylation of C5aR may be a regulatory mechanism for NADPH oxidase activity. Additionally, C5a has been shown to activate the adenylate cyclase-cAMP pathway in neutrophils (40, 45). Stimulation of adenylate cyclase by forskolin (1 h, 100 nM) reduced the respiratory response of PMA-stimulated cells by >50% (data not shown), suggesting involvement of cAMP and PKA in regulation of the respiratory burst. Sustained elevation of cAMP in neutrophils has been reported to suppress the O2− release

FIGURE 9. Model for C5a-induced dysfunction of NADPH oxidase. A. In resting neutrophils, the multicomponent NADPH oxidase is dormant and consists of subunits located in the cytoplasm and in the membrane. B. Cell activation via surface receptors by various inflammatory mediators (C5a, fMLP, TNF-α) involves several signaling pathways (e.g., PKC, MAPK, CAMP, etc.), leading to phosphorylation of numerous target proteins. Phosphorylation and translocation of p47phox are key for assembly of NADPH oxidase on the cell membrane. Generation of arachidonic acid (AA) is also important for optimal activation of NADPH oxidase. These events are regulated by the PKC and MAPK pathways. C. Exposure of neutrophils to C5a (e.g., during sepsis) blocks activation of NADPH oxidase by ultimately interfering with phosphorylation of p42 MAPK, thus preventing phosphorylation and translocation of p47phox to the cell membrane. Under these conditions, cell exposure to C5a may also produce excessive cAMP, which could interfere with activation of PLC, PKC, etc.
References

