The Role of Matrix Metalloproteinase-2 and Matrix Metalloproteinase-9 in Antibody-Induced Arthritis

Takeshi Itoh, Hidetoshi Matsuda, Masatoshi Tanioka, Kenji Kuwabara, Shigeyoshi Itohara and Ryuji Suzuki

J Immunol 2002; 169:2643-2647; doi: 10.4049/jimmunol.169.5.2643

http://www.jimmunol.org/content/169/5/2643

References

This article *cites 26 articles*, 14 of which you can access for free at: http://www.jimmunol.org/content/169/5/2643.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at: http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts
The Role of Matrix Metalloproteinase-2 and Matrix Metalloproteinase-9 in Antibody-Induced Arthritis

Takeshi Itoh,1* Hidetoshi Matsuda,† Masatoshi Tanioka,* Kenji Kuwabara,* Shigeyoshi Itohara,† and Ryuji Suzuki*

Matrix metalloproteinases (MMPs) are a large group of enzymes responsible for matrix degradation. Among them, the family of gelatinases (MMP-2/gelatinase A and MMP-9/gelatinase B) is overproduced in the joints of patients with rheumatoid arthritis. Because of their degradative effects on the extracellular matrix, gelatinases have been believed to play an important role in progression and cartilage degradation in this disease, although their precise roles are yet to be defined. To clarify these roles, we investigated the development of Ab-induced arthritis, one of the murine models of rheumatoid arthritis, in MMP-2 or MMP-9 knockout (KO) mice. Surprisingly, the MMP-2 KO mice exhibited severe clinical and histologic arthritis than wild-type mice. The MMP-9 KO mice displayed milder arthritis. Recovery from exacerbated arthritis in the MMP-2 KO mice was possible by injection of wild-type fibroblasts. These results indicated a suppressive role of MMP-2 and a pivotal role of MMP-9 in the development of inflammatory joint disease. The Journal of Immunology, 2002, 169: 2643–2647.

Materials and Methods

Mice

MMP-2+/− mice (14) and MMP-9+/− mice (16) were crossed five times with BALB/c mice and were crossed with each other to obtain MMP-2+/−/MMP-9+/− mice. We then crossed these mice with each other to obtain MMP-2−/−/MMP-9+/− (MMP-2 KO), MMP-2+/−/MMP-9−/− (MMP-9 KO), MMP-2−/−/MMP-9−/− (double knockout), and control wild-type mice.

Induction of AbIA and clinical assessment of arthritis

Arthritis was induced using methods described by Terato et al. (18). Female mice, 7–8 wk old, weighing 18–22 g, were injected i.v. with 2 mg of an arthritogenic mAb cocktail (Chondrex LLC, Seattle, WA) on day 0. On day 3, LPS (2.5 mg/kg) was injected i.p. (18). The clinical severity of arthritis was graded as follows: 0, normal; 1, erythema; 2, slight swelling; and 3, severe swelling or deformity. Each limb was graded, allowing a maximum clinical score of 12 for each animal.

Histologic analyses

For histologic analyses, about half of the KO and wild-type mice were randomly selected, and the hind paws were removed on day 11. The average arthritis scores of histologically analyzed mice were almost the same as those of all mice. After fixation with 10% formaldehyde in PBS, the paws were decalcified with EDTA and embedded in paraffin. The paraffin sections were stained with Safranin O-Fast Green. The grade of proteoglycan depletion determined by Safranin O staining, the erosion of ankle joint cartilage, and the extent of cellular infiltration were separately determined and graded from 0 to 3 (3 is the severest).

Fibroblast injection

Embryonic fibroblasts were extracted from day 12.5 embryos obtained by cesarean section. Following removal of extra-embryonic tissue and blood-containing embryonic organs, the embryos were rinsed with PBS and minced. Tissue clumps were removed by centrifugation, and fibroblast cultures were established in DMEM containing 10% FCS. The passage 2 cells were washed three times with PBS and suspended in PBS. Next, 2.5 × 10^5 cells (in 50 µl PBS) were injected into the ankle joint of each hind paw.
Gelatin zymography

Gelatin zymography was conducted as described previously (14). Briefly, whole mouse paws were removed proximal to the carpus or tarsus and homogenized in 50 mM Tris-HCl (pH 7.5), 150 mM NaCl, and 1% Nonidet P-40 and centrifuged at 15,000 rpm for 10 min. The protein concentration of the supernatant was determined by the method of Bradford, and 20 µg supernatant proteins were applied to nonreduced SDS-PAGE using 7.5% gel containing 0.1% gelatin. After electrophoresis, the gel was soaked in 50 mM Tris-HCl (pH 7.5) containing 2.5% Triton X-100 at room temperature with gentle shaking for 2 h and incubated overnight in 50 mM Tris-HCl (pH 7.5) containing 10 mM CaCl2 at 37°C. The gels were then stained with Coomassie brilliant blue.

Competitive RT-PCR

Whole mouse paws were removed proximal to the carpus, and total cellular RNA was isolated with TRizol (Life Technologies, Gaithersburg, MD) according to the manufacturer’s instructions. The RNA sample was subjected to first-strand cDNA synthesis by Superscript II (Life Technologies) using a random hexamer mix. The DNA competitors of MMP-3, MMP-8, MMP-13, MMP-14, tissue inhibitor of MMP (TIMP)-1, and TIMP-3 were generated with a Competitive DNA Construction kit (Takara Shuzo, Shiga, Japan) according to the manufacturer’s instructions. The primers used for MMP-DNA detection were S'-TGTCCTGTTTCTGCAGTCTT-3' for the sense primer, and S'-ATCAACAGTCAGATTGT-3' for the antisense primer. Those for MMP-7 detection were S'-CAGATGTTGCA ATACCTAC-3' for the sense primer and S'-ATGCCTGCAATGGTCGTC TCTT-3' for the antisense primer. Those for MMP-8 detection were S'- CAGTACCTGAACCCGGAAGA-3' for the sense primer and S'-TCTGC TTGT-3' for the antisense primer. Those for MMP-10 detection were S'- GGACCACATTTTACCTGTT-3' for the sense primer and S'- GGAGGCTTTTACCTGTT-3' for the antisense primer. Those for MMP-11 detection were S'-TCTGGCTAAATACCTTGACAT-3' for the sense primer and S'-ATGCCTGCAATGTCGTC-3' for the antisense primer.

All results were analyzed using the Mann-Whitney U test or Student’s t test (StatView program 1992, Abacus Concepts, Berkeley, CA). Values of \(p < 0.05 \) were considered significant.

Results

MMP-2 KO mice showed exacerbated levels of AbIA, and MMP-9 KO mice showed mild levels of AbIA

To investigate the roles of MMP-2 and MMP-9 in AbIA, KO mice of each enzyme or both were used in this model. Arthritis appeared on day 5 and continued for at least 6 days. Fig. 1 shows the average arthritis scores of each KO mouse and control wild-type mouse. The MMP-2 KO mice showed exacerbated levels of AbIA compared with wild-type mice. On the other hand, reduced arthritis was observed in the MMP-9 KO (Fig. 1). On day 11, the average score was increased by 59% for the MMP-2 KO mice and was reduced by 45% for the MMP-9 KO mice (\(p < 0.001 \) and \(p < 0.01 \), respectively). The double KO mice showed no significant difference from the wild-type mice. The results for the double KO mice might reflect the effects of both MMP-2 deficiency and MMP-9 deficiency.

To examine the degradation of articular cartilage and cleavage of proteoglycan, histologic analyses were performed with the hind paws on day 11. As expected, the arthritic mice revealed extensive cellular infiltration and proteoglycan depletion (Fig. 2). Cartilage erosion was mild even in the severely arthritic mice (Fig. 2). In the MMP-2 KO mice, the average scores of cellular infiltration and proteoglycan depletion were significantly increased (Fig. 3). In contrast, the MMP-9 KO mice showed only mild disease, which was significantly less severe than that of the wild-type mice (Figs.
2 and 3). The average score of proteoglycan depletion in the double KO mice was lower than that in the wild-type mice, but the difference was not significant (p = 0.0007, by Student’s t test).

Exacerbated arthritis in MMP-2 KO mice was recovered by MMP-2 derived from fibroblasts

We next investigated whether recovery was possible from the exacerbated AbIA in the MMP-2 KO mice by the injection of wild-type cells. Embryonic fibroblasts from the wild-type mice were injected into the ankle joint on days 0, 3, and 6. These cells secrete MMP-2 in vitro (14). Recovery from the exacerbated arthritis in the MMP-2 KO mice occurred following the injection of wild-type fibroblasts (Fig. 4). As little effect was observed by the injection of MMP-2 KO fibroblasts, recovery from the exacerbated AbIA occurred due to the fibroblast-derived MMP-2.

Secretion of MMP-2 and MMP-9 increased in parallel with AbIA development

To ensure that the expression levels of MMP-2 and MMP-9 were up-regulated with the development of arthritis in AbIA as in human RA, the lysates of the paws were examined by gelatin zymography. On days 3 and 4, little MMP-2 and MMP-9 activity was seen similar to that on day 0, indicating that the expression of the two enzymes in the paw was not affected by Ab or LPS administration in this model (Fig. 5). If arthritis developed, MMP-2 and MMP-9 were overproduced (Fig. 5). This MMP-2 or MMP-9 expression was not compensated for by deficiency of the other gelatinase (Fig. 5).

Expression levels of the other MMPs and TIMPs in each KO mouse showed no large changes

MMPs have overlapping substrate specificity, so the effect of loss of specific activities of one or two enzymes may be caused by compensation by other enzymes. Therefore, we examined MMP and TIMP expression in nonarthritic paws and arthritic paws (score 3) from the wild-type or each KO mouse by competitive RT-PCR. Fig. 6 shows the average copy number of MMP-3 (stromelysin-1), MMP-8 (neutrophil collagenase), MMP-13 (collagenase-3), MMP-14 (MT1-MMP), TIMP-1, and TIMP-3. The expressions of mRNA of MMP-3, -8, -13, and -14 and TIMP-1 were increased in arthritic mice, but TIMP-3 expression was not changed (Fig. 6). In these MMPs and TIMPs, no significant difference was seen between the wild-type and each KO mouse (Fig. 6). The expression levels of mRNA of MMP-7 (matrilysin), MMP-10 (stromelysin-2), MMP-11 (stromelysin-3), MMP-12...
elucidated by RT-PCR (data not shown). AbIA. In MMP-2 KO mice, AbIA levels were significantly exacerbated. Generally, overproduction of MMPs in RA is believed to enhance arthritis by degrading the joint matrix because of their matrix-degrading activities (19, 20). Therefore, we confirmed that the exacerbated AbIA could be recovered by injection of wild-type fibroblasts and that the other MMPs would not be up-regulated in the KO mice. These results directly show that exacerbated AbIA in MMP-2 KO mice was caused by MMP-2 deficiency, and thus that MMP-2 plays a suppressive role in the progression of AbIA. Although MMP-2 was overproduced in the arthritic joint of AbIA, its ECM-degrading activities might have little effect on AbIA development. Because MMP-2 activity is controlled by its activation from proenzyme (1–3, 21) and endogenous inhibitors (1–3), this enzyme may function in a specific region. Recently, a number of non-matrix MMP substrates that potently influence cellular functions (13), such as cytokines (10), growth factor receptor (12), and chemokine (11), have been identified. The major role of MMP-2 in AbIA may be to degrade inflammatory factors or to activate anti-inflammatory factors, although the substrates have not been determined.

Unlike MMP-2 KO mice, MMP-9 KO mice showed reduced levels of AbIA, indicating that MMP-9 enhances arthritis in this model. Overproduction of MMP-9 has been observed in the synovial fluid of patients with various inflammatory diseases; a correlation between the increased level of MMP-9 activity in the synovial fluid of RA and the severity of the disease has been found (7, 8). MMP-9 may enhance arthritis by degrading the ECM surrounding the joint or anti-inflammatory factors or by activating inflammatory cells (22). MMP-9 may also contribute to migrations of inflammatory cells by degrading the ECM surrounding the cells because MMP-9 is mainly secreted by inflammatory cells, such as macrophages or neutrophils (7, 8).

Why do the two MMPs have such opposite roles in the progression of AbIA? As the two enzymes have very similar substrate specificities for matrix protein (1, 2), the opposite roles may be caused by the difference of non-matrix substrates. For example, MMP-9 is not able to cleave the MMP-2 cleavage sites of monocyte chemoattractant protein-3 (11) and fibroblast growth factor receptor 1 (12). Elucidation of the pathways downstream from MMP-2 and MMP-9 will be important for defining new molecular targets.

The double KO mice showed no significant difference from the wild-type mice. The results may reflect the effects of both exacerbated arthritis by MMP-2 deficiency and reduced arthritis by MMP-9 deficiency. As proteoglycan depletion was not significantly suppressed by inhibition of both enzymes, these two enzymes were not essential for the degradation of proteoglycan. Because proteoglycan degradation is mediated by many MMPs and aggrecanase (23, 24), the compensatory or redundant activities of the other MMPs or aggrecanase probably have a greater influence on proteoglycan depletion in the double KO mice.

In AbIA cartilage erosion was mild even in severely arthritic mice. Therefore, we could not elucidate the roles of MMP-2 and MMP-9 in cartilage erosion. We have been crossing these MMP KO mice with a strain that supports a more erosive arthritis model, such as collagen-induced arthritis (25).

We have shown the opposite roles of MMP-2 and MMP-9 for the progression of AbIA. If MMPs function in human RA as they do in mouse AbIA, our results point out the difficulty of using MMP inhibitors for the treatment of RA. Although inhibition of MMPs (including MMP-2) is believed to be the primary therapy for RA (20, 26), highly specific MMP-9 inhibitors would be essential for the inhibition of RA. Perhaps MMPs may act as both enhancers and suppressors in the progression of RA as discussed.
above. To determine the dominant function of each MMP is important for anti-RA therapy.

References

