B Cell Progenitors Are Arrested in Maturation but Have Intact VDJ Recombination in the Absence of Ig-α and Ig-β

Roberta Pelanda, Uschi Braun, Elias Hobeika, Michel C. Nussenzweig and Michael Reth

J Immunol 2002; 169:865-872; doi: 10.4049/jimmunol.169.2.865

http://www.jimmunol.org/content/169/2/865

References

This article cites 64 articles, 19 of which you can access for free at: http://www.jimmunol.org/content/169/2/865.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at: http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts
B Cell Progenitors Are Arrested in Maturation but Have Intact VDJ Recombination in the Absence of Ig-α and Ig-β

Roberta Pelanda,¹² Uschi Braun,*, Elias Hobeika,*, Michel C. Nussenzweig,‡ and Michael Reth*

Ig-α and Ig-β mediate surface expression and signaling of diverse B cell receptor complexes on precursor, immature, and mature B cells. Their expression begins before that of the Ig chains in early progenitor B cells. In this study, we describe the generation of Ig-α-deficient mice and their comparative analysis to mice deficient for Ig-β, the membrane-IgM, and recombination-activating gene 2 to determine the requirement of Ig-α and Ig-β in survival and differentiation of pro-B cells. We find that in the absence of Ig-α, B cell development does not progress beyond the progenitor stage, similar to what is observed in humans lacking this molecule. However, neither in Ig-α- nor in Ig-β-deficient mice are pro-B cells impaired in V(D)J recombination, in the expression of intracellular Ig-μ-chains, or in surviving in the bone marrow microenvironment. Finally, Ig-α and Ig-β are not redundant in their putative function, as pro-B cells from Ig-α and Ig-β double-deficient mice are similar to those from single-deficient animals in every aspect analyzed. The Journal of Immunology, 2002, 169: 865–872.

Immunoglobulin-α (CD79a) and Ig-β (CD79b) are transmembrane glycoproteins belonging to the Ig superfamily and encoded by the mb-1 and B29 genes, respectively. Both proteins are restricted to B lymphocytes, although B29 transcripts have also been detected in early thymocytes (1). Both gene transcripts and their proteins have been detected at every B cell developmental stage except that of the plasma cell, which express only Ig-β (2–5). Ig-α and Ig-β form a disulfide-linked heterodimer that associates with membrane-bound Ig (mIg)³ molecules of every Ig class to form the B cell Ag receptor (BCR) complex. The variable region of the H and L (IgH and IgL) chains of the mIg molecules constitute the Ag-binding portion of the BCR, whereas the Ig-α/Ig-β heterodimer is its signaling component (6–8).

The BCR is first expressed on immature B cells where it signals for IgH and IgL allelic and isotypic exclusion. Interaction of the BCR with an Ag at this stage of B cell development results in negative selection and consequent elimination of the receptor and/or the cell. On the surface of mature B cells, the BCR seem to give a ligand-independent signal that is required for the survival of B cells in the periphery (9). Stimulation of the BCR by Ag induces phosphorylation of Ig-α/Ig-β cytoplasmic tyrosine residues, thus increasing their affinity for intracellular signaling proteins. This initiates a signaling cascade that can result in proliferation, differentiation, or death of the mature B cells (10–13).

Progression through early stages of B cell development is also determined by Ig-α/Ig-β-mediated signaling. Before expression of conventional IgL (κ or λ) chains, the Ig-α/Ig-β heterodimer is part of the pre-BCR complex, which also includes the membrane IgM (mIgM) H chain and the surrogate L chain components A5 and VpreB (14). Natural and experimental mutations in the mb-1 and B29 genes of mice and/or humans have demonstrated the importance of Ig-α and Ig-β during B cell development. In the absence of either molecule, no pre-BCR can be expressed on the cell surface, and B cell development is blocked at the progenitor- (pro) B cell stage (15, 16). Mice bearing mutations in or deletions of the cytoplasmic portion of both Ig-α and Ig-β also show complete block at the pro-B cell stage of B cell development (17, 18). However, the same mutations in either Ig-α or Ig-β cause a partial block at the pre-B cell stage and a more severe arrest at the immature B cell stage, demonstrating that Ig-α and Ig-β have redundant signaling functions, at least during pre-BCR signaling (17–19).

Although the role of Ig-α/Ig-β in pre-B and B cell development has been progressively defined, it is still unclear whether these molecules are also required at the pro-B cell developmental stage. Pro-B cells are the most immature cells of the B lineage so far identified. They are characterized by the expression of the pan-B cell marker B220 and the capacity to differentiate into cells of later B cell developmental stages in vitro and in vivo. Cells defined as pro-B have been shown to be heterogeneous in the expression of surface markers like CD19, heat-stable Ag (HSA), BP-1, CD43, and the rearrangement status of the IgH locus (20, 21). Based on these differences, the pro-B cell population has been divided into fractions (A, B, and C) that are developmentally related (20).

To survive and proliferate, pro-B cells must be able to interact with intramarrow stromal cells and to react to soluble and membrane factors that these cells produce (22, 23). Moreover, to differentiate into pre-B cells, pro-B cells must initiate and successfully complete the V(D)J recombination program at the IgH locus (24–26), and to express an IgH chain capable of pairing with the surrogate L chains in a functional pre-BCR (27, 28). Signals driving the gradual commitment of pluripotent hematopoietic stem cells to the B cell lineage, the final generation of pro-B cells, and the initiation of the Ig V(D)J gene recombination are not well defined.

¹ Biologie III, University of Freiburg and Max-Planck-Institute for Immunobiology, Freiburg, Germany; † Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206; ‡ Howard Hughes Medical Institute, Rockefeller University, New York, NY 10021

Received for publication February 15, 2002. Accepted for publication May 9, 2002.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

This study was supported by the Deutsche Forschungsgemeinschaft through Grant SFB-364, the Leibniz Prize (to M.R.), and the National Jewish Medical and Research Center Institutional Grant (to R.P.).

Address correspondence and reprint requests to Dr. Roberta Pelanda, Department of Immunology, National Jewish Medical and Research Center, 1400 Jackson Street, Denver, CO 80206. E-mail address: pelandar@njc.org

Abbreviations used in this paper: mIg, membrane-bound Ig; BCR, B cell Ag receptor; mIgM, membrane IgM; HSA, heat-stable Ag; pro, progenitor.

Copyright © 2002 by The American Association of Immunologists, Inc.
Based on the observation that the surrogate L chains also assemble on the surface of IgH chain-negative pro-B cells, it was proposed that membrane protein complexes analogous to pre-BCR and BCR may regulate some of the survival and differentiation processes in early pro-B cells (29, 30). However, the signaling capacity and function of these latter surrogate L chains containing protein complexes is still unclear. More recently, Ig-α and Ig-β have also been found on the surface of IgH chain-negative pro-B cells in protein complexes that do not contain surrogate L chains, but four other proteins, one of which has been identified as calnexin (30, 31). The Ig-α/Ig-β-containing protein complexes of early pro-B cells appear to have some signaling capacity when engaged with anti-Ig-β Abs, resulting in tyrosine phosphorylation of several substrates, including extracellular signal-regulated kinase (30). The function of these signaling complexes in pro-B cells has not been established so far.

To analyze whether Ig-α and Ig-β are required for pro-B cell development, we generated mice lacking the expression of the Ig-α molecule and compared pro-B cells of these mice to those of Ig-β, mIg-μ- (μMT) and recombination-activating gene (RAG)2-deficient mice (15, 32, 33). We find that the IgH chain gene recombination is not affected in pro-B cells lacking Ig-α, Ig-β, or both molecules. Furthermore, the size and phenotype of the pro-B cell population in these mice is also not affected in vivo.

Materials and Methods

Generation of Ig-α−/− mice

Two genomic libary clones, kindly provided by Dr. N. Sakaguchi (Kumamoto, Japan), and containing the complete mouse mb-1 locus from the BALB/c strain (34), were used for the generation of the targeting vector. The targeting construct consisted of two mb-1 homologous DNA regions framing a heterologous fragment. These mb-1 regions were a 3.8-kb DNA fragment 5′ of exon II, and a 9.6-kb EcoRI fragment starting within intron III. A short heterologous sequence (80 bp) containing a loxP site was cloned into the Nhel restriction site of intron I, within the 3.8-kb mb-1 fragment. A 4.8-kb heterologous DNA fragment containing, in the following order, EGF, mb-1 exons V-II cDNA cassette, and loxP-flanked neo′ was cloned between the two homologous mb-1 regions. The targeting vector was initially constructed to generate at the same time a knockout and a neo r allele by Cre recombinase-dependent conditional allele of mb-1 capable of expressing either EGFP or Ig-α depending on the orientation of the loxP-flanked DNA fragment. However, the EGF and mb-1 DNA cassettes were not to be expressed in either cell lines or in mice, presumably due to the lack of a functional 3′ polyA site (35). Manipulation of BALB/c-derived embryonic stem cells (36) was performed as described (37). The Ig-α mutant mice were bred and maintained in a barrier mouse facility at the Max Planck Institute for Immunobiology (Freiburg, Germany). Mice

RAG2−/− (C57BL/6) (33), Ig-β−/− (C57BL/6) (15), and μMT (C57BL/6) (32) mice were maintained in the specific-pathogen-free facility of the Max Planck Institute. All animal studies were approved by the German Animal Rights Office.

Southern and Northern analyses

A 271-bp PvuII genomic fragment spanning the end of intron I and two-thirds of exon II was used as a probe to discriminate between wild type (12 kb) and targeted allele (7.6 kb) when hybridized to SplI-digested genomic DNA. For Northern blot analysis, total RNA was purified by Trizol (Life Technologies, Rockville, MD) from CD19−-sorted bone marrow cells. The 0.4-kb PvuII cDNA fragment spanning exon II to exon V of mb-1 and an actin 0.7-kb genomic fragment were used as probes.

Flow cytometry

Proteins expressed on the surface or intracellularly of isolated bone marrow and spleen cells were stained as previously described (38). The Abs for B220, CD19, CD8, CD43, CD22, CD1, CD4, CD8, IL-7Rα, and IL-7Rγ were purchased from BD PharMingen (San Diego, CA). FLUOS-conjugated (Boehringer Mannheim, Bergish Gladbach, Germany) anti-IgM Abs (39) were a kind gift of Dr. R. Torres and K. Hafen (Basel Institute for Immunology, Basel, Switzerland). FITC-conjugated polyclonal goat anti-mouse IgM (Southern Biotechnology Associates, Birmingham, AL) and monoclonal anti-IgG (39) and anti-IgM (M41; Ref. 40) were used for the intracellular staining. The streptavidin-RED670 (Life Technologies) and streptavidin-Tri-color (Caltag Laboratories, Burlingame, CA) reagents were used for the detection of biotinylated Abs. Stained cells were analyzed on either FACS or FACS-Calibur (BD Biosciences, Mountain View, CA) flow cytometers.

Semiquantitative PCR

Bone marrow cells were isolated from two mice for each strain. The cells were labeled with anti-CD19-heads (Miltenyi Biotec, Bergish Gladbach, Germany) and the CD19− cells were purified from the total bone marrow population by MACS (Miltenyi Biotec). Purity was between 75 and 93% in the different samples. In the case of wild-type mice, CD43−/CD19− cells were sorted to 89% purity using a MoFlo high speed sorter (Cytometry, Fort Collins, CO). Genomic DNA from the purified cell populations was quantified by GeneQuantI (Pharmacia Biotech, Uppsala, Sweden) or by Biophotometer (Brinkmann Instruments, Westbury, NY) and then equilibrated between samples. Five-fold serial dilutions were prepared from each DNA sample. Primers for the PCR analysis of VD1/16a joints containing Vj558 and Vj7183 elements were as described (21, 41). The 738-bp actin fragment was amplified by one-round PCR of 25 cycles using the GTGTCGAT GTGACTATGGG and GCCCAACATCAGCTTCG oligonucleotides. VjDjVj joins belonging to the Vj558 family were amplified in a window of 15–25 cycles. The Vj7183 containing VjDjVj rearrangements were amplified by nested PCR in two rounds of 25 and 23 cycles, respectively. The PCR products were hybridized to probes amplified by similar PCR and labeled with 32P-dCTP by Megaprime DNA Labeling System (Amersham, Arlington Heights, IL). The amount of radioactivity of each band was quantified by Bio-Imaging Analyzer (FUJIX, Tokyo, Japan).

Results

Generation of Ig-α-deficient mice

The 34-kDa Ig-α protein is encoded by the mb-1 gene on chromosome 7 in the mouse. The mb-1 locus (34) is composed of five coding exons distributed over 5 kb of DNA sequence (Fig. 1a). Exons I, II, and III encode the leader peptide, extracellular, and transmembrane domains, respectively. Exons IV and V encode the intracellular domain (cytoplasmic tail), which contains the immunoreceptor tyrosine-based activation motif (42). Mice harboring a null mb-1 allele were generated by genetic manipulation of BALB/c-derived embryonic stem cells following standard procedures (37). Specifically, the targeted mb-1 allele (Fig. 1a) carries the endogenous promoter, but is devoid of exons II and III. Transcription and splicing of the remaining exons would result in a frame shift that introduces a stop codon 15 bp after exon I and that directs the synthesis of just the Ig-α leader peptide. Therefore, it was predicted that the targeted mb-1 allele would be unable to produce a functional Ig-α protein.

Germline transmission of the mb-1 mutation in mice was detected by PCR (data not shown) and confirmed by Southern blot analysis of tail genomic DNA (Fig. 1b). The mb-1-targeted mice were generated and maintained on a BALB/c genetic background and intercrossed to generate homozygous mutants (Ig-α−/−). Northern analysis demonstrates that CD19− B cells from Ig-α−/− mice do not express mb-1 transcripts (Fig. 1c), possibly due to either RNA instability caused by the neo′ cassette or to nonsense-mediated RNA decay resulting from a premature stop codon (43). Therefore, we conclude that our targeting strategy was successful in preventing the expression of any Ig-α protein.

Ig-α expression is absolutely required for B cell maturation

The generation of B cell was examined in Ig-α−/− mice in comparison to that of wild-type mice. To distinguish the different B
cell developmental stages, bone marrow cells were analyzed by flow cytometry for the expression of B220, CD19, IgM, and CD2. IgM-expressing immature and mature B cells were absent in the bone marrow of Ig-/-H9251/H11002/H11002/H11002 mice (Fig. 2a). However, expression of the pan-B cell markers B220 and CD19 was observed, on average, in 14 and 8.5% of the total cells, respectively (Table I). While B220 is also expressed by cell progenitors of other lineages, CD19 expression is restricted to B cells and therefore indicates the presence of cells committed to the B cell lineage (44, 45). The CD19 cells of Ig-/-H9251/H11002/H11002/H11002 bone marrows are phenotypically progenitor B cells as they express the CD43 Ag while they lack the expression of CD2 and CD25 (Fig. 2b, Table I, and data not shown) (20, 21).

FIGURE 2. Ig-α-deficient B cells do not express surface Ig molecules and are blocked in development. Bone marrow and spleen cells of wild-type and Ig-α/- mice were analyzed by flow cytometry for the expression of surface markers. Cells falling in the lymphocyte gate are shown. a, Analysis of B220 and IgM expression on cells in the bone marrow. b, Analysis of CD19 and CD2 expression on cells in the bone marrow. c, Analysis of CD22, CD4, and CD8 expression on lymphocytes in the spleen. Numbers refer to the frequency of cells expressing the B cell marker CD22 or the T cell marker CD4 and CD8.
In addition, >80% of these cells express HSA and ~30% express BP-1 (data not shown); and therefore, belong to fractions B (HSA+/BP-1-) and C (HSA-/BP-1+) using Hardy’s nomenclature (20). A population of B220high cells is observed in the marrow of Ig-α−/− mice (Fig. 2a). This population, which is also found in other pro-B cell-blocked mutant animals such as RAG2−/−, μMT, and Ig-β−/− (data not shown), does not express CD19 or intracellular Ig-μ chains (data not shown), and is likely composed of non-B lineage cells.

Analysis of the spleen confirmed that Ig-α−/− pro-B cells are unable to develop into mature B cells. Mature splenic B cells, which express the CD22 and CD19 Ags, were not observed (Fig. 2b). This population, which is also found in other pro-B cell-blocked mutant animals such as RAG2−/−, μMT, and Ig-β−/− (data not shown), does not express CD19 or intracellular Ig-μ chains (data not shown), and is likely composed of non-B lineage cells.

Table 1. Frequency of bone marrow B cells in wild-type and mutant mice

<table>
<thead>
<tr>
<th></th>
<th>Total Cells</th>
<th>CD19+ (% of total)</th>
<th>μM+ of B220+ Cells</th>
<th>κ+ of B220+ Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild-type BALB/c</td>
<td>2.4 ± 0.8</td>
<td>6.6 ± 2.3</td>
<td>5.9 ± 1.8</td>
<td>61.5 ± 17.5</td>
</tr>
<tr>
<td></td>
<td>n = 8</td>
<td>(35.8 ± 6.1)</td>
<td>(32.0 ± 4.0)</td>
<td>(n = 5)</td>
</tr>
<tr>
<td>Ig-α−/− BALB/c</td>
<td>1.9 ± 0.5</td>
<td>2.8 ± 1.8</td>
<td>1.7 ± 1.1</td>
<td>11.9 ± 1.5</td>
</tr>
<tr>
<td></td>
<td>n = 10</td>
<td>(14.1 ± 5.9)</td>
<td>(8.5 ± 4.2)</td>
<td>(n = 5)</td>
</tr>
<tr>
<td>Ig-β−/− C57BL/6</td>
<td>2.5 ± 0.4</td>
<td>4.0 ± 1.1</td>
<td>1.9 ± 0.4</td>
<td>9.3 ± 4.1</td>
</tr>
<tr>
<td></td>
<td>n = 10</td>
<td>(16.4 ± 4.3)</td>
<td>(8.1 ± 1.3)</td>
<td>(n = 4)</td>
</tr>
<tr>
<td>μMT C57BL/6</td>
<td>2.7 ± 0.7</td>
<td>3.1 ± 0.5</td>
<td>1.7 ± 0.8</td>
<td>8.2 ± 5.2</td>
</tr>
<tr>
<td></td>
<td>n = 4</td>
<td>(13.0 ± 2.6)</td>
<td>(7.5 ± 3.0)</td>
<td>(n = 3)</td>
</tr>
<tr>
<td>RAG2−/− C57BL/6</td>
<td>2.4 ± 0.7</td>
<td>4.7 ± 2.0</td>
<td>2.9 ± 0.8</td>
<td>2.24 ± 1.27</td>
</tr>
<tr>
<td></td>
<td>n = 7</td>
<td>(20.7 ± 6.2)</td>
<td>(12.1 ± 3.4)</td>
<td>(n = 3)</td>
</tr>
<tr>
<td>Ig-α−/−; Ig-β−/−</td>
<td>2.4 ± 0.5</td>
<td>2.1 ± 0.4</td>
<td>1.0 ± 0.3</td>
<td>11.8 ± 2.0</td>
</tr>
<tr>
<td>BALB/c × C57BL/6</td>
<td>n = 8</td>
<td>(9.9 ± 1.4)</td>
<td>(4.5 ± 1.4)</td>
<td>(n = 8)</td>
</tr>
</tbody>
</table>

Thus, the results of the flow cytometric analyses fully support those from the Northern analysis and demonstrate that the targeted mb-1 allele is not capable to direct the expression of a functional Ig-α protein. Commitment of hematopoietic stem cells to the B cell lineage does occur in the absence of Ig-α, but this molecule is absolutely required for further development to the pre-B, immature, and mature B cell stages. A similar phenotype has been observed in humans bearing a mutation that prevents Ig-α expression (16). Thus, Ig-α is similarly required for both human and mouse B cell development.

Ig gene rearrangement and expression is not altered in the absence of either Ig-α or Ig-β

VHDJH-rearranged IgH chain genes are first found in pro-B cells of fractions B (50). However, the signal, if any, that induces the initiation of the VHDJH recombination process in these cells has not yet been identified. It has been speculated that Ig-α/Ig-β-containing protein complexes on pro-B cells might signal for VHμDJH recombination and/or for the survival of cells that have undergone this process (51, 52).

To analyze whether Ig-α and Ig-β affect development and/or the survival of pro-B cells that carry VHμDJH rearrangements, we analyzed the frequency of rearranged IgH genes in cells derived from the bone marrow of Ig-α- and Ig-β-deficient mice, in comparison to those derived from other mutant strains. RAG2−/− mice were used as a negative control, because they cannot undergo V(D)J recombination (33). The μMT mice, which carry a disruption of one of the membrane exons of the μ-chain gene, were used as a positive control. The B cell progenitors of these mice rearrange normally the IgH locus, but cannot express a μ-chain on the cell surface and are consequently blocked in development due to the inability to express a pre-BCR (32, 53). Nevertheless, the frequency of VHμDJH rearrangements found in μMT pro-B cells is equivalent, if not higher, of that found in wild-type pro-B cells (50). The CD19−CD43+ bone marrow fraction from wild-type mice, which comprises the pro-B cell population, was also used as a positive control in one analysis. However, ~30% of this population is composed of large, cycling pre-B cells that have developed based upon productive IgH chain gene rearrangements; and therefore, is expected to contain a higher frequency of VHμDJH products (50).

The frequency of VHμDJH joints using either VHμ elements of the JH-distal I558 or the JH-proximal 7183 VHμ families was assessed by semiquantitative PCR on genomic DNA isolated from purified CD19+/CD43+ bone marrow cells (Fig. 3). In this analysis, four products of different size are dominantly amplified and these represent VHμDJH joints using one of four different JH gene segments (21, 41). To normalize for the amount of template DNA in each sample, we used primers designed to specifically amplify a portion of the actin gene (Fig. 3, b and c). By comparing the degree of amplification of the V(D)J fragments between samples normalized for actin levels, we found that the frequency of VHμDJH joints in Ig-α- and Ig-β-deficient pro-B cells was similar to that found in μMT and wild-type pro-B cells. Thus, these data demonstrate that neither Ig-α nor Ig-β is required for V(D)J recombination at the IgH locus.

The expression of productively rearranged IgH alleles was examined by flow cytometric analysis. Bone marrow cells were stained intracellularly with anti-mouse μ H chain Abs to detect the...
production of μ H chains. This analysis is also likely to detect Dμ-chains that are the products of DJH rearrangements in the D reading frame 2 (54, 55). We found that an average of 15.2% (11.7% if we subtract the background staining obtained in RAG2-deficient cells) of the B220+ cells in Ig-α-deficient mice express μ or Dμ-chains intracellularly (Fig. 4 and Table I). In line with the PCR results, the flow cytometric analysis shows that the frequencies of μ-expressing pro-B cells in Ig-α- and Ig-β-deficient mice are similar to those found in μMT and wild-type mice (Fig. 4 and Table I). In this analysis, we also observed that many of the mutant pro-B cells express lower levels of μ compared with wild type (notice the shoulder in the histogram of mutants vs the discrete population in that of the wild type in Fig. 4), probably reflecting the lower stability of μ-chains in the absence of one of the interacting protein partners (Ig-α, Ig-β, or both for soluble μ) in the mutant animals. In contrast to pro-B cells, the frequency of μ+ cells in the wild-type pre-B cell population is 5-fold higher than that of the pro-B cell populations (Fig. 4). This difference is due to the fact that only μ-expressing cells can differentiate into pre-B cells and only when the μ-chains form a functional pre-BCR with Ig-α and Ig-β. A small number of the pro-B cells (1–3%) from the different mutant mice (except RAG2) express κ L chains (Table I).

In the bone marrow, early B cell progenitors can be divided into two fractions based on surface expression of the B220 and CD19 markers (44, 45, 56). It was shown that the development of pro-B cells progresses from the B220+CD19+ to the B220−CD19− stage (56). The absolute number of cells belonging to these two populations was determined in the mutant mice to establish whether Ig-α and Ig-β might be necessary for this developmental step. Bone marrow B220+CD19+ and B220−CD19− cell populations of Ig-α- and Ig-β-deficient mice were found in similar numbers to those of μMT and RAG-deficient mice (Table I and data not shown). In addition, similar frequencies of cells appeared to be in cycle, as judged by flow cytometric analysis of DNA stained by propidium iodide (data not shown). Finally, similar frequencies were also found to express IL-7R (α and γ) on the cell surface (data not shown), a molecule necessary for pro-B cell survival and proliferation in the bone marrow stroma microenvironment.

Thus, Ig-α and Ig-β have no apparent influence on either the onset of VH to DJH recombination, or on the survival and proliferation of cells that carry VHDJH rearrangements. Nevertheless, these molecules are essential for the development and, most likely, the expansion of pre-B cells that carry productively rearranged IgH genes.

Ig-α and Ig-β have no redundant function in pro-B cell differentiation

Studies in cell lines have shown that Ig-β molecules can also be expressed on the cell surface in the absence of Ig-α, suggesting that Ig-α and Ig-β may function independently of each other in

FIGURE 3. Ig V(D)J recombination is not impaired in the absence of either Ig-α or Ig-β. VH DJH rearrangements in pro-B cells of the indicated mutant and wild-type mice were analyzed by semiquantitative PCR. Genomic DNA was extracted from either CD19−/− mutant or CD19−/− CD43−/− wild-type bone marrow pro-B cells. a, Example of CD19−/− cell purification for the indicated cells. Cells were purified from bone marrow by magnetic sorting (as described in Materials and Methods) and restained for either CD19 or B220 (B220 is expressed on all CD19−/− cells) to assess purity. Numbers over histograms indicate percentage of positive cells in the total population. Wild-type CD19−/− CD43−/− pro-B cells were purified by the MoFlo cell sorter to 89% purity (data not shown). Five-fold serial dilutions of genomic DNA from CD19−/− CD43−/− bone marrow cells was subjected to PCR amplification specific for V(D)J rearrangements of the J558 (b) and 7183 (c) VH families. For relative quantification, amplification of a genomic fragment of the actin gene was performed in parallel with the same DNA. Arrows indicate the expected bands for VH DJH rearrangements and the actin gene.

FIGURE 4. Intracellular expression of μ H chains is not altered in the absence of either Ig-α or Ig-β molecules. Bone marrow cells from RAG2−/−, Ig-α−/−, Ig-β−/−, and μMT mutant mice were stained for surface B220 (data not shown) and intracellular and surface μ H chains, and analyzed by flow cytometry. The histograms represent cells gated for B220 expression. Numbers in the histograms refer to the frequency of μ+ cells in the B220+ population. Bone marrow cells from wild-type mice were stained for surface B220, IgM, and CD25 and for intracellular μ H chain. The intracellular staining of μ H chains in the B220+IgM+CD25+ (pro-B) and B220IgM−CD25+ (pre-B) cell populations is shown. The numbers refer to the frequency of μ+ cells in these two populations.
pro-B cells (31). To exclude the possibility that Igα- and Igβ- have a redundant signaling function in the initiation and/or completion of the V(D)J recombination process, Igα- and Igβ-double-deficient mice (Igα^{−/−};Igβ^{−/−}) were generated. In these latter animals, we analyzed the frequency of V_HDJ_H rearrangements and intracellular Igμ expression in cells belonging to the pro-B cell population.

We found that pro-B cells from Igα^{−/−};Igβ^{−/−} mice have a similar frequency of V_HDJ_H rearrangements to those isolated from Igα-only-deficient mice (Fig. 5a). Moreover, the frequency of pro-B cells that carry productive V_HDJ_H rearrangements and express μ-chains in the cytoplasm is also similar between mice that lack either Igα or Igβ or both of these molecules (Fig. 5b and Table I). Bone marrow cells of Igα^{−/−};Igβ^{−/−} mice were stained for B220 and CD19 to determine the frequency and absolute number of pro-B cells. We found that in the absence of both Igα- and Igβ-molecules, the absolute number of B220⁺CD19[−] and B220[−]CD19⁺ bone marrow cells is not significantly different from that observed in single-deficient animals (data not shown and Table I). However, these results would need to be confirmed with mutant animals on the same genetic backgrounds.

In summary, we can conclude that the V_HDJ_H recombination process at the IgH locus and the survival of pro-B cells that carry these rearrangements do not depend on the expression of Igα- and Igβ-molecules.

FIGURE 5. V(D)J recombination and intracellular μ-chain expression are not impaired in pro-B cells double-deficient for both Igα- and Igβ-a. V_HDJ_H rearrangements in sorted pro-B cells of Igα- and Igβ-double-deficient mice (Igα^{−/−};Igβ^{−/−}) were compared with those from Igα^{−/−}- and RAG2^{−/−} animals by semiquantitative PCR. Five-fold serial dilutions of genomic DNA from CD19⁺ bone marrow cells was subjected to PCR amplification specific for V(D)J rearrangements of the J558 V_H family. Amplification of an actin-specific genomic fragment was performed in parallel for relative quantification. Arrows indicate bands of the sizes expected for the different V_HDI_H rearrangements and for the actin fragment. b, Cells isolated from the bone marrow of two different Igα^{−/−};Igβ^{−/−} double-mutant mice. Flow cytometry analysis of intracellular μ chain expression in B220⁺ gated cells. Numbers in the histograms refer to the frequency of μ⁺ cells in the B220⁺ population.

Discussion

Extensive studies in cell lines have demonstrated that the Igα-Igβ heterodimer plays a role in the transport of the mIg molecules onto the cell surface and mediates pre-BCR and BCR signaling (13). Several in vivo studies have shown that expression and signaling of the pre-BCR and BCR are prerequisite to complete the development of B lymphocytes (15, 16, 18, 19, 32, 33, 57–60). We find that Igα-deficient mice have a block in B cell development that is similar to mice lacking Igβ or μ_{HI} expression. In the absence of Igα, B cell development is arrested at the pro-B cell stage, as these cells are unable to express a pre-BCR.

The complete absence of pre-B, immature B, and mature B cells in Igα-deficient mice demonstrates that, in vivo, Igβ alone is not able to promote B cell development. In mice expressing chimeric IgM/Ig-β fusion proteins and in mice lacking two-thirds of the cytoplasmic tail of Igα including the immunoreceptor tyrosine-based activation motif, Igβ-reaches the cell surface and the signals transduced by the Igβ-molecule alone in this context are sufficient for the transition of pro-B to pre-B and the generation of immature B cells (19, 61, 62). Therefore, our data suggest that the absence of any further differentiation in Igα-deficient pro-B cells could be strictly related to the inability of the Igβ-molecules to be stably expressed on the cell surface in absence of Igα. This hypothesis would need to be tested biochemically, as the level of Igβ on the surface of pro-B cells is too low to be detected by flow cytometric analysis (Ref. 51 and data not shown). A human patient carrying a mutation that prevents Igα-expression was shown to lack pre-B, immature, and mature B cells as well (16). Thus, development of B cells is absolutely dependent on Igα-expression in both mice and humans.

Igα- and Igβ-deficient mice allow us to investigate the requirement of these proteins at early stages of B cell development. A surface protein complex (pro-BCR) has been speculated to exist and to signal in pro-B cells the initiation and completion of V_HDI_H recombination (29, 30, 51, 52). This putative pro-BCR, in analogy to the pre-BCR, would also be envisioned to use Igα- and Igβ as signal transducers. Both proteins are indeed expressed on the surface of murine pro-B cells in signaling competent protein complexes that do not contain Ig chains (31, 51).

In this study, we have assessed the function of Igα- and Igβ in V_HDI_H recombination by comparing the frequency of V_HDI_H joints using elements of the V_HJ558 and V_H7183 families. In addition, pro-B cells of the mutant animals were tested for μ-chain production. These analyses indicate that V_HDI_H recombination is independent of Igα- or Igβ-expression. Indeed, a similar frequency of V_HDI_H joints and of intracellular μ-chain-expressing cells was observed in Igα-deficient, Igβ-deficient, μMT, and wild-type pro-B cell populations. These data agree with those obtained from pro-B cells of a human Igα-deficient patient that also showed to have normal frequency of V(D)J recombination at the IgH locus (16). A previous analysis indicated that Igβ^{−/−}-pro-B cells had decreased levels of V(D)J joints compared with wild-type pro-B cells and a block at the null pre-B or pre-B1 stage of development (15). These earlier results had been interpreted to suggest that Igβ-derived signals might be involved in the onset of V_HDI_H recombination or selection of successfully recombined IgH genes (15, 51, 52, 63). This early analysis was performed on the B220[−]CD43[−] population that contains a large amount of V(D)J-selected pre-B cells in wild-type mice and, in proportion, a large amount of B220[−]CD19[−] non-pro-B cell progenitors in the Igβ^{−/−} mice, while the current analysis has been conducted on the CD19⁺CD43⁺ cell population and compared with μMT as well as wild type. The difference in cell sorting procedures used in this
work might explain why our results appear contradictory to those previously published. However, in a follow-up analysis, the frequency of intracellular μ-chain-positive pro-B cells of Ig-β−/− mice was found comparable to that of wild type, when pre-B cell contaminants were excluded from the pro-B cell population analyzed by sorting B220+CD43−CD25− cells (17). Thus, in summary these data demonstrate that Ig-β and Ig-α are not necessary for the initiation and completion of V(D)J recombination at the IgH locus, but they are for the selection and expansion of cells that express the product of a productively rearranged VμDμJμ gene. Positive selection and expansion of cells that carry productively rearranged IgH loci, an event that marks the pro-B to pre-B transition, is only observed in mice that express all the components of the pre-BCR complex. In lymphoid hematopoietic stem cells committed to the B cell lineage, the transcription of the Ragl, Rag2, TdT, αL, VpreB, B29, and mb-1 genes is up-regulated before rearrangement and expression of the Ig genes (64). Thus, expression of the proteins encoded by these genes, together with the accessibility of the germline IgH locus identified by its early transcription, may be sufficient for the initiation of D to JH and subsequently, VH to DJH recombination, without the need of a specific signaling event.

We have also examined whether the Ig-α/Ig-β heterodimer influences the capacity of pro-B cells to proliferate, survive, and differentiate within the bone marrow environment and to express a functional IL-7R, which is necessary for these functions (65, 66). During the early stages of B cell development, B220+ pro-B cells differentiate from CD19+ (fraction A) to CD19− (fraction B). This differentiation is accompanied by an increased expression of the transcription factors E12, E47, and Pax5, and the up-regulation of Ragl, Rag2, αL, mb-1, and B29 gene transcription (45, 56). This differentiation also marks the final commitment of oligopotent stem cells to the B lineage (67). We have found that the absolute number of fraction A and fraction B bone marrow pro-B cells does not significantly differ in mice deficient for either Ig-α or Ig-β relative to that of μMT and RAG2-deficient animals. In addition, we found that lack of Ig-α or Ig-β expression does not influence entry into the cell cycle or expression of IL-7Rα and IL-7Rγ (data not shown). Thus, these data indicate that progressive differentiation of pro-B cells and their survival in the bone marrow environment do not require expression of Ig-α or Ig-β.

Finally, we have evaluated the possibility that Ig-α and Ig-β might be redundant in their signaling role in the context of pro-B cell development and differentiation, given that Ig-β has been found on the surface of these cells, even in the absence of Ig-α. We have found that pro-B cells lacking in the expression of both molecules (Ig-α and Ig-β) are still able to undergo VμDμJμ recombination and produce intracellular μ-chain at frequencies similar to those observed for single-deficient pro-B cells. Moreover, double-deficient pro-B cells are also capable to differentiate into fraction B, judging by the coexpression of the CD19 and B220 surface markers.

In conclusion, our data demonstrate that commitment to the B cell lineage and survival of pro-B cells in the bone marrow microenvironment, as well initiation and completion of V(D)J recombination at the IgH locus, do not require expression of Ig-α, Ig-β, or both molecules.

Acknowledgments

We thank Dr. N. Sakaguchi for the gift of plasmids, Dr. R. Torres and K. Hafen for the gift of Abs, and Regina Halverson for the superb technical assistance. We are extremely grateful to Dr. R. Torres, P. Nielsen, V. Rolli, H. Junmaa, and L. Leclercq for critical reading of the manuscript.

References

58. Teh, Y. M., and M. S. Neuberger. 1997. The immunoglobulin (Ig)α and Igβ cytoplasmic domains are independently sufficient to signal B cell maturation and activation in transgenic mice. J. Exp. Med. 185:1753.

