Characterization of Nitric Oxide Consumption Pathways by Normal, Chronic Granulomatous Disease and Myeloperoxidase-Deficient Human Neutrophils

Stephen R. Clark, Marcus J. Coffey, Rhona M. Maclean, Peter W. Collins, Malcolm J. Lewis, Andrew R. Cross and Valerie B. O'Donnell

J Immunol 2002; 169:5889-5896; doi: 10.4049/jimmunol.169.10.5889

http://www.jimmunol.org/content/169/10/5889

References

This article cites 64 articles, 41 of which you can access for free at: http://www.jimmunol.org/content/169/10/5889.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at: http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts

The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852

Copyright © 2002 by The American Association of Immunologists All rights reserved.

Print ISSN: 0022-1767 Online ISSN: 1550-6606.
Characterization of Nitric Oxide Consumption Pathways by Normal, Chronic Granulomatous Disease and Myeloperoxidase-Deficient Human Neutrophils

Stephen R. Clark,* Marcus J. Coffey,* Rhona M. Maclean,‡ Peter W. Collins,‡ Malcolm J. Lewis,‡ Andrew R. Cross,§ and Valerie B. O’Donnell**

The detailed mechanisms by which acutely activated leukocytes metabolize NO and regulate its bioactivity are unknown. Therefore, healthy, chronic granulomatous disease (CGD) or myeloperoxidase (MPO)-deficient human neutrophils were examined for their ability to consume NO and attenuate its signaling. fMLP or PMA activation of healthy neutrophils caused NO consumption that was fully blocked by NADPH oxidase inhibition, and was absent in CGD neutrophils. Studies using MPO-deficient neutrophils, enzyme inhibitors, and reconstituted NADPH oxidase ruled out additional potential NO-consuming pathways, including Fenton chemistry, PGH synthase, lipoxygenase, or MPO. In particular, the inability of MPO to consume NO resulted from lack of H$_2$O$_2$ substrate since all superoxide (O$_2^-$) reacted to form peroxynitrite. For healthy or MPO-deficient cells, NO consumption rates were 2- to 4-fold greater than O$_2^-$ generation, significantly faster than expected from 1:1 termination of NO with O$_2^-$; Finally, fMLP or PMA-stimulated NO consumption fully blocked NO-dependent neutrophil cGMP synthesis. These data reveal NADPH oxidase as the central regulator of NO signaling in human leukocytes. In addition, they demonstrate an important functional difference between CGD and either normal or MPO-deficient human neutrophils, namely their inability to metabolize NO which will alter their ability to adhere and migrate in vivo. The Journal of Immunology, 2002, 169: 5889–5896.

Nitrergic oxide regulates leukocyte recruitment and attachment through suppression of adhesion molecule activity, e.g., CD11/CD18 in neutrophils (1–4). Therefore, strict control of NO is essential for regulating leukocyte trafficking in vivo. Neutrophils are the most abundant leukocyte and can consume NO in a partially superoxide dismutase (SOD)3-inhibitable manner (5). This indicates some involvement of NADPH oxidase, although the detailed mechanisms by which leukocytes control NO responses, particularly in response to physiological agonists, have not been characterized. NADPH oxidase-knockout mice show decreased parasite- or hypercholesterolemia-induced leukocyte adhesion and migration, suggesting that leukocyte superoxide (O$_2^-$) controls NO responses through causing its removal in vivo (6, 7). Finally, neutrophils contain several additional oxidases that can catalytically consume NO in vitro, including lipoxygenases (LOX), myeloperoxidase (MPO), and PGH synthase (PGHS), and the ability of these to modulate NO signaling within the cells has not been examined (8–14).

Herein, the mechanisms and consequences of NO consumption by isolated neutrophils from healthy, chronic granulomatous disease (CGD) or MPO-deficient humans activated with the bacterial peptide fMLP or the protein kinase C activator PMA were studied. The results reveal a critical role for NADPH oxidase with CGD neutrophils being unable to consume NO following stimulation. Rates of NO consumption by normal or MPO-deficient cells were severalfold faster than expected based on the 1:1 reaction between NO and O$_2^-$; however, there was no role for MPO due to insufficient formation of H$_2$O$_2$ substrate. Finally, NADPH oxidase-dependent NO removal effectively prevented activation of soluble guanylate cyclase (sGC). These data indicate that human neutrophil NADPH oxidase is a critical regulator of NO signaling in neutrophils, and reveal an important functional difference between CGD and either normal or MPO-deficient leukocytes that will alter their ability to overcome the inhibitory effects of NO on adhesion and migration in vivo.

Materials and Methods

Neutrophil isolation

Whole blood was obtained from healthy volunteers free from nonsteroidal anti-inflammatory drugs for over 14 days. MPO-deficient patients were identified by routine screening at University Hospital Wales (Cardiff, U.K.). Whole blood from CGD patient was a kind gift from L. Moreton (Great Ormond Street Hospital, London, U.K.). Ethical permission for all donations was obtained from the Bro Taf Local Research Ethics Committee. Human neutrophils were isolated as described previously, by dextran sedimentation and Ficoll centrifugation and resuspended in a small volume of PBS, counted, and kept on ice (15).

Neutrophil fractionation

For the preparation of subcellular fractions, neutrophils were obtained from normal subjects and CGD patients by leukapheresis (16) and purified as above with the omission of dextran sedimentation. Neutrophils were

*Departments of *Medical Biochemistry and Immunology, ‡Pharmacology, Therapeutics and Toxicology, †Hematology, University of Wales College of Medicine, Cardiff, United Kingdom; and §Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037.

Received for publication July 15, 2002. Accepted for publication September 20, 2002.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 This work was supported by grants from the Wellcome Trust (to V.B.O.), British Heart Foundation (to V.B.O., M.I.L., and S.R.C.), and National Institutes of Health (RO1 AI124838; to A.R.C.).

2 Address correspondence and reprint requests to Dr. Valerie B. O’Donnell, Department of Medical Biochemistry and Immunology, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XN, U.K. E-mail address: o-donnellvb@cardiff.ac.uk

3 Abbreviations used in this paper: SOD, superoxide dismutase; O$_2^-$, superoxide; PGHS, PGH synthase; MPO, myeloperoxidase; CGD, chronic granulomatous disease; ONOO$^-$, peroxynitrite; cell eq, cell equivalent; DPI, diphenyleneiodonium; cyt. c, cytochrome c; LOX, lipoxygenase; IBMX, 3-isobutyl-1-methyl-xanthine; DeaNONOate, 2-(N,N-diethy lamino)-diazene l-2-oxide; ATZ, amm ionszole; sGC, soluble guanylate cyclase.
treated with 2.5 mM disopropyl fluorophosphate for 10 min at 4°C, disrupted in relaxation buffer (100 mM KCl, 3 mM NaCl, 3.5 mM MgCl₂, 1 mM ATP, 1.25 mM EGTA, 10 mM PIPES, pH 7.3) by N₂ cavitation, and fractionated on discontinuous Percoll gradients (17, 18). This produced cytosol and plasma membrane fractions whose final concentrations were adjusted to 9 × 10⁷ and 1.25 × 10⁸ cell equivalents (cell eq ml⁻¹), respectively. Fractions were stored at −80°C for up to 1 year without loss of activity.

Purification, rep Hilisation, and re flavinisation of flavocytochrome b₅₅₈

Flavocytochrome b₅₅₈ was purified from human neutrophils, using the methods described previously (19, 20). The final product contained 18–22 nmol heme mg⁻¹ protein, based on a molar absorption coefficient of 21.6 mM⁻¹ cm⁻¹ (cytochrome heme) for the dithionite-reduced minus air-oxidized absorbance band at 559 nm (21). Typical activities are 120–150 mol O₂⁻ s⁻¹ mol heme.

Purification and assay of MPO

MPO (specific activity = 0.49 ± 0.03 mol guaiacol min⁻¹ mol⁻¹) was purified from neutrophil azurophil granule preparations made as a byproduct during neutrophil fractionation described above, as described (22). MPO activity was assayed by the H₂O₂-stimulated rate of guaiacol oxidation at 37°C using eₚₐₗ₉₀ = 26.6 mM cm⁻³ (23, 24).

NO consumption

Anaerobic solutions of NO were prepared as described previously and measured electrochemically using an NO sensor (Harvard AmiNO700 or World Precision Instruments 2-mm probe with inN0 meter; Sarasota, FL) (9). Where NO loss was not linear, rates are given as first order rate constants (Kₗₒ₋ₛ). All Kₗₒ₋ₛ, the square of the Pearson product moment correlation coefficient (r) of the slope of the replotted data was <0.9, confirming that the reaction was first order. Where NO consumption was linear, NO disappearance was determined and the background rate of NO loss subtracted. For measurement of neutrophil NO consumption, NO (1.9–3.8 μM) was added to 0.5 ml PBS, 2.5 mM CaCl₂, and 1.2 mM MgCl₂ with neutrophils at 37°C with stirring. Once the electrode response had stabilized, 1 μM NO (1.1 PM) or 1 μM MLPLP was added. NO consumption by isolated neutrophil membranes was measured following addition of 160 μM NADPH to 0.5 ml relaxation buffer containing 5.4 × 10⁻⁵ mol eq of membrane extract ml⁻¹, 1.5 × 10⁻⁵ cell eq of cytosol ml⁻¹, 10 μM GTP-γ-S, and 100 μM SDS, in the chamber of the NO electrode at 37°C with stirring. To allow assembly of NADPH oxidase components, all constituents (except NADPH) were preincubated at 25°C for 2 min, followed by 37°C for 3 min before addition of 3.8 μM NO and/or NADPH.

RIA of cGMP

Neutrophils (4 × 10⁶ cells ml⁻¹) in 500 μl PBS, 2.5 mM CaCl₂, and 1.2 mM MgCl₂ were placed in the chamber of the NO electrode with stirring at 37°C. NO (1.9 μM) was added, then 1 μM MLPLP with/without 3 μM oxyHb. In other experiments, 1 μg ml⁻¹ PMA was added, with the phosphodiesterase inhibitor, 5-isobutyl-1-methyl-xanthine (IBMX; 1 μM). Samples were incubated for 5 min then aliquots removed for cGMP analysis using a commercial RIA (Amersham Pharmacia Biotech, Bucks, U.K.).

O₂⁻ generation assay

Neutrophil O₂⁻ generation was assayed by the SOD-inhibitable reduction of cytochrome c (cyt. c) measured at 37°C with stirring using e₅₅₀ = 21.1 mM⁻¹ cm⁻¹. 25 μl MLPLP (1 μM) was added to 0.25 × 10⁻⁵ ml⁻¹ neutrophils (10⁶ ml⁻¹ for CGD neutrophils) in 2 ml PBS with 2.5 mM CaCl₂, 1.2 mM MgCl₂, and 50 μM cyt. c with/without SOD (300 U ml⁻¹; Oxus, Portland, OR). O₂⁻ generation by isolated membranes was measured on addition of 160 μM NADPH to 0.75 ml relaxation buffer containing 5.4 × 10⁻⁵ cell eq of membrane extract ml⁻¹, 1.5 × 10⁻⁵ cell eq of cytosol ml⁻¹, 10 μM GTP-γ-S, 100 μM SDS, 50 μM cyt. c. To allow assembly of NADPH oxidase components, all constituents (except NADPH) were preincubated at 25°C for 2 min, followed by 37°C for 3 min before addition of NO and/or NADPH.

O₂ consumption assay

Human neutrophil O₂ consumption was measured electrochemically using a Clark-type O₂ electrode (Rank Brothers, Cambridge, U.K.). Calibrations were performed by addition of H₂O₂ to PBS with 34 U ml⁻¹ catalase. A total of 1 μM MLPLP was added to 0.5 ml PBS with neutrophils (2 × 10⁶ cells ml⁻¹), 2.5 mM CaCl₂, 1.2 mM MgCl₂, 300 μU ml⁻¹ CuZn-SOD, and 34 U ml⁻¹ catalase at 37°C with stirring. Excess SOD and catalase were routinely included during neutrophil O₂ uptake measurements to ensure full reduction of O₂⁻ to H₂O₂, according to the following equation:

\[4O₂⁻ + 4H⁺ \rightarrow 2H₂O + 3O₂\]

Measured rates of O₂⁻ consumption were multiplied by four to give true O₂⁻ generation rates.

NADPH oxidation assay

NADPH oxidation was determined at 340 nm, following addition of 160 μM NADPH to 0.75 ml relaxation buffer with 1.5 × 10⁷ cell eq of cytosol ml⁻¹, 10 μM GTP-γ-S, 100 μM SDS, and 2.7 × 10⁶ cell eq ml⁻¹ neutrophil membranes from a normal subject, a patient with partially functional flavocytochrome b₅₅₈ designated X917⁻ (26), or purified flavocytochrome b₅₅₈ at 25°C. To allow assembly of NADPH oxidase components, all constituents (except NADPH) were preincubated at 25°C for 5 min, before NADPH addition. Absorbance was measured before and after addition of 345 μM 2-(N,N-diethylamino)-diazenolate-2-oxide (DeaNONOate) which releases 30 μM NO min⁻¹ (27).

Assays of neutrophil MPO

Western blotting was performed as described (28–30). Briefly, samples (10⁶ cell eq) were probed with rabbit polyclonal anti-human MPO Ab (Calbiochem, San Diego, CA) (1:1000) and visualized using ECL (Amersham Pharmacia Biotech). MPO activity was assayed as described for purified MPO in the absence or presence of 2 mM aminotriazole (ATZ) or 1 mM azide to enable MPO vs eosinophil peroxidase to be determined (24).

Kinetic simulations

To understand the chemical behavior of reactive intermediates generated by activated neutrophils, simulations were performed using the Euler method, with software written by F. Neese (Universität Konstanz, Germany). This algorithm uses numerical methods to solve the simultaneous differential equations generated from the reactions.

Results

Characterization of NO loss in the electrode system

NO (2–4 μM) decay in aerobic buffer at 37°C followed first order kinetics, with Kₗₒ₋ₛ depending on probe (Kₗₒ₋ₛ = 2.8 ± 0.3 × 10⁻³ sec⁻¹ r = 0.99, or 7.9 ± 0.9 × 10⁻³ sec⁻¹ r = 0.99, for World Precision Instruments 2 mm or Harvard AmiNO700 probes, respectively). This indicates that NO oxidation by the electrode and diffusion into the gas phase cause NO decay in these experiments, rather than autoxidation to form NO₂ which is second order. Using these Kₗₒ₋ₛ rates of background NO loss were subtracted from all experiments. For accurate determination of NO consumption rates by cells, bolus additions of NO were used instead of donor compounds.

Activated human neutrophils consume NO

In the presence of resting neutrophils, NO disappearance from aerobic buffer did not increase over background and was still first order (Kₗₒ₋ₛ = 2.8 ± 0.1 or 2.4 ± 0.5 × 10⁻³ sec⁻¹ for buffer alone, or with cells, respectively). Neutrophil activation with 1 μM MLPLP caused an immediate increase in NO loss (8.7 ± 0.8 mmol min⁻¹ 10⁶ cells; Fig. 1A). Similar results were obtained using PMA (1 μg ml⁻¹) as stimulus (data not shown).

NO removal is dependent on O₂⁻ generation by NADPH oxidase

To determine the involvement of O₂⁻ in NO consumption, 3000 U ml⁻¹ SOD or 20 μM diphenyleneiodonium (DPI) were added. Either agent alone significantly inhibited neutrophil NO consumption, however in combination, NO removal was totally blocked (Fig. 1B). Incubation with the SOD-mimetic manganese porphyrin MnTe₂-2-PyP5⁺ (MnP, 20 μM) also attenuated NO consumption (Fig. 1B). In further support of the central role of O₂⁻ in mediating NO consumption, neutrophils from a CGD patient did not consume
NO consumption and O_2^- generation were 8.7 ± 0.8 and 3.4 ± 0.8 nmoles min$^{-1}$ 106cells, respectively; Fig. 2A). Similar results were obtained using PMA (data not shown). All experiments were conducted in HEPES- and glucose-free PBS (supplemented with CaCl$_2$ and MgCl$_2$) to ensure that artificial radical reactions did not cause NO consumption, although comparisons in Kreb’s Ringer buffer yielded identical data (not shown). To confirm that cyt. c reduction was an accurate measure of O_2^- generation, three additional approaches were taken.

Cell-free reconstitution system. Intact cells contain intracellular phagolysosomal compartments that might cause underestimation of O_2^- generation. Therefore, premixing isolated cytosol and membrane with SDS and GTP-γ-S allows NADPH oxidase to be assayed in a detergent-containing cell-free system, where all O_2^- is accessible (22). Using membranes prepared from healthy neutrophils, rates of NO consumption were significantly faster than O_2^- generation (1.97 ± 0.08 vs 0.95 ± 0.14 nmol min$^{-1}$ 106 cell eq, respectively; Fig. 2B), similar to intact cell experiments (Fig. 2A).

O_2 consumption. During O_2^- generation, stoichiometric amounts of O_2 are consumed through reduction by NADPH oxidase. Rates of fMLP-stimulated O_2 consumption were not significantly different to those measured using cyt. c reduction (13.8 ± 1.8 vs 15.4 ± 0.2 M min$^{-1}$ for cyt. c reduction and O_2 consumption, respectively).

Simulations. To examine the fate of NO and oxidant species generated in our experiments, reactions were simulated using rate constants in Table I. This showed that under our conditions all O_2^- directly reacted with cyt. c, without dismutation to H$_2$O$_2$. Although rate constants for spontaneous O_2^- dismutation and the reaction of O_2^- with cyt. c are similar, dismutation of O_2^- is second order. Therefore, in the presence of 50 M cyt. c, continuous removal of O_2^- and stoichiometric reduction of cyt. c occurs.

Collectively, these data indicate that O_2^- generation rates are accurately determined in our experiments and confirm that NADPH oxidase-dependent NO consumption is considerably faster than the simple 1:1 reaction expected from termination of NO and O_2^-.

NO does not stimulate NADPH oxidase

To determine whether the fast rates of NO consumption were due to direct stimulation of electron flux through NADPH oxidase by NO (31), NADPH oxidation was determined using the cell-free reconstitution system as above where the enzyme is already active before NO addition. In this study, NADPH oxidation by highly purified flavocytochrome b$_{558}$ was not stimulated by NO (Fig. 2C). Also, NADPH oxidation by membranes from a CGD patient with partial NADPH oxidase activity, designated X91, (26) was not stimulated by NO (Fig. 2D). This mutant enzyme cannot directly reduce O_2, but can transfer electrons from NADPH to the flavin center and thence to artificial electron acceptors, and along with the purified flavocytochrome b$_{558}$ was used to reveal whether NADPH oxidase could directly reduce NO via the flavin or heme cofactors. For comparison, NADPH oxidation by normal membranes is shown (Fig. 2D).

Effect of inhibitors and scavengers on NO consumption

Addition of 100 M diethylenetriaminopentaacetic acid, 20 M indomethacin, 2 mM ATZ, 1 mM azide, or 2 mM urate were without effect on NO consumption, ruling out a role for Fenton chemistry, PGHS, or MPO (Fig. 3). Although urate is an effective scavenger of peroxynitrite (ONOO$^-$), its oxidation to radicals that can potentiate secondary oxidation processes do not rule out a role for ONOO$^-$ in mediating NO consumption (32, 33).
The rate of NO consumption by MPO-deficient neutrophils is greater than the rate of O_2^\cdot production

Neutrophils were isolated from a patient with MPO activity that was 9% of healthy controls (Fig. 4A). Western blotting of these cells showed virtually undetectable MPO at 60 kDa, and the heme spectrum at 472 nm was absent (Fig. 4A, inset and data not shown). NO consumption by MPO-deficient neutrophils was considerably faster than O_2^\cdot generation (14.59 ± 2.26 vs 4.45 ± 0.50 nmol min$^{-1}$ 106 cells, respectively; Fig. 4B). These differences are even greater than for healthy neutrophils (Fig. 2A). Addition of purified MPO to MPO-deficient cells at concentrations found in healthy subjects (11.25 pmols/106 cells, calculated from guaiacol oxidation rates and heme spectra) did not further stimulate NO consumption (14.90 ± 3.67 nmol min$^{-1}$ 106 cells; Fig. 4C). However, with 100 μM H$_2$O$_2$ substrate, this concentration of MPO consumed NO at easily detectable rates (4.2 μM min$^{-1}$, which would be equivalent to 5.26 ± 0.70 nmol min$^{-1}$ 106 cells, data not shown). This indicates that unlike exogenous H$_2$O$_2$, iMLP-activated neutrophils cannot support MPO-dependent NO consumption.

Table I. Rate constants used for kinetic simulation of cyt. c assay (see main text for results)

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Rate Constant</th>
<th>Ref.</th>
<th>Reactant</th>
<th>Starting Concentration (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) $O_2 \rightarrow O_2^\cdot$ (to give O_2^\cdot generation rate of 3.4 μM.min$^{-1}$)</td>
<td>$2.38 \times 10^{-5} s^{-1}$</td>
<td>(1) O_2</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>(2) cyt. $c^{2+} + O_2 \rightarrow$ cyt. $c^{3+} + O_2$</td>
<td>$2.6 \times 10^9 M^{-1} s^{-1}$</td>
<td>61</td>
<td>(2) cyt. c^{2+}</td>
<td>50</td>
</tr>
<tr>
<td>(3) $20_{2}^\cdot + 2H^+ \rightarrow H_2O_2 + O_2$</td>
<td>$8 \times 10^8 M^{-1} s^{-1}$</td>
<td>62</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MPO was independent of the value of this rate constant. Therefore, our final model uses the value of equation 13 to model the complete set of NO consumption reactions by MPO.

Initial simulations using equations 1–4 (Table II) at O$_2^*$ generation rates of 1.7 µM min$^{-1}$ (i.e., equivalent to 3.4 nmol min$^{-1}$ 106 cells), where NO only reacted with O$_2^*$, revealed that NO consumption rates were identical with O$_2^*$ generation, with all O$_2^*$ forming ONOO$^-$, and virtually no dismutation to H$_2$O$_2$ (Fig. 5A).

Including reactions of MPO caused no change in the rate of NO decay (Fig. 5A, Table II, equations 10–13). The lack of MPO-catalyzed NO consumption results from insufficient generation of H$_2$O$_2$ substrate (<1 pm). Although ONOO$^-$ could potentially stimulate MPO-dependent NO consumption, its concentration remained <100 nM (34). The complete reaction sequence incorporating equations 1–9 shows the formation and decay of NO, O$_2^*$, H$_2$O$_2$, and ONOO$^-$ during NADPH oxidase-dependent NO consumption and clearly shows that at these O$_2^*$ generation rates, H$_2$O$_2$ does not form until all NO has been consumed (Fig. 5B).

NO consumption prevents neutrophil sGC activation

cGMP generation was determined following a 5-min incubation of neutrophils with 1.9 µM NO, with or without fMLP, or oxyHB as NO scavenger (Fig. 6A). Experiments were repeated with the phosphodiesterase inhibitor IBMX which inhibits cGMP hydrolysis. IBMX blocks agonist-induced neutrophil activation (via cAMP elevation); therefore, in this experiment, cells were stimulated with PMA (Fig. 6B). Following incubation with 1.9 µM NO, elevations in neutrophil cGMP were found; however, this was effectively inhibited by simultaneous generation of O$_2^*$ (Fig. 6). Addition of 3 µM oxyHB to scavenge NO also fully blocked NO activation of sGC (Fig. 6).

Discussion

In this study, normal or MPO-deficient, but not CGD human neutrophils consumed NO through NADPH oxidase-dependent mechanisms at rates significantly faster than corresponding O$_2^*$ generation (Figs. 1 and 2). Also, NO consumption effectively blocked cGMP synthesis in the neutrophils (Figs. 1C and 5). This indicates that the ability of activated leukocytes to attenuate the bioactivity of NO is considerably greater than expected from the simple 1:1 termination between NO and O$_2^*$, and that NADPH oxidase deficiency in CGD will prevent neutrophils from attenuating the inhibitory effects of NO in vivo.

Herein, a combination of SOD and DPI fully inhibited NO consumption (Fig. 1B). The incomplete inhibition by SOD alone results from SOD-catalyzed O$_2^*$ generation which occurs when H$_2$O$_2$ builds up in the presence of high concentrations of SOD (J. P. Crow and J. S. Beckman, unpublished observations). Similarly, DPI alone did not fully inhibit NO consumption (Fig. 1). DPI reacts with a catalytic intermediate formed during flavin turnover; therefore, some enzyme catalysis occurs before full inhibition (35). The combination of DPI and SOD was fully effective, as residual O$_2^*$ produced during DPI inhibition was scavenged by SOD (Fig. 1B). Along with the lack of NO consumption by CGD cells, these data indicate that NADPH oxidase is absolutely required for fMLP or PMA-stimulated NO consumption by acutely activated human neutrophils (Fig. 1C).

Several additional oxidases could potentially consume NO in leukocytes, for example, PGHS-1, 15-LOX, and MPO (10, 11, 12, 14). However, these did not remove NO following acute activation of neutrophils. In particular, the lack of NO consumption by MPO was intriguing since this enzyme constitutes 5% of neutrophil protein, and was recently shown to catalyze H$_2$O$_2$-dependent NO consumption following either cellular overexpression or transcytosis.
of MPO into rat aortic endothelium (14). The inability of MPO to catalyze NO consumption following addition of exogenous purified enzyme to MPO-deficient cells shows that even when all MPO is extracellular, fMLP-stimulated neutrophils cannot support MPO-dependent NO consumption (Fig. 4C). Furthermore, azide and ATZ which effectively block consumption of NO by purified MPO and leukocyte-dependent nitration of tyrosine are without effect on neutrophil NO consumption (Fig. 3; Refs. 12 and 36). NO metabolism by purified or cellular MPO is critically dependent on exogenously added H$_2$O$_2$ (12, 14). In this study, kinetic simulations showed that all O$_2^-$ generated by agonist-activated neutrophils in the presence of NO forms ONOO$^-$, with no dissmutation to H$_2$O$_2$ (Fig. 5B). In agreement, total inhibition of H$_2$O$_2$ generation by macrophages in the presence of NO was previously reported (37). These observations don’t exclude a role for MPO in catalyzing NO consumption when H$_2$O$_2$ is generated by NADPH oxidase-independent mechanisms. In this regard, LPS injection in vivo attenuates acetylcholine-dependent vasorelaxation in wild type, but not MPO$^{-/-}$ mouse aortic rings (14). In that system, H$_2$O$_2$ could form independent of O$_2^-$ from diverse vascular and reticuloendothelial sources, including xanthine oxidase catalysis or mitochondrial leakage of electrons (38, 39).

Others have suggested that leukocyte-contained MPO may promote different reactions than MPO present in the extracellular milieu, following observations that neutrophil-associated MPO does not nitrate phagocytosed probes or bacterial proteins, in contrast to purified MPO (40, 41). In addition, critical differences are emerging regarding the relative rates of MPO/NO$_2^-$/H$_2$O$_2$-dependent

Table II. Kinetic simulation of NO consumption

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Rate Constant</th>
<th>Ref.</th>
<th>Reactant</th>
<th>Starting Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial reactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) O$_2$ + e$^-$ \rightarrow O$_2^-$ (to give O$_2^-$ generation rate of 3.4 nmol/min$^{-1}$ 106 cells)</td>
<td>2.38 \times 10$^{-4}$ M$^{-1}$s$^{-1}$</td>
<td>(1) O$_2$</td>
<td>240 μM</td>
<td></td>
</tr>
<tr>
<td>(2) first order NO decay</td>
<td>2.77 \times 10$^{-3}$ s$^{-1}$</td>
<td>(2) NO</td>
<td>3.8 μM</td>
<td></td>
</tr>
<tr>
<td>(3) 2O$_2^-$ + 2H$^+$ \rightarrow H$_2$O$_2$ + O$_2$</td>
<td>8 \times 104 M$^{-1}$ s$^{-1}$</td>
<td>(3) MPO</td>
<td>11.25 nM</td>
<td></td>
</tr>
<tr>
<td>(4) NO + O$_2^-$ \rightarrow ONOO$^-$</td>
<td>1.9 \times 1010 M$^{-1}$ s$^{-1}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ONOO$^-$-dependent reactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5) ONOO$^-$ \rightarrow NO$_2^- + NO_2^-$</td>
<td>0.69 s$^{-1}$</td>
<td></td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>(6) NO + ONOO$^-$ \rightarrow NO$_2^- + NO_2^-$</td>
<td>1.3 \times 10$^{-3}$ M$^{-1}$ s$^{-1}$</td>
<td></td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>(7) NO + NO$_2^- + N_2O_3$</td>
<td>1.1 \times 106 M$^{-1}$ s$^{-1}$</td>
<td></td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>(8) N$_2$O$_3$ \rightarrow NO + NO$_2^- + NO_2^- + 2H^+$</td>
<td>4.3 \times 106 s$^{-1}$</td>
<td></td>
<td>66, 67</td>
<td></td>
</tr>
<tr>
<td>(9) N$_2$O$_3$ + H$_2$O \rightarrow 2NO$_2^- + 2H^+$</td>
<td>1.6 \times 103 s$^{-1}$</td>
<td></td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>MPO-dependent reactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(10) MPO + H$_2$O$_2$ \rightarrow Cl$^-$</td>
<td>1.8 \times 107 M$^{-1}$ s$^{-1}$</td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>(11) MPO + ONOO$^-$ \rightarrow CII</td>
<td>6.2 \times 106 M$^{-1}$ s$^{-1}$</td>
<td></td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>(12) NO + Cl$^-$ \rightarrow CII</td>
<td>8 \times 104 M$^{-1}$ s$^{-1}$</td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>(13) NO + CII \rightarrow MPO</td>
<td>8 \times 104 M$^{-1}$ s$^{-1}$</td>
<td></td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>
In summary, human neutrophils consume NO at unexpectedly fast rates via NADPH oxidase turnover, effectively inhibiting NO signaling in the cells themselves (Fig. 6). These findings have implications for the role of NADPH oxidase in the development of inflammatory vascular disease, and for the pathophysiology of CGD where leukocyte NO consumption following agonist activation is absent.

Acknowledgments

We thank Prof. B. A. Freeman for helpful suggestions and L. Moreton for gift of CGD neutrophils.

References
