Nerve Growth Factor Activates Mast Cells Through the Collaborative Interaction with Lysophosphatidylserine Expressed on the Membrane Surface of Activated Platelets

Keiko Kawamoto, Junken Aoki, Akane Tanaka, Atsuko Itakura, Hiroyuki Hosono, Hiroyuki Arai, Yasuo Kiso and Hiroshi Matsuda

http://www.jimmunol.org/content/168/12/6412

Why The JI?

- **Rapid Reviews! 30 days** from submission to initial decision
- **No Triage!** Every submission reviewed by practicing scientists
- **Speedy Publication!** 4 weeks from acceptance to publication

*average

References

This article cites 51 articles, 26 of which you can access for free at: http://www.jimmunol.org/content/168/12/6412.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at: http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts

Nerve Growth Factor Activates Mast Cells Through the Collaborative Interaction with Lysophosphatidylserine Expressed on the Membrane Surface of Activated Platelets

Effect of nerve growth factor (NGF) on platelet-associated mast cell activation was investigated. Although neither NGF alone nor platelets alone induced significant 5-hydroxytryptamine (5-HT) release from rat peritoneal mast cells, marked 5-HT release was detected when costimulated with NGF and calcium ionophore-activated platelets. This response reached maximal levels as early as 5 min after the initiation of the coincubation and was completely blocked by anti-NGF Ab or by an inhibitor for a tyrosine kinase of the trkA NGF receptor. Paraformaldehyde-fixed platelets activated with either calcium ionophore or thrombin exhibited the collaborative ability, suggesting the possible involvement of some membrane molecules expressed on activated platelets in mast cell activation. Because activation of platelets induced expression of phosphatidylserine (PS) and/or lysosom derived PS on membrane surface, and since lysosom, unlike PS, initiated the NGF-induced 5-HT release, lysosom expressed on activated platelets may be involved in the mast cell activation. Moreover, intradermal injection of NGF and activated platelets into the rat skin increased local vascular permeability. These findings suggested that NGF collaboratively worked with membrane lysosom of activated platelets to induce mast cell activation. Thus, NGF released in response to inflammatory stimuli may contribute to mast cell activation in collaboration with locally activated platelets in the process of inflammations and tissue repair. The Journal of Immunology, 2002, 168: 6412–6419.

Nerve growth factor (NGF) 3 is a well-characterized neurotrophic factor that is commonly believed to play a crucial role in the development and maintenance of the central and peripheral nervous systems including sympathetic and sensory neurons (1–3). Two classes of NGF receptors have been identified by their relative affinities; the low-affinity NGF receptor is a 75-kDa glycoprotein, and the high-affinity receptor is a 140-kDa molecule containing a tyrosine kinase domain that is encoded by the trkA proto-oncogene (TrkA) (4, 5). In addition to neurotrophic activity, increasing evidences give rise to possible multifunctional properties of NGF on immunocompetent cells including lymphocytes, monocytes/macrophages, and mast cells through functional NGF receptors (4–11). In prior studies, we have demonstrated that NGF promotes not only granulocyte differentiation from human PBMC and murine bone marrow cells (12, 13), but also differentiation of connective tissue-type mast cells from murine bone marrow cells and bone marrow-derived culture mast cells (14). NGF is capable of supporting survival of neutrophils (15), eosinophils (16), and mast cells (9) by preventing apoptosis, and enhancing functional properties of neutrophils, eosinophils, macrophages, and mast cells: phagocytosis, superoxide production, matrix metalloproteinase-9 production, and chemotaxis (11, 12, 16–20). These experimental findings strongly support a possibility that NGF acts as a cytokine that is capable of modulating inflammatory responses and tissue repair. In fact, the topical application of NGF to cutaneous wounds accelerates the rate of wound healing in normal and diabetic mice (21).

Mast cells are often abundant along blood vessels, and generate and release a number of vasoactive mediators including histamine, serotonin (5-hydroxytryptamine; 5-HT), and leukotrienes by cross-linking of FceRI-IgE with its specific Ag (22). In addition to the immunological stimulation, intradermal or s.c. administration of NGF to rats causes immediate vasodilatory responses characterized by the degranulation of local mast cells (23, 24). In contrast with the in vivo reports, NGF alone is insufficient to induce chemical mediator release from rat peritoneal mast cells (PMC) and the addition of exogenous phosphatidylserine (PS) or lysosom, a deacylated PS derivative, to NGF is necessary for the mast cell activation (8, 25, 26). However, the mechanisms by which NGF and serinephospholipids induce mast cell activation and their pathophysiological roles have been poorly understood.

PS is a membrane phospholipid component normally distributed at the internal side of the plasma membrane. Activation of platelets by thrombin or calcium ionophore results in loss of membrane asymmetry and expression of PS and/or lysosom on their cell surface, which is provided to catalyze hemostatic plug formation and blood coagulation (27, 28). In the tissue repair process, circulating

*Faculty of Agriculture, Department of Veterinary Clinic, Tokyo University of Agriculture and Technology, and †Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan; and ‡Faculty of Agriculture, Department of Veterinary Anatomy, Yamaguchi University, Yamaguchi, Japan

Received for publication October 5, 2001. Accepted for publication April 8, 2002.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

© The American Association of Immunologists, Inc., 2002

0308-9716/02/$02.00
platelets rapidly adhere to the subendothelial connective tissue exposed by vascular injury. Following this event, attached platelets are activated by a perivascular matrix (27, 28). Activated platelets most likely provide the phospholipid molecules at the affected sites. Therefore, we speculated that NGF may interact with platelets accumulating at the site of injured blood vessels, where mast cells locate abundantly, resulting in mast cell activation in vivo. To examine this hypothesis, we investigated whether activation of mast cells was modulated by NGF and platelets in vitro, by measuring 5-HT release from rat PMC. We report herein a novel collaborative interaction between NGF and surface lysoPS on activated platelets, thereby leading to mediator release from mast cells in vitro and in vivo.

Materials and Methods
NGF and other reagents
2.5S NGF purified from murine submaxillary glands was a gift from A. M. Stanisz and J. Bienenstock (McMaster University, Hamilton, Canada). Neurotrophic activity of the NGF preparations was determined as described previously (12). Cytochrome c and busulfan were purchased from Sigma-Aldrich (St. Louis, MO). PS, lysoPS, lysophosphatidic acid (lysoPA), lysophosphatidylcholine (lysoPC), lysophosphatidylethanolamine, and lyso phosphatidylinositol were purchased from Avanti Polar Lipids (Alabaster, AL). We also used K252a (Calbiochem, La Jolla, CA), PD98059 (New England Biolabs, Beverly, MA), and LY294002 (Calbiochem). PS-specific phospholipase A, (PS-PLA) was purified as described previously (29). Unless otherwise indicated, all chemicals and Abs were purchased from Sigma-Aldrich.

Isolation of rat PMC
Outbred male Wistar rats (8–16 wk of age) (Clea Japan, Tokyo, Japan) were kept in our laboratory provided with food and water ad libitum >1 wk before they were sacrificed. PMC were purified by Percoll solution (Phar-

Preparation of platelets
Whole-blood anticoagulated with 0.38% of trisodium citrate was collected from the exposed external jugular vein of normal rats under ether anes-

Treatment of RBC with calcium ionophore
Venous blood obtained from healthy volunteers was diluted with an equal volume of PBS, and centrifuged in Percoll solution as described above. Sedimented RBC were resuspended at a 30% packed-cell volume in buffer containing 70 mM NaCl, 80 mM KCl, and 10 mM HEPES, and 1 mM CaCl2 (pH 7.4), and then stimulated with 10 μM A23187 at 37°C for 2–3 h (30). After stimulation, PS expressed on the surface of RBC was assessed with FITC-conjugated annexin V (BD Pharmingen, San Diego, CA) according to the manufacturer’s instruction. By this procedure, >65% cells expressed PS on their surface. To prepare surface lysPS “positive” RBC, PS-expressing RBC were treated at 37°C for 10 min with PS-PLA, which is capable of allowing to accumulate lysoPS on the RBC surface (29). The RBC preparations were washed and fixed with 1% paraformaldehyde for 10 min.

Intracellular calcium mobilization
Freshly isolated PMCs were incubated with 2 μM fura 2 acetyloxymethyl ester (Dojin, Tokyo, Japan) in Tyrode’s buffer (130 mM NaCl, 5 mM KCl, 1.4 mM CaCl2, 1 mM MgCl2, 5.6 mM glucose, 0.1% BSA, and 10 mM HEPES (pH 7.4)) at 37°C for 1 h, and then resuspended in 500 μl (106 cells) of the same buffer in a stirring cuvette. Following stimulation with 50 ng/ml NGF in the presence of 5 μM lysos or 0.1% activated platelets, cytosolic calcium flux PMC was measured by monitoring fluorescence intensity at an emission wavelength of 510 nm, and excitation wavelengths of 340 and 380 nm using a CAF-110 (JACS, Tokyo, Japan) with a 8100 V3.0 software program.

Pretreatment of PMC with signal transduction inhibitors
Before a 5-HT release assay, PMC were preincubated for 1 h with the following inhibitors: 50 ng/ml K252a, a TrkA inhibitor (31); 100 μM PD98059, a mitogen-activated protein kinase (MAPK) kinase inhibitor (32); or 50 μM LY294002, a phosphatidylinositol 3-kinase (PI3K) inhib-

Plasma extravasation assay
Rats anesthetized with pentobarbital sodium were intradermally injected with 50 μl of 100 ng/ml NGF with or without 5 × 106 activated or resting platelets fixed with paraformaldehyde into the shaved dorsal skin, followed by i.v. injection of 1.0% Evans blue dye. The same concentration of cytochrome c was served as a same m.w. control. Injection sites were marked on the skin for orientation. Thirty minutes later, the dorsal skin was removed, and OD of dye in ltration were digitalized by using Gel Print 200i/VGA and OD of dye in

In vivo pretreatment with busulfan
To induce thrombocytopenia, rats were pretreated with busulfan according to the method reported previously (34). Briefly, rats were injected i.p. with busulfan (20 mg/kg body weight) twice 10 and 13 days before the plasma
extravasation assay. The number of platelets in blood collected from the retro-orbital plexus were counted.

Real-time PCR quantification of rat cytokines

A quantitative RT-PCR was used to determine mRNA levels of cytokines in rat basophilic leukemia cells (RBL-2H3 cells; Health Science Research Resources Bank, Osaka, Japan). Total RNA was isolated from 5 × 10⁶ cells stimulated with 50 ng/ml NGF, 5 × 10⁶ activated platelets, and/or 5 μM liposomat using a TRIZol reagent (Life Technologies, Rockville, MD), according to the manufacturer’s instructions. A total of 1 μg of total RNA was reverse-transcribed into cDNA by using Moloney murine leukemia virus reverse transcriptase (Superscript II; Life Technologies) and an oligo(dT) primer. Specific primers for amplification were based on published sequences for IL-3, IL-4, IL-10, TNF-α, IFN-γ, GM-CSF, and β-actin (35, 36). A quantitative PCR was performed using a SYBR Green PCR core reagent kit (PE Applied Biosystems, Tokyo, Japan) following the thermal cycling programs: stage 1, 50 °C for 3 min; stage 2, 95 °C for 10 min; stage 3, 40 cycles of 95 °C for 15 s followed by 60 °C for 30 s. Fluorescence intensity was measured in real-time during extension steps for a SYBR Green assay by using a Nippon Bio-Rad thermal cycler (iCycler iQ detection system; Nippon Bio-Rad Laboratories, Tokyo, Japan). The no-template control was not amplified in the 40-cycle PCR.

Statistical analysis

Two-tailed Student’s t test was done for statistical analysis of the data, and p < 0.05 was taken as the level of significance.

Results

5-HT release from PMC induced by NGF and activated platelets

We examined 5-HT release from PMC (10⁵) cultured with a suboptimal dose of NGF (50 ng/ml) and platelets (10⁹) for 30 min at 37°C. As shown in Fig. 1A, neither NGF nor platelets alone could induce mediator release from mast cells. However, striking augmentation of 5-HT release (63.8%) was observed when PMC were cultured with 10⁹ A23187-activated platelets and 50 ng/ml NGF simultaneously. These data indicated that NGF and platelets had synergistic effect on in vitro mast cell activation without requiring exogenous serinephospholipids. Whereas coincubation of PMC with unstimulated resting platelets showed little enhancement of NGF-induced 5-HT release, the effect of activated platelets was a nearly 3-fold increase than that of resting platelets. Calcium ionophore is well-known to act as a strong secretagogue for mast cells. To eliminate the possibility that the small amount of A23187 was contaminated in the platelet suspension, we examined the releaseability of the second washing from the activated platelets. The supernatants had no effect on 5-HT release from PMC in the presence or absence of 50 ng/ml NGF (3.5 and 4.3%, respectively). Hence, we used activated platelets for following experiments.

When various concentrations of NGF (0.5, 5, 50, and 500 ng/ml) were added to 10⁵ PMC and 10⁹ A23187-activated platelets, significant release of 5-HT was observed in a dose-dependent manner; this effect was observed at concentrations as low as 0.5 ng/ml (Fig. 1B). We next examined the influence of numbers of platelets on NGF-induced mast cell activation. 5-HT release was also dependent on the number of activated platelets together with a fixed dose (50 ng/ml) of NGF; the minimal effect of the 5-HT release was detected when coincubated with 10⁹ activated platelets (Fig. 1C). Neutralizing Abs against NGF were provided to verify the specificity of the NGF effect on PMC in the presence of activated platelets. Addition of anti-NGF Ab completely abrogated the 5-HT release induced by NGF and activated platelets (Fig. 1C). Control Ab showed no positive effect on 5-HT release. As shown in Fig. 1D, this 5-HT release dependent on both NGF and activated platelets reached roughly maximal levels as early as 5 min after the initiation of the incubation with 50 ng/ml NGF and 10⁹ platelets.

Effect of fixation of activated platelets on NGF-induced 5-HT release

Activated platelets secrete chemical mediators which are capable of stimulating mast cells. Therefore, we conducted experiments with platelets fixed with paraformaldehyde to clarify whether some soluble factors released from platelets might be involved in mast cell activation in our in vitro system. Platelets were fixed with 1% paraformaldehyde after stimulation with calcium ionophore.

![Figure 1: 5-HT release from PMC stimulated with NGF and activated platelets. Released [3H]-5HT was measured by a scintillation counter as described in Materials and Methods. Each value represents the mean ± SE of four to six separate experiments. A, A total of 10⁵ PMC were incubated with 10⁹ resting platelets or with 10⁹ platelets activated with 1 μM A23187 in the presence or absence of 50 ng/ml NGF at 37°C for 30 min. *, p < 0.001; when compared with PMC alone. B, A total of 10⁵ PMC were stimulated with various concentrations of NGF in the presence of 10⁹ activated platelets for 30 min. *, p < 0.01; when compared with PMC plus activated platelets. C, A total of 10⁵ PMC were incubated with increasing numbers of activated platelets in the presence of 50 ng/ml NGF containing control Ab or anti-NGF Ab (1/1000 dilution). *, p < 0.01; when compared with PMC plus NGF. †, p < 0.001; when compared with control Ab. D, A total of 10⁵ PMC were stimulated simultaneously with 50 ng/ml NGF and 10⁹ activated platelets for 0, 5, 15, 30, and 60 min. *, p < 0.001; when compared with PMC alone.](http://www.jimmunol.org/)

Downloaded from http://www.jimmunol.org/ by guest on November 17, 2017
A23187 or thrombin. The fixed activated platelets to 50 ng/ml NGF led to significant 5-HT release and marked degranulation of mast cells (Fig. 2, A and B). Thus, we concluded that the fixation of activated platelets did not substantially alter their ability to modulate the NGF-dependent mast cell activation.

Effect of aminophospholipids on NGF-induced 5-HT release

Previous studies show that NGF-mediated mediator release from mast cells requires the presence of exogenous serinephospholipids such as PS or lysoPS (8, 25, 26). PS is a membrane component that is normally distributed in an inner leaflet of a phospholipid bilayer. Activation of platelets by calcium ionophore leads to not only surface expression of membrane PS, but also accumulation of lysoPS by the subsequent degradation (28, 37, 38). Therefore, we examined the effect of either PS, lysoPA, lysoPC, lysolysophosphatidylethanolamine, lysocephatidylinositol, or lysoPS on NGF-induced mast cell activation. As shown in Fig. 3, lysoPS induced significant 5-HT release from mast cells in the presence of NGF, but the other aminophospholipids did not.

To further clarify the possible involvement of serinephospholipids expressed on membrane surface in the mast cell activation, we examined whether PS- or lysoPS-expressing RBC mediated NGF-induced 5-HT release from PMC. Treatment of RBC with calcium ionophore has been reported to cause loss of phospholipid asymmetry resulting in PS expression on their surface (30). Furthermore, Sato et al. (29) have recently identified a new enzyme of the lipase family secreted from rat-activated platelets, termed PS-PLA₁, that specifically acts on PS and produces lysoPS. By using this enzyme, we prepared two RBC samples that expressed PS or lysoPS on their surface. When RBC were treated with A23187, >65% of them were positive for binding of annexin V, which was slightly higher than activated platelets (Fig. 4). However, the addition of 10⁶ PS-expressing RBC to PMC showed no significant release of 5-HT despite the presence of 50 ng/ml NGF (Table I). In contrast, the treatment of PS-expressing RBC with PS-PLA₁ led to significant NGF-induced 5-HT release from PMC (Table I). Thus, we concluded that NGF was capable of inducing 5-HT release from PMC in the presence of lysoPS but not PS.

Effect of NGF and platelets on calcium mobilization of PMC

Because NGF-dependent histamine release of mast cells is inhibited by EDTA (25), we measured cytosolic calcium mobilization of mast cells loaded with fura 2 acetoxyethyl ester in response to addition of NGF and activated platelets. A very slight increase of intracellular calcium levels was observed in single addition of 50 ng/ml NGF, 5 μM lysoPS, or 10⁶ activated platelets, respectively (Fig. 5). In contrast, simultaneous addition of NGF and A23187-activated platelets led to a marked increase of intracellular calcium levels, which reached the maximum levels within 200 msec; and the combination of NGF and lysoPS also significantly increased calcium influx (Fig. 5).

Signal transduction pathways triggered by NGF and activated platelets

The biological effects of NGF on target cells are mediated by specific cell surface receptors with different affinities: p75 and TrkA...
We next attempted to determine a dye extravasation after intra-NGF and activated platelets
Increased vascular permeability by intradermal injection of
phorylation levels of all the signal molecules (Fig. 7).
lysoPS or activated platelets with NGF did not change the phos-
idues was detected for individual signal molecules after treatment
PI3K, and PLC
ment of lysoPS or A23187-activated platelets in TrkA, MAPK,
ence of activated platelets, we next examined the possible involve-
the mechanism of NGF-induced mast cell activation in the pres-

Therefore, we attempted to determine whether 5-HT release from
PMC induced by NGF and A23187-activated platelets was influ-
enced by blockage of TrkA, MAPK kinase, and PI3K by using
pecific inhibitors K-252a, PD98059, and LY294002, respectively.
When PMC were pretreated with 50 ng/ml K-252a for 1 h, the
NGF-induced 5-HT release was completely inhibited (Fig. 6).
Treatement with 100 µM PD98059 and 10 µM LY294002 reduced
the NGF-induced 5-HT release by 69 and 62%, respectively. The
combination of both inhibitors markedly suppressed 5-HT release
from PMC that was comparable to the inhibitory effect induced by
the pretreatment with K-252a (Fig. 6). To obtain more insight into
the mechanism of NGF-induced mast cell activation in the pres-
ence of activated platelets, we next examined the possible involve-
ment of lysoPS or A23187-activated platelets in TrkA, MAPK,
PI3K, and PLCγ signaling pathways. NGF treatment induced ty-
rosine phosphorylation of TrkA, MAPK, and PI3K, but not that of
PLCγ (Fig. 7). In contrast, no phosphorylation of the tyrosine res-
ides was detected for individual signal molecules after treatment
with either lysoPS or activated platelets. Simultaneous addition of
lysoPS or activated platelets with NGF did not change the phos-
phylation levels of all the signal molecules (Fig. 7).

Increased vascular permeability by intradermal injection of
NGF and activated platelets

We next attempted to determine a dye extravasation after intra-
dermal injection of NGF to assess a cooperative effect of NGF and

activated platelets on mast cell activation in vivo. As shown in Fig.
8A, markedly increased extravasation was observed at the injection
site of the skin when a mixture of 5 ng NGF and 5 × 10^6 platelets
activated with A23187 or thrombin was administered, whereas
jection of NGF alone induced a mild vasodilative response. In
controls with PBS vehicle, 5 ng cytochrome c, or activated plate-
lets alone, no or slight response was noted. To evaluate a role of
circulating platelets in NGF-induced mast cell activation in vivo,
busulfan was injected into rats before intradermal injection with
NGF and activated platelets. The injection was induced marked
duction in the number of circulating platelets (<2%) 13 days
later. Pretreatment with busulfan suppressed the NGF-induced va-
so dilative response by about half level as compared with that in
control rats (Fig. 8B).

mRNA levels of cytokines

Because NGF increases mRNA levels of several cytokines in mast
cells (35), we next examined an effect of activated platelets or
lysoPS on NGF-mediated cytokine production by real-time PCR
quantification. We used rat basophilic leukemia cell line RBL-2H3
instead of rat PMC. As detected in rat PMC, simultaneous stimu-
ation by NGF and activated platelets caused significant degranu-
lation response in RBL-2H3 cells (data not shown). Treatment
with NGF alone induced a marked increase in mRNA expression
of IL-3, IL-4, TNF-α, IFN-γ, and GM-CSF, whereas a slight, but
not significant, increase in mRNA expression of IL-10 was de-
tected (Fig. 9). However, neither lysoPS nor activated platelets

![Figure 5](http://www.jimmunol.org/)

FIGURE 5. Intracellular calcium mobilization of PMC stimulated with NGF in the presence of lysoPS or activated platelets. After preincubation with 2 µM fura-2 acetoxymethyl ester, 10^6 PMC were treated with 50 ng/ml NGF in the presence or absence of 5 µM lysoPS or 10^6 A23187-activated platelets. Arrows indicate the time point when reagents were applied.

![Figure 6](http://www.jimmunol.org/)

FIGURE 6. Suppressive effects of signal transduction inhibitors on NGF-induced 5-HT release from PMC. PMC were preincubated with either 50 ng/ml K252a, 100 µM PD98059, 10 µM LY294002, or assay medium for 1 h before costimulation with 50 ng/ml NGF and 10^6 A23187-activated platelets for 30 min. Each value represents the mean ± SE of four separate experiments. *p < 0.001; when compared with NGF alone.

<table>
<thead>
<tr>
<th>Group</th>
<th>NGF (50 ng/ml)</th>
<th>Activated Cells (10^6)</th>
<th>PS-PLA_1 Treatment*</th>
<th>[³H]5-HT Release (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>+</td>
<td>None</td>
<td>–</td>
<td>5.6 ± 0.6</td>
</tr>
<tr>
<td>B</td>
<td>–</td>
<td>Platelets</td>
<td>–</td>
<td>4.4 ± 1.3</td>
</tr>
<tr>
<td>C</td>
<td>+</td>
<td>Platelets</td>
<td>–</td>
<td>38.4 ± 0.4</td>
</tr>
<tr>
<td>D</td>
<td>–</td>
<td>RBC</td>
<td>–</td>
<td>6.2 ± 0.8</td>
</tr>
<tr>
<td>E</td>
<td>+</td>
<td>RBC</td>
<td>–</td>
<td>2.4 ± 0.1</td>
</tr>
<tr>
<td>F</td>
<td>–</td>
<td>RBC</td>
<td>+</td>
<td>5.7 ± 0.5</td>
</tr>
<tr>
<td>G</td>
<td>+</td>
<td>RBC</td>
<td>+</td>
<td>16.1 ± 0.4*</td>
</tr>
</tbody>
</table>

* Platelets and RBC were pretreated with calcium ionophore A23187 and in two
groups, PS-expressed RBC were treated with PS-PLA_1 at 37°C for 10 min. Each
value represents the mean ± SE of four separate experiments.

*p < 0.01; when compared to groups D, E, and F.
substantially modulated the NGF effect on cytokine gene expression.

Discussion

Mast cells bear specific receptors for IgE and the reaction of cell-bound IgE molecules with multivalent Ag induces release of a variety of chemical mediators and cytokines from mast cells, which greatly contribute to acute and chronic allergic inflammations. In addition to this immunological stimulation, cytokines and growth factors directly modulate mast cell functions (22). Although intradermal injection of NGF has been reported to induce plasma extravasation, how NGF caused the activation of mast cells at the injection site has been conclusively unclear (23, 24). In this study, we clearly demonstrated that NGF led to mediator release from mast cells through the collaborative interaction with activated platelets in vitro. This effect was not substantially influenced by a fixation of activated platelets with paraformaldehyde, suggesting that certain membrane molecules, such as PS or lysoPS (8, 25, 26) expressed on the platelet surface after stimulation with calcium ionophore or thrombin may be involved in NGF-mediated mast cell activation. Because NGF-induced 5-HT release was detected in the presence of lysoPS or lysoPS-expressing RBC, but not PS or PS-expressing RBC, lysoPS rather than PS may act as an alternative potential molecule for NGF-induced mast cell activation. The effect of lysoPS on in vivo histamine release from rat PMC is 1000-fold greater than that of PS (39) and a kind of stimulation leads to PS-PLA₁ release from platelets which specifically acts on PS to produce lysoPS, but not on any other lipids (29). These findings support our experimental results that degradation of membrane PS by PS-PLA₁ produced lysoPS in the process of their activation and the membrane lysoPS was strongly involved in the NGF-induced mediator release from mast cells. Although some previous reports suggested that the potentiating effect of lysoPS on mediator release of mast cells was required conversion to PS after incorporation into mast cell membrane (40, 41), we ruled out this possibility because the fixation of activated platelets with paraformaldehyde had no influence on 5-HT release from PMC.

Recently, lysophospholipids such as lysoPS, lysoPA, and lysoPC have been reported to induce a transient increase of cytosolic calcium levels in a human T cell line (42), suggesting the presence of the same receptor for the lysophospholipids on the target cell surface. In PMC, lysoPS, unlike the other lysophospholipids, triggered NGF-induced 5-HT release, whereas it led little calcium influx, suggesting that mast cells might express receptors which are capable of recognizing lysoPS. However, because isotope-labeled lysoPS failed to bind to CD36 expressed on rat macrophages...
wound led to rapid increase in NGF levels in peripheral blood and culature at local damaged and in consider that the collaborative interaction between NGF and acti-

NGF, an increase in serum levels of NGF in such conditions would be blocked NGF-induced 5-HT release from PMC even in the pres-

ence of activated platelets, suggesting that 5-HT release may be mediated through both the signal transduction cascades. However, because activated platelets did not influence tyrosine phosphory-

lation of the individual signal molecules even in the presence of NGF, and because NGF alone was not capable of releasing 5-HT despite leading to phosphorylation of both MAPK and PI3K m-

olecules, the signaling mechanisms by which lysoPS-expressing platelets exert its effect have been unclear.

NGF stimulation in the presence of lysoPS not only induces degranulation of mast cells but also increases the production of several cytokines including TNF-α (35). Therefore, we examined the effect of activated platelets and lysoPS on NGF-inducible inflamiatory cytokine mRNA expression by quantitative real-time PCR. The mRNA levels of IL-3, IL-4, IL-10, TNF-α, IFN-γ, and GM-CSF were increased in response to NGF, but those were not modulated by addition of lysoPS or activated platelets. Thus, NGF and activated platelets may act collaboratively on 5-HT release, but not on cytokine gene expression. However, as NGF does not significantly increase the production of TNF-α protein even in the presence of lysoPS (43), the NGF-mediated effect on cytokine pro-

duction might be limited to the gene expression level.

We confirmed the collaborative action of NGF and activated platelets on mediator release from resident tissue mast cells in rat skin by in vivo extravasation assay. This result implies that the novel activation pathway to mast cells presented here may occur in the pathophysiological condition. NGF alone showed slight effect of vascular permeability. It may be caused by the interaction be-

tween circulating platelets probably activated in the injection site and injected NGF because rats with thrombocytopenia manifested significant reduction in NGF-induced vascular permeability. NGF is rapidly released from salivary glands into blood stream in re-

sponse to fighting stress in rats and mice and serum levels of NGF were increased up to 300 ng/ml (44). In humans, NGF is detected in peripheral blood after parachute diving stress (45). If circulating naive platelets could induce mast cell activation together with NGF, an increase in serum levels of NGF in such conditions would cause fatal systemic shock by massive mast cell degranulation. We consider that the collaborative interaction between NGF and acti-

vated platelets demonstrated in this study may occur in the pres-

ence of endothelial cell denudation, particularly in the microvas-

culature at local damaged and inflamed tissues. We found that skin wound led to rapid increase in NGF levels in peripheral blood and affected sites of mice, and that local application of NGF acceler-

ated the wound healing process (21). Correspondingly, increased levels of NGF in local inflammatory tissues or peripheral blood have been found in patients with systemic sclerosis, multiple scle-

rosis, chronic arthritis, and vernal keratoconjunctivitis (46–50). Platelets circulating in blood immediately accumulate at the site of injury or hemorrhage leading to their morphological change and biochemical activation. In contrast, mast cells are residential cells a-

d correlates with cholinergic innervation.

EMBO J. 4:1389.

