Antigenic Topology of Chlamydial PorB Protein and Identification of Targets for Immune Neutralization of Infectivity

Diane E. Kawa and Richard S. Stephens

J Immunol 2002; 168:5184-5191;
doi: 10.4049/jimmunol.168.10.5184
http://www.jimmunol.org/content/168/10/5184

References
This article cites 30 articles, 22 of which you can access for free at: http://www.jimmunol.org/content/168/10/5184.full#ref-list-1

Subscription
Information about subscribing to *The Journal of Immunology* is online at: http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Antigenic Topology of Chlamydial PorB Protein and Identification of Targets for Immune Neutralization of Infectivity

Diane E. Kawa* and Richard S. Stephens2*†

The outer membrane protein PorB is a conserved chlamydial protein that functions as a porin and is capable of eliciting neutralizing Abs. A topological antigenic map was developed using overlapping synthetic peptides representing the Chlamydia trachomatis PorB sequence and polyclonal immune sera. To identify which antigenic determinants were surface accessible, monoclonal antisera were raised to the PorB peptides and were used in dot-blot and ELISA-based absorption studies with viable chlamydial elementary bodies (EBs). The ability of the surface-accessible antigenic determinants to direct neutralizing Ab responses was investigated using standardized in vitro neutralization assays. Four major antigenic clusters corresponding to Phe34-Leu59 (B1-2 and B1-3), Asp112-Glu145 (B2-3 and B2-4), Gly179-Ala225 (B3-2 to B3-4), and Val261-Asn305 (B4-4 to B5-2) were identified. Collectively, the EB absorption and dot-blot assays established that the immunoreactive PorB Ags were exposed on the surface of chlamydial EBs. Peptide-specific antisera raised to the surface-accessible Ags neutralized chlamydial infectivity and demonstrated cross-reactivity to synthetic peptides representing analogous C. pneumoniae PorB sequences. Furthermore, neutralization of chlamydial infectivity by C. trachomatis PorB antiserum was inhibited by synthetic peptides representing the surface-exposed PorB antigenic determinants. These findings demonstrate that PorB Ags may be useful for development of chlamydial vaccines. The Journal of Immunology, 2002, 168: 5184–5191.

Complications of human chlamydial infections remain a major public health concern and account for significant morbidity worldwide (1). In regions where poor economic conditions predominate, young children have a high rate of ocular infection with Chlamydia trachomatis and comprise the reservoir of the organism (2). Persistent and recurrent chlamydial infections in these children lead to severely scarred conjunctiva and subsequent blindness as the population ages (2). Genital chlamydial infections present unique problems because the majority of infections in women are asymptomatic. Unrecognized and untreated, the bacteria persist in the host as chronic infections, posing a significant risk for development of pelvic inflammatory disease and long-term sequelae such as chronic pelvic pain, ectopic pregnancy, and tubal infertility (2, 3). C. pneumoniae primarily causes respiratory infections, with acute pneumonia and bronchitis being the most frequently encountered illnesses (4). However, increasing evidence suggests that this pathogen is strongly associated with chronic respiratory conditions such as asthma (5), reactive arthritis (6), and atherosclerosis (7, 8).

The most effective long-term option for control of chlamydial disease is development of a vaccine capable of protecting against infection or severe disease. Extensive knowledge about the major outer membrane protein (MOMP)3 of C. trachomatis as a surface-exposed protein and a target for neutralizing Ads has made it the focus for vaccine development (9–13). Serovar-, subspecies-, and species-specific neutralizing epitopes have been mapped to variable sequence (VS) regions within the protein (11, 12) and may contribute to protective immunity against chlamydial infection. Although synthetic peptides and peptide chimeras representing the VS regions elicit Ab responses, they have been largely unsuccessful in inducing a protective response in animal models (14–16). In a study using polyclonal sera, it was found that absorption with whole elementary bodies (EBs) abrogated neutralizing activity, whereas absorption with peptides representing the VS regions did not (17). It was concluded that the lack of a neutralizing or protective response using synthetic peptides was primarily due to their inability to mimic native epitopes on the chlamydial surface, and thus they could not elicit conformation-dependent immune responses that are essential for serovar-specific clearance (17).

Recently, Zhang et al. (18) have shown that mice immunized with the gene encoding the mouse pneumonitis (MoPn) strain MOMP can elicit both humoral and cellular immune responses to MoPn EB and can confer partial protection against a lung challenge of MoPn. Although these results are encouraging, the approach may be limited in that protection is serovar-specific and does not address the polymorphic nature of the MOMP protein sequence. For an effective vaccine, it is highly desirable that more conserved antigenic determinants on either the MOMP protein or other surface-accessible chlamydial proteins be investigated for broad cross-reactive protection.

The recent identification and characterization of a novel outer membrane protein, PorB, in C. trachomatis may provide an attractive alternate to MOMP as a vaccine candidate. Kubo and Stephens (19) have shown that this sequence-conserved 38-kDa protein is localized to the outer membrane surface of chlamydial EBs and

*Division of Infectious Diseases, School of Public Health, University of California, Berkeley, CA 94720; and †Francis I. Proctor Foundation, University of California, San Francisco, CA 94143

Received for publication December 21, 2001. Accepted for publication March 11, 2002.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 This work was supported by National Institute of Allergy and Infectious Diseases Grants AI40250 and AI42156. D.E.K. is a recipient of a National Research Service Award (AI10124) and United Negro College Fund-Merck Graduate Research Dissertation Fellowship.

2 Address correspondence and reprint requests to Dr. Richard S. Stephens, Division of Infectious Diseases, School of Public Health, 235 Warren Hall, Berkeley, CA 94720-7360. E-mail address: rss@uclink4.berkeley.edu

3 Abbreviations used in this paper: MOMP, major outer membrane protein; VS, variable sequence; EB, elementary body; MoPn, mouse pneumonitis; SPG, sucrose phosphate glutamic acid; KLH, keyhole limpet hemocyanin; IFU, inclusion forming units.
functions as a porin. The authors also found that polyclonal Abs to purified PorB protein had neutralizing properties against chlamydial infectivity in vitro. In this study, we used polyclonal sera raised to peptides representing the C. trachomatis PorB sequence and polyvalent immune sera to study the antigenic structure of the PorB protein in detail. The studies were designed to identify antigenic determinants that are on the surface of the intact chlamydial EBs and to characterize which of these are important targets of neutralizing Abs. Furthermore, we tested whether Ags representing the immunoreactive antigenic determinants could inhibit neutralization by PorB antiserum and whether peptide-specific neutralizing Abs recognize common Ags in the C. pneumoniae PorB amino acid sequence. These antigenic analyses provide an important insight into the potential of PorB Ags as new substrates in chlamydial vaccine testing.

Materials and Methods

Chlamydial strains

C. trachomatis strain D/UW-3/Cx (originally obtained from C.-C. Kuo, University of Washington, Seattle, WA) was grown in HeLa 229 cells and purified by diatrizoate (Renografin; Squibb Diagnostics, Princeton, NJ) density gradient centrifugation as previously described (20). Briefly, infected cells were disrupted by sonication for 5 s followed by centrifugation at 1,000 × g to remove host cellular debris. Liberated EBs were collected by centrifugation (12,000 × g; 30 min) and resuspended in 10 ml of PBS. The EBs were purified through a 30% diatrizoate column (58,000 × g, 40 min) to separate host cellular components followed by centrifugation (23,000 rpm; 1.5 h) on a discontinuous 30%/40% diatrizoate gradient. After removal of the supernatant, the EB pellet was washed in PBS, resuspended in sucrose phosphate glutamic acid (SPG; 200 mM sucrose, 3.6 mM potassium monophosphate, 8.6 mM sodium phosphate dibasic, 4.9 mM glutamate (pH 7.5)), and stored at −70°C.

Cloning, expression, and purification of PorB

The gene encoding PorB (porB) was cloned into the pBAD TOPO-TA vector and transformed into Escherichia coli TOP10 competent cells (Invitrogen, Carlsbad, CA) as described by Kubo and Stephens (19). Host vector containing the recombinant PorB plasmid was grown in Luria-Bertani at 37°C until an A600 of 0.5 was attained. Expression of PorB as a His-tagged protein was induced by addition of arabinose at a final concentration of 0.02%, and the cultures were incubated for an additional 3 h. PorB was extracted with 1% octylglucoside at 37°C for 1 h followed by dialysis against PBS. The recombinant protein was then purified by nickel column purification under nondenaturing conditions using the His-Bind purification system (Novagen, Madison, WI).

Preparation of synthetic peptide conjugates

Twenty-five overlapping peptides representing the entire PorB sequence were synthesized (Genemed Synthesis, South San Francisco, CA) (Table I). Stock solutions of the PorB peptides (designated B1-1 to B5-5) were prepared in distilled water at a final concentration of 1 mg/ml and stored at −20°C. The peptides were coupled to Immun maleimide-activated keyhole limpet hemocyanin (KLH; Pierce Endogen, Rockford, IL) at a 1:1 ratio of peptide to KLH according to the manufacturer’s instructions. Briefly, 1 mg of maleimide-activated KLH was mixed with 1 mg of PorB peptide in a final volume of 1 ml and incubated for 2 h at room temperature. The conjugated protein was dialyzed against PBS (pH 7.4) for 3 h with three buffer changes. Purified peptide-KLH conjugates were stored at −20°C until used.

Polyclonal immune sera

Human immune sera were obtained from the San Francisco City Clinic from individuals naturally infected with C. trachomatis. Polyclonal antiserum to C. trachomatis serovar B were obtained from rabbits immunized with purified EBs as previously described (21). Monospecific polyclonal antiserum to recombinant PorB and synthetic PorB peptide conjugates were produced in Swiss Webster mice (Harlan, San Diego, CA). Five 6- to 8-wk-old female mice were immunized by s.c. injection with 15 μg of purified PorB protein or 100 μg of peptide-KLH conjugate in an equal volume of CFA. Intraperitoneal boost immunizations were performed 2 wk later inIFA. After an additional 2 wk, mice were tested for reactivity to homologous peptide by peptide-specific ELISA. Institutional Review Board approval was obtained for use of human sera and immune sera production in rabbits and mice.

Peptide-specific ELISA

Mouse immune sera to PorB peptides were screened by ELISA using homologous peptide as coating Ag. Polystyrene microtiter plates (Immunulon 2; Dynatech, Chantilly, VA) were coated with 50 μl of 5 μg/ml peptide per well in 50 mM bicarbonate buffer (pH 9.6) and incubated overnight at 37°C. After washing twice with PBS-Tween (PBS; 0.05% Tween 20), the wells were incubated with 100 μl of blocking buffer containing 2% gelatin in PBS for 1 h at 37°C and then washed with PBS-Tween. A 50-μl volume of a 1/1000 dilution of the mouse antiserum was added, and the plates were incubated for 1 h at 37°C. The wells were washed three times with PBS-Tween and incubated with a 1/2000 dilution of goat anti-mouse IgG-HRP-conjugated Ab (Zymed Laboratories, South San Francisco, CA) for 1 h at 37°C. After washing three times in PBS-Tween and twice in PBS, the Ab complexes were detected with a mixture of substrate (0.1% hydrogen peroxide) and chromogen (1 mg/ml o-phenylenediamine; DAKO, Carpinteria, CA) in 0.1 M citrate buffer. The color was allowed to develop for 15 min and the reaction was terminated by addition of 25 μl of 8 N H2SO4. The absorbance at 492 nm was measured on a Titertek Multiscan ELISA plate reader (Flow Laboratories, McLean, VA). Each assay was run in duplicate. Human and rabbit immune sera were tested for reactivity to PorB peptides in a similar ELISA format at 1/1000 dilutions. Samples were treated with either goat anti-human IgG-HRP or goat anti-rabbit IgG-HRP conjugates (Zymed Laboratories) as secondary Ab, and binding to PorB peptide was detected as described above.

Surface accessibility ELISA

The ability of PorB peptide antiserum to recognize their cognate Ags on the surface of viable chlamydiae was determined by absorption ELISA. Peptide antisera were adjusted to a dilution corresponding to an A492 range of 0.4–1.8 and preincubated for 30 min at room temperature with purified

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Amino Acid Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1-1</td>
<td>LDAMPGNAPFVPG</td>
</tr>
<tr>
<td>B1-2</td>
<td>FPVPGINIEQKNACS</td>
</tr>
<tr>
<td>B1-3</td>
<td>KNASFCDLNSYVL</td>
</tr>
<tr>
<td>B1-4</td>
<td>NSYDVSALSNLKL</td>
</tr>
<tr>
<td>B1-5</td>
<td>NNLKCFCGGYIFSEE</td>
</tr>
<tr>
<td>B1-6</td>
<td>YISFSEAOEVQDVPVT</td>
</tr>
<tr>
<td>B2-1</td>
<td>DPVVTYVTATGQVSPDIT</td>
</tr>
<tr>
<td>B2-2</td>
<td>PDPITDTHTKNFPLVNCN</td>
</tr>
<tr>
<td>B2-3</td>
<td>DLVNCNLNTCCVAVAFLSDL</td>
</tr>
<tr>
<td>B2-4</td>
<td>ALFSDLASLAFPVDVE</td>
</tr>
<tr>
<td>B2-5</td>
<td>DPDVEQWGVGLGWYVRLF</td>
</tr>
<tr>
<td>B3-1</td>
<td>TSEPLNESEVEVTDGMEVQS</td>
</tr>
<tr>
<td>B3-2</td>
<td>GMIEVQSNYGFVWDVSLKKV</td>
</tr>
<tr>
<td>B3-3</td>
<td>DSLKVKWKDGVSFEVGUGAD</td>
</tr>
<tr>
<td>B3-4</td>
<td>FVGVGADYRHASCPYIIA</td>
</tr>
<tr>
<td>B4-1</td>
<td>PDIYIIANGQANPFEYIADS</td>
</tr>
<tr>
<td>B4-2</td>
<td>VFIADSQGLNKFKEWCVG</td>
</tr>
<tr>
<td>B4-3</td>
<td>WSVCVGLTYYNDVLYPLYA</td>
</tr>
<tr>
<td>B4-4</td>
<td>VLYLAFLSFGSVROAPDFS</td>
</tr>
<tr>
<td>B5-1</td>
<td>APDSSFKLLEDFRTNLKF</td>
</tr>
<tr>
<td>B5-2</td>
<td>FINLAFLKVRK1GTSHNKG</td>
</tr>
<tr>
<td>B5-3</td>
<td>SSSHGNCIGATNYIADN</td>
</tr>
<tr>
<td>B5-4</td>
<td>NYYADNNFYNEVRGWGSO</td>
</tr>
<tr>
<td>B5-5</td>
<td>GRWGHzORAVNNVSGGFQ</td>
</tr>
</tbody>
</table>

* Residues representing overlapping peptide regions are underlined. All peptides except B1-4 were synthesized with an additional cysteine at their C termini for conjugation to KLH.

* Residues are listed in single-letter code beginning at the N-terminal end.

Table I. Synthetic peptides representing PorB amino acid sequence
chlamydial EBs (~10^6 inclusion forming units (IFU/ml)). After centrifugation to remove the EBs, the peptide antisera were tested for residual reactivity to homologous PorB peptide or recombinant PorB as described in the ELISA method above. The difference in reactivity (A_{Sample}-A_{Control}) between the absorbed and unabsorbed peptide antisera was calculated and statistically analyzed by a Student t test. A p value < 0.05 was considered significant. The absorption experiments were repeated twice.

Chlamydia dot-blot assay

The dot-blot assay was performed as previously described by Zhang et al. (22). Briefly, nitrocellulose membrane (Bio-Rad, Hercules, CA) was pre-soaked in PBS for 10 min and assembled onto a dot-blot apparatus (Bio-Rad). A 50-μl suspension of chlamydial EBs (5 μg/ml) in PBS was added to appropriate wells and was allowed to filter by gravity for 10 min followed by vacuum filtration for 5 min to remove all liquid from the wells. The membrane was removed and treated with a blocking solution (2% dried skim milk in PBS) on a rocker for 1 h at room temperature. After three washes with PBS-Tween, the membrane was reassembled. Dilutions of preimmune sera, and 3) anti-Pgp3, an inner membrane chlamydial protein.

In vitro neutralization

In vitro neutralization assays using HaK (Syrian hamster kidney) cells were performed as previously described (23). Serial dilutions of monospecific PorB peptide antisera were used to probe overlapping synthetic peptides spanning the PorB sequence (Table I) was tested by peptide-specific ELISA. Reactivities for pooled rabbit antisera raised against purified chlamydial EBs (A), pooled sera from humans infected with C. trachomatis (B), and sera from mice immunized with purified PorB (C) are shown. Sera were tested at a 1/10000 dilution.

![Figure 1](http://www.jimmunol.org/)

Figure 1. Ag mapping of PorB protein. Polyclonal immune sera were used to probe overlapping synthetic peptides representing the entire PorB sequence. Each vertical bar represents the mean absorbance (±SEM) of a peptide in the peptide-specific ELISA. Reactivities for pooled rabbit antisera raised against purified chlamydial EBs (A), pooled sera from humans infected with C. trachomatis (B), and sera from mice immunized with purified PorB (C) are shown. Sera were tested at a 1/10000 dilution.
region with two antigenic clusters in close proximity. Although variations in individual reactivities exist, all antisera recognized the same determinants, indicating that these antigenic determinants are broadly reactive. Each of the individual sera showed reactivity to purified PorB Ag in a similar ELISA format, confirming that Ab recognition of the PorB peptides was specific (data not shown). Except for peptide B2-3, which contained a stretch of hydrophobic residues in its C-terminal region, most of the reactive Ags were hydrophobic. The hydrophilicity and reactivity of the immunoreactive peptides suggest that they may be surface accessible and targets of neutralizing immune responses.

Determination of surface accessibility of PorB Ags

Neutralization of chlamydial infectivity requires that antigenic determinants are surface exposed and accessible for Ab recognition (17, 24). The experimental approach to determining whether the identified PorB Ags are surface accessible was to generate a panel of mouse antisera to each of 25 overlapping synthetic peptides representing PorB (Table I) and to use these to probe for their cognate Ag on chlamydial EBs in absorption ELISA and EB surface-specific dot-blot assays.

Characterization of anti-peptide conjugate Abs. A panel of mouse antisera raised to overlapping synthetic PorB peptides was evaluated for reactivity by a peptide-specific ELISA. All sera reacted with their homologous peptides with mean end-point titers (log2 values) ranging from 9 to 17 (Table II). The reactivity of peptide-specific antisera to recombinant PorB or homologous peptides was reduced 58–95% by competitive inhibition with respective peptides, demonstrating that peptide recognition was specific (data not shown). In contrast, the peptide sera were unaffected by absorption with KLH and an unrelated chlamydial peptide CT673 (data not shown). Because MOMP quantitatively predominates the surface of chlamydial EBs and is known to mediate neutralization of infectivity, the panel of peptide antisera was tested for cross-reactivity to this protein. No cross-reactivity of the peptide-specific antisera was observed in that reactivity to recombinant MOMP protein was <0.3 A492 for all sera tested (Table II).

EB absorption studies. To determine which of the peptide-specific Abs were directed at PorB Ags on the chlamydial EB surface, absorption studies were conducted in an ELISA format. Peptide-specific antisera were preincubated with viable EBs before testing for reactivity to PorB peptides and recombinant PorB. If absorption with intact EBs reduced the reactivity of peptide-specific Ab compared with the unabsorbed sera, it can be inferred that the absorbed Abs were directed toward surface-accessible antigenic determinants on PorB. Absorption of sera raised to peptides B1-2, B1-3, B2-1, B2-3, B2-4, B3-2, B3-4, and B5-2 with chlamydial EBs resulted in a significant decrease in reactivity to their cognate peptides (Fig. 2; p < 0.05). Antisera B2-3, B3-2, B3-4, and B5-2 showed the largest decreases in reactivity when absorbed with EBs. In contrast, antisera B1-6 and B2-6, which showed high reactivity with their respective peptides (Table II), showed no decreases in reactivity when absorbed with EBs. This verified that the chlamydial EBs were intact during absorption. Reactivity of peptide-absorbed antisera to recombinant PorB revealed similar profiles of surface-exposed antigenic determinants, indicating that the peptide-specific Abs bind to cognate peptides as well as whole protein (data not shown). When polyclonal immune sera from humans, rabbits, and mice were preabsorbed with EBs and tested for reactivity with PorB peptides, a decrease in reactivity was observed for the same peptides (Fig. 3). Although the baseline reactivity to peptides B1-2 and B2-1 in mice is low (Fig. 1), the absorption results show that these peptides are surface accessible. The data from EB absorption studies supported the specificity of the peptide-Ab interaction and provided evidence that the immunoreactive PorB antigenic determinants are surface exposed.

Dot-blot analyses. To confirm the specificity and surface reactivity of the PorB peptide antisera, a dot-blot analysis was performed with chlamydial EBs as previously described by Zhang et al. (22). Anti-B2-1, B2-3, B3-4, and B5-2 showed the strongest reactivities to chlamydial EBs, followed by anti-B1-2, B1-3, B2-4, and B4-2 (Fig. 4). This demonstrates that the cognate antigenic determinants for these Abs are exposed on the bacterial surface. Peptide B3-2, which showed surface accessibility by the EB absorption method, did not show a strong signal in the dot-blot assay. In contrast, peptide B4-2, which was not surface exposed by EB absorption, gave a strong signal by the dot-blot method. The absence of a reactive signal for the remaining PorB peptide antisera implies that their respective antigenic determinants are inaccessible for Ab recognition. The peptides were treated with SDS, the dot-blot profile for all the peptide antisera was strong, indicating that SDS had solubilized the outer membrane of the EB, and all PorB Ags were consequently accessible (Fig. 4). Preimmune sera were negative for reactivity with both SDS-treated and untreated EBs. An additional control was included in which sera to a nonsurface protein, Pgp3 (25), were used to probe immobilized EBs. This Ab did not bind to the intact EBs but showed strong reactivity with lysed EB, verifying the structural integrity of the viable EB. The findings in the dot-blot analyses were consistent with those of the EB absorption studies and confirmed that the major antigenic determinants of PorB are surface exposed.
In vitro neutralization of chlamydial infectivity

In vitro neutralization assays are a central component in evaluating functionality of chlamydial immune responses and provide a correlate of protective immune responses (23). The neutralization data for the peptide antisera revealed four regions of neutralizing activity on the PorB protein, with 50% reciprocal neutralization end-point titers ranging from $1:32$ to $1:2048$ (Fig. 5). Anti-B1-3, B2-4, and B5-2 sera provided the strongest neutralization activities, with 50% reciprocal end-point titers $1:1024$, followed by anti-B2-3, B3-2, B3-4, and B4-2. Notably, these regions of neutralizing activity overlap regions identified as immunoreactive and surface exposed by ELISA and dot-blot analysis. This confirms that the antigenic determinants contributing to the neutralizing property of PorB antisera are surface exposed. When a pool of peptides representing the strongly neutralizing antigenic determinants (B1-3, B2-3, B2-4, B3-2, B3-4, B4-2, and B5-2) was used in a competitive inhibition assay with PorB antisera, the neutralizing ability of PorB antisera was markedly reduced (Table III). Inhibition of neutralization was concentration dependent, with 10 μg of peptides completely blocking neutralization. Similarly, preincubation of the PorB antisera with purified recombinant PorB also ablated neutralization of chlamydial infectivity. Heat denaturation of PorB appeared to have no additional effect on inhibiting PorB antisera because the neutralization results were similar to that observed when intact PorB was used as the inhibiting Ag. These results revealed that neutralizing PorB antisera contain a population of Abs that recognize predominantly linear antigenic determinants on the surface of the EB.

![Figure 2](http://www.jimmunol.org/)

FIGURE 2. Accessibility of PorB antigenic determinants on the surface of chlamydial EBs. Pretitered mouse peptide antisera were preincubated with purified chlamydial EBs and tested for residual reactivity to homologous peptide. The results are presented as percent reduction in serum reactivity (A_{492}) to PorB peptides due to absorption with viable EBs. *, Significance at $p < 0.05$ when absorbed sera were compared with unabsorbed sera by a Student’s t test.

![Figure 3](http://www.jimmunol.org/)

FIGURE 3. Change in reactivities of EB-absorbed polyclonal immune sera to PorB peptides. Rabbit, human, and mouse immune sera were preincubated with chlamydial EBs and assayed for residual reactivity to PorB peptides by ELISA. The results are presented as percent reduction in serum reactivity (A_{492}) due to absorption with viable EBs. Sera were tested at a 1/1000 dilution.
Identification of common PorB antigenic determinants between C. trachomatis and C. pneumoniae

Comparison of the PorB amino acid sequences for C. trachomatis and C. pneumoniae revealed 59.3% identity, indicating that this protein is conserved between species (19). To determine whether the neutralizing C. trachomatis PorB peptide antisera recognized common Ags between the two species, the reactivity of the neutralizing PorB peptide antisera to analogous synthetic C. pneumoniae PorB peptides was evaluated. Four C. pneumoniae PorB peptides (CPn 1-3, CPn 3-2, CPn 4-4, and CPn 5-2) showed strong reactivities to the corresponding C. trachomatis peptide antisera (Table IV). Amino acid sequence comparison revealed that C. pneumoniae PorB peptides with the highest cross-reactivity (CPn 3-2, CPn 4-4, and CPn 5-2) shared a minimum of 67% residue identity (bold) and 75% sequence similarity with their corresponding C. trachomatis PorB peptides. In contrast, peptides with <50% sequence identity (CPn 1-2, CPn 2-3, CPn 2-4) showed little or no cross-reactivity with the corresponding peptide antisera. Ab recognition of C. pneumoniae PorB antigenic determinants was not always associated with an increased number of shared or similar residues. For instance, CPn 4-3, which has 60% identity and 90% similarity with B4-3, showed no reactivity with the corresponding B4-3 antisera, whereas CPn 2-4 with 40% identity and only 50% similarity showed moderate cross-reactivity. The reactivity patterns suggest that these C. pneumoniae antigenic determinants may be surface exposed and may also be the targets of neutralizing Ab responses. Collectively, these results show that neutralizing PorB peptide antisera recognize similar PorB Ags in C. trachomatis and C. pneumoniae and suggest that the sera may have broad neutralizing properties directed against surface-exposed peptides.

Discussion

Protection from chlamydial infections by the host immune response requires specific recognition of unique antigenic determinants that are exposed on the surface of native EBs and are capable of eliciting neutralizing Abs (12, 17, 26). To date, MOMP is the only known surface-exposed Ag that mediates neutralization of chlamydial infectivity and confers protection (17, 22). However,
development of a MOMP-based vaccine has been challenging because the neutralizing determinants are antigenically variant (12) and protection is conformation dependent (17). Consequently, there has been a high priority to identify other chlamydial proteins as alternate candidates.

The genome sequence of C. trachomatis revealed several new outer membrane proteins including a family of sequence variant polymorphic membrane proteins of unknown function and PorB, an outer membrane porin (27). Recently, it has been shown that PorB antisera are also efficient at neutralizing chlamydial infectivity (19). Although this finding is encouraging, the topology and neutralizing Ags of the protein are unknown. Synthetic peptides have been extensively used to map antigenic determinants of chlamydial MOMP (12, 28, 29) and have provided additional information that correlates amino acid sequence with variation in the MOMP VS regions (30). In the present study, a panel of synthetic peptides, polyclonal immune sera, and peptide-specific antisera were used to precisely map the antigenic structure, surface accessibility, and neutralizing properties of PorB. A schematic model of the predicted secondary structure of PorB depicts a protein consisting of 16 transmembrane anti-parallel β-sheets with the immunoreactive antigenic determinants protruding into the extracellular matrix (Fig. 6). This is consistent with the structure of the E. coli porin OmpA (31) and the predicted structure of the chlamydial porin MOMP (12, 32). Four regions of the protein were identified as strongly antigenic, and the antigenic determinants that comprise these clusters were predominantly hydrophilic and predicted to be surface exposed.

Table III. Percentage of neutralization of chlamydial infectivity by PorB antisera in the presence of inhibitory Ag

<table>
<thead>
<tr>
<th>Ag</th>
<th>Concentration (µg/)</th>
<th>2 (%)</th>
<th>5 (%)</th>
<th>10 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peptides</td>
<td></td>
<td>28</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PorB</td>
<td></td>
<td>39</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Denatured PorB</td>
<td></td>
<td>39</td>
<td>6</td>
<td>11</td>
</tr>
</tbody>
</table>

* * Increasing concentrations of inhibiting Ag were preincubated with a dilution of PorB antisera yielding ~60% neutralization used in vitro neutralization assays as described in Materials and Methods.
* * A pool of synthetic peptides representing Ags that are neutralizing targets were used for inhibition studies.
* The percentage of neutralization was calculated for each sample relative to the SPG control. Assay was done in triplicate.
* Purified PorB protein was denatured by boiling for 10 min.

Table IV. Reactivity of neutralizing C. trachomatis PorB peptide-specific antisera to synthetic C. pneumoniae PorB peptides

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Amino Acid Sequence</th>
<th>Reactivity to Peptide Antisera ELISA (A492)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPn 1-2</td>
<td>APVLPGVNFEQWGCA</td>
<td>0.10</td>
</tr>
<tr>
<td>CPn 1-3</td>
<td>QTPGWCPQLCNSYLDF</td>
<td>1.24</td>
</tr>
<tr>
<td>CPn 2-3</td>
<td>DLINNGSISSECPRTIALQE</td>
<td>0.49</td>
</tr>
<tr>
<td>CPn 3-4</td>
<td>TIALQETSSPAPXPLDIATF</td>
<td>0.58</td>
</tr>
<tr>
<td>CPn 3-2</td>
<td>GLEIQSYGMVWSLQKVK</td>
<td>2.70</td>
</tr>
<tr>
<td>CPn 3-3</td>
<td>GLEILKVLWTKGQVSDVAD</td>
<td>0.19</td>
</tr>
<tr>
<td>CPn 3-4</td>
<td>FVGVSDYRHSPIYIVIC</td>
<td>0.50</td>
</tr>
<tr>
<td>CPn 4-2</td>
<td>IYFDATDGNLSTKEIGASIG</td>
<td>0.82</td>
</tr>
<tr>
<td>CPn 4-3</td>
<td>WSASIGSTLINDVLPYAS</td>
<td>0.12</td>
</tr>
<tr>
<td>CPn 4-4</td>
<td>VLPYASVIGTNSRAPDSF</td>
<td>3.00</td>
</tr>
<tr>
<td>CPn 5-2</td>
<td>FPNEKEIRKINFDRDN</td>
<td>2.98</td>
</tr>
</tbody>
</table>

* Synthetic peptides analogous to C. trachomatis PorB peptides were synthesized as described in Materials and Methods. Residues are listed in single-letter code beginning at the N-terminal end. Regions of shared amino acid sequences are in bold.
* Peptide-specific antisera were diluted 1/1000 and tested for reactivity to C. pneumoniae PorB peptides at 5 µg/ml. Absorbance values at 492 nm were compared to values for reactivity of antisera to cognate C. trachomatis peptides.

FIGURE 6. Model of secondary structure for C. trachomatis PorB protein. PorB secondary structure was deduced by analogy to substrate-specific porins and Chou-Fasman prediction for turn-promoting residues (31). Peptides exposed on the surface of chlamydial EBs as determined by absorption ELISA and dot-blot analysis and peptides that elicit neutralizing Ab responses are indicated by bars below.
discontinuous antigenic structures as de
antigenic determinants on the native Ag, caution must be exercised
may be limited in their recognition of linear vs conformational
inhibiting immune response. Because Abs raised to synthetic peptides
antigenic structures that contribute to the PorB-specific neutralizing Ags supports the existence of a complex of discontinuous
tereactive and surface exposed (Fig. 6). The proximity of the neu-

tion-independent antigenic determinants, a major advantage of
infectivity neutralization.

Identification of the major neutralizing antigenic determinants for PorB has important implications for chlamydial vaccine design. In addition to having surface-accessible and possibly conformation-independent antigenic determinants, a major advantage of PorB is that it is highly sequence conserved between serovars and species (19) and can be expected to provide protection for a broad spectrum of chlamydial strains including C. pneumoniae. Consistent with this is the finding that neutralizing Abs to C. trachomatis serovar D PorB Ags cross-react with analogous C. pneumoniae peptides, and they also neutralize infectivity of C. trachomatis serovar B (data not shown). Moreover, the C. pneumoniae PorB peptides used in this study have hydrophilic profiles similar to those of their C. trachomatis counterparts, increasing the likelihood that these Ags are also surface oriented on the native Ag and are targets of a broadly neutralizing Ab response. PorB as a vaccine Ag will obviate the need to incorporate serovar- and species-specific determinants and, if effective, will be valuable in providing protection against multiple serovars or species, which is highly desirable for long-term control of chlamydial infections.

Acknowledgments

We thank Dr. Aya Kubo for her valuable technical assistance with purification of PorB and Claudia Fenner for her critical review of the manuscript.

References

ulular Biology, Pathogenesis and Immunity. R. S. Stephens, ed. ASM Press, Wash-

ington, DC, p. 139.

fections. In Chlamydial Infections: Proceedings of the Ninth International Sym-

sium, San Francisco, p. 661.

3. Caies, W., Jr., and J. N. Wasserheit. 1991. Genital chlamydial infections: epide-

tralization epitope on the major outer membrane protein of Chlamydia tracho-

mydia trachomatis RNA polymerase major subunit: sequence and structural comparison of conserved and unique regions with Escherichia coli rpo70 and Bac-

acterization of a cloned fragment containing the species-specific epitope from the major outer membrane protein of Chlamydia trachomatis encoding a novel 28 kDa antigen. J. Gen. Microbiol. 139:1083.

mydial major outer membrane protein resolved at a single amino acid level. The Journal of Immunology 5191.