Immunoproteasomes Largely Replace Constitutive Proteasomes During an Antiviral and Antibacterial Immune Response in the Liver

Selina Khan, Maries van den Broek, Katrin Schwarz, Rita de Giuli, Pierre-André Diener and Marcus Groettrup

http://www.jimmunol.org/content/167/12/6859

References

This article cites 61 articles, 29 of which you can access for free at:

http://www.jimmunol.org/content/167/12/6859.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at:

http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:

http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:

http://jimmunol.org/alerts
Immunoproteasomes Largely Replace Constitutive Proteasomes During an Antiviral and Antibacterial Immune Response in the Liver

Selina Khan,2* Maries van den Broek,2† Katrin Schwarz,2* Rita de Giuli,* Pierre-André Diener,† and Marcus Groettrup3*†

The proteasome is a proteolytic system that selectively terminates the function of proteins in the cell by degrading them to peptides (1). The immune system makes use of these peptides as ligands for MHC class I molecules to be presented to CTL. As part of the MHC class I pathway the immune system has developed the ability to modify proteasome activity in inflammatory sites through the cytokine-mediated induction and replacement of proteasome active site subunits and regulators (2). Although this phenomenon has been studied extensively in vitro, little is known about the extent to which proteasome subunit replacements occur during an ongoing immune response in an inflamed tissue in vivo. Hence, we decided to examine the subunit composition of proteasomes in the liver of lymphocytic choriomeningitis virus (LCMV)-infected mice.

The proteasome is critically involved in the production of MHC class I-restricted T cell epitopes. Proteasome activity and epitope production are altered by IFN-γ treatment, which leads to a gradual replacement of constitutive proteasomes by immunoproteasomes in vitro. However, a quantitative analysis of changes in the steady state subunit composition of proteasomes during an immune response against viruses or bacteria in vivo has not been reported. Here we show that the infection of mice with lymphocytic choriomeningitis virus or Listeria monocytogenes leads to an almost complete replacement of constitutive proteasomes by immunoproteasomes in the liver within 7 days. Proteasome replacements were markedly reduced in IFN-γ−/− mice, but were only slightly affected in IFN-αR−/− and perforin−/− mice. The proteasome regulator PA28α/β was up-regulated, whereas PA28γ was reduced in the liver of lymphocytic choriomeningitis virus-infected mice. Proteasome replacements in the liver strongly altered proteasome activity and were unexpected to this extent, since an in vivo half-life of 12 days had been previously assigned to constitutive proteasomes in the liver. Our results suggest that during the peak phase of viral and bacterial elimination the antiviral cytotoxic T lymphocyte response is directed mainly to immunoproteasome-dependent T cell epitopes, which would be a novel parameter for the design of vaccines. The Journal of Immunology, 2001, 167: 6859–6868.

The proteasome system consists of a proteolytic core unit, the 20S proteasome, and regulators such as PA700, PA28α/β, PA28γ, and PI31, which control substrate acquisition and catalytic activity of the proteasome. The 20S proteasome is constructed like a barrel of four stacked rings. The two outer rings contain seven different subunits of the α type, whereas the inner two rings contain seven different subunits of the β type that are numbered according to their positions in the ring. The subunits β1 (6,Y), β2 (MC14, LMP9, Z), and β5 (MB1, X) bear the catalytically active sites of the 20S proteasome facing the inner cavity of the protease. When cells are treated with the inflammatory cytokines IFN-γ and TNF-α, three additional active site subunits, named β1i (LMP2), β2i (MECL-1), and β5i (LMP7), are transcriptionally induced and take the place of their constitutive homologues during proteasome neosynthesis. This substitution of active site subunits changes the proteolytic specificity of the proteasome (3–6) and leads to marked changes in the distribution of fragments that are produced from polypeptides (7, 8). The exchange of LMP2 for δ was unanimously reported to down-regulate cleavages C-terminal of acidic residues (the caspase-like activity) and favor the cleavage C-terminal of hydrophobic residues (the chymotryptsin-like activity). This change in cleavage specificity conforms to structural requirements of class I peptide ligands that possess hydrophobic C termini in the mouse and either hydrophobic or basic C termini in the human. Conflicting data have been reported on the effects of the two other subunit exchanges of LMP7 for MB1 (8–10) and MECL-1 for MC14 (Z) (11), and structural analysis does not predict major changes in the specificity of the P1 pockets (12), leaving the functions of these latter two exchanges elusive. With respect to the bulk production of MHC class I ligands, it was found in LMP2- and LMP7-deficient cell lines (13, 14) that these subunits are not generally required to maintain class I cell surface expression. For the generation of specific epitopes, however, the expression of either LMP2 or LMP7 can be pivotal. Several epitopes were produced...
inefficiently or not at all in the absence of LMP2 (15, 16) or LMP7 (17–22), but the opposite case has recently been reported for several epitopes from tumor Ags that were destroyed when LMP2 and LMP7 were expressed at high levels (23). Consistent with these in vitro results, it was recently found in LMP2−/− mice that this subunit has a pivotal influence on the hierarchy of T cell epitopes from influenza virus (24).

A further component of the proteasome system that has a pronounced effect on Ag processing is the proteasome regulator PA28α/β. Both, the α and β subunits of this ring-shaped regulator are inducible with IFN-γ at both mRNA and protein levels (25). PA28α/β stimulates the various proteolytic activities of the proteasome to different extents and markedly alters the fragmentation of poly peptides through the 20S proteasome (8, 26, 27). Overexpression of PA28α in cell lines resulted in a higher presentation of some (28–30), but not all, T cell epitopes (22), suggesting a role for PA28α/β in Ag processing that was recently confirmed in PA28β−/− mice (31). A homologue of PA28α/β that is not transcriptionally induced by IFN-γ is named Ki Ag or PA28γ. The single subunit of PA28γ forms heptahomeric rings that associate with the proteasome and are predominantly found in the nucleus. Interestingly, the PA28γ protein appears to be down-regulated upon the IFN-γ treatment of cell lines in vitro and in transgenic mice that constitutively express IFN-γ. The function of PA28γ is not clear, but it could be that it acts as a proteasome activator.

Taken together it appears that the inducible proteasome subunits LMP2, LMP7, and MECL-1 as well as the proteasome regulator PA28α/β are not needed to guarantee the bulk flow of MHC class I ligands, but for the generation of unique epitopes they often have a decisive impact. Based on these insights, two hypotheses can be envisaged as to why the immunoproteasomes and PA28α/β co-evolved with the MHC class I pathway. It may be that these factors are induced to generate different sets of proteasome complexes in a cell to enlarge the diversity of peptide processing, which would allow the processing of a given antigenic protein in several ways. This scenario should be useful to express approximately equal amounts of constitutive proteasomes and immunoproteasomes in an inflamed tissue. Alternatively, it could be that CTLs are meant to be directed to a set of peptides in an inflammatory site compared with noninflamed tissues, and this could only be achieved if constitutive proteasomes were largely replaced by immunoproteasomes. We have investigated in this study the steady state composition of 20S proteasomes of the liver on several days during the course of an infection of the mouse with the hepatotropic WE strain of LCMV and the bacterium Lm. Unexpectedly, the infections led to virtually complete replacement of constitutive proteasomes by immunoproteasomes and strong induction of PA28α/β as well as the disappearance of PA28γ on days 7 and 8 of the infection, when the cytotoxic immune response is maximal and pathogen numbers decline. Our results suggest that the cytotoxic immune response in the infected liver will be predominantly directed to a set of T cell epitopes that are produced by immunoproteasomes, while the T cell response is clearing the virus. This finding argues against the maximal diversity argument and suggests that it must be beneficial for the immune response to convert epitope production to a set of peptides that is produced by immunoproteasomes and PA28α/β.

Materials and Methods

Mice and cell lines

C57BL/6 mice (H-2b) and BALB/c mice (H-2d) were purchased from In- stitut für Labor tierkunde, Tier spital Zurich (Zurich, Switzerland), and kept in a specific pathogen-free environment. Mice deficient for IFN-γ (34), IFN-α/β (35), and perforin (36) have been described previously. MC57 is a C57BL/6-derived methylcholang terene-induced fibrosarcoma cell line (37), and B8 is a BALB/c-derived SV40-induced fibrolast line (38). H2.35 is a mouse hepatocyte cell line that we obtained from American Type Culture Collection (Man assas, VA). All cell lines were grown in IMDM or RPMI 1640 medium supplemented 10% FCS, 2 mM l-glutamine, and 100 U/ml penicillin/streptomycin.

Flow cytometry

For surface staining, aliquots of 5 × 10^5 cells in PBS and 2% FCS were incubated for 15 min in a round-bottom 96-well plate on ice with the mouse mAb KL25 specific for the LCMV glycoprotein (39). Cells were washed three times and subsequently stained by FITC-conjugated goat anti- mouse Ig secondary Ab (Silenus, Melbourne, Australia). After two washing steps the cells were analyzed on a FACScan flow cytometer (BD Bio- sciences, Mountain View, CA).

LCMV, Listeria, and infection of mice

LCMV-WE was propagated in the L929 fibroblast line, and viral stocks were kept at –70°C (40). The virus was grown and titrated on L929 cells exactly as previously described (41). Mice were infected i.v. with 200 PFU (low dose) or 10^6 PFU (high dose) LCMV-WE. After the indicated days the mice were sacrificed, and the livers were excised for purification of 20S proteasomes and for Western analysis. Spleen and liver samples were used for determination of LCMV titers, and peripheral blood was used for IFN-γ ELISA. Serum levels of IFN-γ were below detection levels on all days of infection except day 4, when 10–30 U/ml was found.

For Listeria infection, mice were infected i.v. with 9800 CFU Lm 10304S in PBS. Lm were cultured overnight at 37°C in brain-heart infusion broth. On the day of infection, 10-fold serial dilutions of the inoculum were plated on brain-heart infusion agar plates and incubated overnight at 37°C. The exact amount of bacteria injected the day before was calculated from these plates.

Purification of 20S proteasomes from mouse liver and fluorogenic assays

20S proteasomes from two or three mouse livers were purified and quantitated as detailed previously (42). Hydrolytic assays for proteasome activity employing fluorogenic assays were performed as previously described (43). PA28α/β complexes were not detected in the proteasome preparations according to Western analysis (data not shown).

Two-dimensional gel electrophoresis

For Figs. 2–5 aliquots of 60 μg purified 20S proteasomes were separated on two-dimensional nonequilibrium pH gradient gel electrophoresis (NEPHGE)/SDS-PAGE or isoelectric focusing/SDS-PAGE exactly as previously described (44). After the run, the gels were stained with Coomassie brilliant blue R250. For quantitation, the gels were scanned and analyzed using AIDA software (Fuji, Tokyo, Japan).

Metabolic labeling and immunoprecipitation

H2.35, B8, or MC57 cells were left unstimulated or were infected with LCMV-WE at a multiplicity of infection of 0.01. One day after infection cells were incubated with 100 U/ml mouse rIFN-γ for 16 h or were left unstimulated. LCMV infection was confirmed flow cytometrically by LCMV glycoprotein expression on the cell surface, and IFN-γ stimulation was confirmed by up-regulation of H-2 class I expression. Cells were starved in methionine/cysteine-free RPMI 1640 and 10% dialyzed FCS with or without rIFN-γ for 30 min, labeled for 6 h with 0.2 μCi/ml Translabel (ICN, Eschwege, Germany), and chased for 18 h with or without rIFN-γ. The cells were harvested by trypsinization and lysed by sonication in buffer A (25 mM Tris (pH 7.6), 2 mM MgCl2, 17% glycerol, 1 mM DTT, and 2 mM ATP). The postnuclear lysates were counted for ^35S incorporation, and equal aliquots were used for immunoprecipitation. The lysate was precleared for 1 h with protein G-Sepharose CL-4B (Pharmacia, Uppsala, Sweden), followed by immunoprecipitation with an anti-proteasome serum (30) bound to protein G-Sepharose for 4 h at 4°C. The precipitates were washed with buffer A, separated by NEPHGE/SDS-PAGE, and visualized on x-ray films by autoradiography.
Western blot analysis and sucrose gradient density centrifugation

In Fig. 6, liver specimens were lysed in buffer B (50 mM Tris-HCl (pH 7.5), 5 mM MgCl2, 1 mM EDTA, 1% SDS, 0.75 μM aprotinin, 10 μM leupeptin, 2.8 μM pepstatin, and 0.85 mM PMSF) in a Dounce homogenizer (Kontes, Vineland, NJ), and 100 μg total protein/lane was separated by SDS-PAGE. In Fig. 2D, liver samples from C57BL6 mice on day 8 of LCMV infection were lysed in buffer C (25 mM Tris-HCl (pH 7.5) and 2 mM MgCl2) in a Dounce homogenizer with subsequent sonication. Post-nuclear supernatants were loaded onto a 10–40% sucrose gradient and centrifuged at 40,000 rpm in a Beckman SW40Ti rotor (Palo Alto, CA) for 16 h. Gradient fractions of 0.6 ml were drawn, proteasome activity was determined to confirm proper separation, and proteins were separated on SDS-PAGE. The proteins were blotted onto nitrocellulose membrane (Schleicher & Schuell, Dassel, Germany), blocked with PBS/5% (v/v) low fat dry milk/0.1% Tween 20 for 1 h, and agitated overnight at 4°C with the described rabbit antisera specific for peptides PA28α and PA28β (45). Rabbit antisera for mouse LMP7 and PA28γ were raised against the key-hole limpet hemocyanin-coupled peptides SDVSDDLKYKGEAAL and ILTNTSHGDGLPFTYK, respectively. The MC3 Ab has been described previously (46). The blasts were washed and incubated for 1 h with HRP-conjugated secondary Ab. After extensive washing with PBS/0.1% Tween 20, proteins were visualized on x-ray films by enhanced chemiluminescence.

Real-time RT-PCR

Total RNA was extracted from mouse liver tissue using TRIzol reagent (Life Technologies, Basel, Switzerland). cDNA was synthesized from 3 μg RNA using 2 mM dT15, 2 mM dNTPs, 0.6 U/μl RNasin (Promega, Wallisellen, Switzerland), 200 U Moloney murine leukemia virus reverse transcriptase (Promega) (1 h at 42°C). After cDNA synthesis, the nucleic acids were purified in 3 M NaCl/80% ethanol, and the pellet was washed twice in 70% ethanol. The samples were resuspended in H2O. Real-time PCR was performed with a Light Cycler (Roche, Basel) using the DNA Master SYBR Green I reaction mix (Roche) and 0.5 pmol/μl of each primer in 3.5 mM MgCl2. Sense and antisense primers used for PCR amplification were (annealing temperatures (a.t.) given in parentheses): mouse (mo) LMP2, 5'-GGACAATGAACGCTACACACTGC-3' and 5'-CCACGCACTACTGATGATGCTC-3' (a.t. = 62°C); moDELTA, 5'-TCGAGTGTGCAAGCAG-3' and 5'-CTGAGATGATCAGCGTC-3' (a.t. = 62°C); moLMP7, 5'-ATCTCCTGTGTGCAGATATC-3' and 5'-ATCTCATTCTACCAACCC-3' (a.t. = 58°C); moMB1, 5'-CTGACGGACACCCACC-3' and 5'-CCTATGACAGCCATGTC-3' (a.t. = 58°C); moTNF-α, 5'-GCAACAAGGATGTGAC-3' and 5'-TGTCCCTTGGGAAAGAGAC-3' (a.t. = 62°C); mouse hypoxanthine phosphoribosyltransferase (HPRT): 5'-GGTGGTGGAGAACGCCCT-3' and 5'-CAGACGGTACAGCAGGCC-3' (a.t. = 60°C). The runs were programmed as follows: denaturation for 30 s at 95°C; amplification (40 cycles, with readings of the fluorescence at the end of each cycle) for 1 s at 95°C, 10 s at a.t., and 20 s at 72°C; and analysis of the products (reading of the fluorescence in a continuous mode) for 0 s at 95°C, 60 s to 95°C transition with 0.1°C increment/sec. For mouse IFN-γ we used a conventional PCR mix containing the PCR primers moIFN-γ (5'-GACACTAAGCCGCTCAGACTGC-3' and 5'-GGACATCTTCTCCACC-3'; a.t. = 58°C) and the fluorescence resonance energy transfer primers (5'-TGCAAGTTGGGTGAGGATCAACACCCACCAC-3' and 5'-L-Cr6d40-GTCCAGGCGCAGATTGGTACG-3'); reading of fluorescence was performed after annealing. Analysis was performed with Light Cycler software 3. The value calculated by the quantification analysis was always within the range covered by three concentrations of sample that were taken as arbitrary units to construct the standard curve for linear regression with r = 1.0 and p < 0.0001. The CDNA were normalized to HPRT mRNA content. The specificity of the amplification was checked with melting curve analysis of the products as well as analysis on an agarose gel.

Results

LCMV-WE does not induce immunoproteasomes by itself and does not interfere with the IFN-γ-mediated induction of immunoproteasomes

To investigate how the steady state composition of 20S proteasome subunits changes during the course of a viral infection it was important to choose a virus that infects an entire organ in a well-documented manner and reproducible time course. The infection of the mouse with the hepatotropic strain WE of LCMV is a suitable model system to address this question, because this virus readily replicates in hepatocytes, Kupffer cells, fibroblasts, endothelial cells, and other cell types of the liver, and it rapidly spreads throughout the organ (47–49). Moreover, LCMV-WE elicits a strong and well-characterized CTL response that is maximal on day 8 of infection and leads to elimination of the virus. However, as some viruses interfere with the induction of immunoproteasomes (50, 51), we decided to initially test whether this was also the case for LCMV-WE. The mouse hepatocyte line H2.35 as well as B6 or MC57 fibroblasts were infected with LCMV-WE and after 1 day were cultivated in the presence or the absence of IFN-γ for 16 h before metabolic labeling. Proteasomes were immunoprecipitated, and the subunit composition was analyzed by two-dimensional NEPHGE/SDS-PAGE (Fig. 1A). Inductions of LMP2 or LMP7 were not observed in H2.35 cells (Fig. 1) or in B6 or MC57 cells (data not shown) upon LCMV-WE infection, although the cells were productively infected, as documented by flow cytometric analysis of LCMV glycoprotein expression on the cell surface (data not shown). Moreover, an interference of LCMV-WE with the IFN-γ-mediated induction of LMP2 and LMP7 was not observed, which was a prerequisite for monitoring their in vivo induction in infected mice.

Gradual and extensive replacement of constitutive proteasomes by immunoproteasomes in the liver of LCMV-infected mice

Mice of the C57BL/6 strain were infected i.v. with a high dose (106 PFU) of LCMV-WE, and two livers each from uninfected mice and mice on days 2, 4, 8, 12, and 25 after infection were used to purify 20S proteasomes. The subunits of the 20S proteasomes were separated by two-dimensional NEPHGE/SDS-PAGE, and the proteins were visualized by Coomassie staining. This method allows a reliable quantification of the steady state amounts of proteasome subunits and the relative intensity changes during subunit replacements. The results shown in Fig. 2A reveal that uninfected mice express very little LMP2 and LMP7.

FIGURE 1. Effect of LCMV-WE infection on the induction of LMP2 and LMP7. A, NEPHGE/SDS-PAGE of proteasome immunoprecipitates from metabolically labeled H2.35 hepatocytes. Cells were treated for 2 days with IFN-γ and/or infected with LCMV-WE as indicated below each autoradiograph. The positions of the proteasome subunits LMP2 (βi1), LMP7 (βi3), β1, and MB1 (βs) are marked by arrows; the molecular mass is given in kilodaltons at the right. The spot marked with an asterisk in the top left panel is unspecific.
prominent, whereas the LMP7 spots were already twice as intensive as that for MB1. On day 8 of infection, when virus titers start to decline (Table I) and the cytotoxic immune response and the expansion of LCMV-specific CD8 T cells are usually maximal (47, 52), we observed an almost complete replacement of MB1 by LMP2 and of MB7 by LMP7. The 8-fold reduction of MB1 and the 4-fold reduction of δ by day 8 of infection were unexpected, as the constitutive proteasome was reported to possess an in vivo half-life of 12–15 days in rat livers (53). The exchange of MC14 by MECL-1 on day 8 was analyzed on isoelectric focusing-SDS-PAGE two-dimensional gels, because it was not readily resolved by NEPHGE/SDS-PAGE and was found to occur to an extent of only 50% (data not shown) as has been previously documented for IFN-γ-treated cells (44). On day 12 postinfection, when virus titers were 100-fold reduced, the ratio of inducible to constitutive subunits started to revert again, but even on day 25 of infection the
constitutive proteasome subunits δ and MB1 had not yet reached preinfection levels.

To investigate how mRNA levels of inducible and constitutive subunits were changed during the infection, we analyzed two preinfection levels. We found that the virus dose did not alter the rate of proteasome subunit replacements, and the same result was obtained when C57BL/6 mice were infected with 200 PFU LCMV-WE (data not shown).

Table I. LCMV titers in liver samples from mice at indicated days after infection with high (10⁶ PFU) or low (200 PFU) doses of LCMV-WE.

<table>
<thead>
<tr>
<th>Mouse Strain</th>
<th>Dose of Infection</th>
<th>Day of Infection</th>
<th>LCMV Titer</th>
</tr>
</thead>
<tbody>
<tr>
<td>C57BL/6</td>
<td>High</td>
<td>1</td>
<td>5.4 × 10³; 4.5 × 10³</td>
</tr>
<tr>
<td>C57BL/6</td>
<td>High</td>
<td>2</td>
<td>3.9 × 10³; 6.3 × 10³</td>
</tr>
<tr>
<td>C57BL/6</td>
<td>High</td>
<td>3</td>
<td>6.3 × 10³; 7.8 × 10³</td>
</tr>
<tr>
<td>C57BL/6</td>
<td>High</td>
<td>4</td>
<td>3.3 × 10⁴; 4.5 × 10⁴</td>
</tr>
<tr>
<td>C57BL/6</td>
<td>High</td>
<td>8</td>
<td>5.1 × 10⁵; 3.9 × 10⁶</td>
</tr>
<tr>
<td>C57BL/6</td>
<td>High</td>
<td>12</td>
<td>8.0 × 10⁶; 1.0 × 10⁷</td>
</tr>
<tr>
<td>C57BL/6</td>
<td>High</td>
<td>15</td>
<td>7.5 × 10⁶; 9.0 × 10⁶</td>
</tr>
<tr>
<td>C57BL/6</td>
<td>High</td>
<td>25</td>
<td>ND; ND</td>
</tr>
<tr>
<td>BALB/c</td>
<td>Low</td>
<td></td>
<td>1.0 × 10⁵; 1.0 × 10⁶</td>
</tr>
<tr>
<td>BALB/c</td>
<td>High</td>
<td>7</td>
<td>5.1 × 10⁶; 7.8 × 10⁶</td>
</tr>
<tr>
<td>BALB/c-IFN-γ−/−</td>
<td>High</td>
<td>7</td>
<td>7.2 × 10⁵; 9.3 × 10⁶</td>
</tr>
</tbody>
</table>

* Titters are given in PFU LCMV-WE per liver; ND, LCMV titers were below the detection limit of the plaque assay.

In vivo replacement of δ and MB1 by LMP2 and LMP7 is largely dependent on IFN-γ, but only to a minor extent on IFN-α and perforin

Since IFN-γ is the cytokine that transcriptionally induces LMP2, LMP7, and MECL-1 most vigorously (55), we decided to determine the extent of subunit replacement in the liver of IFN-γ-deficient BALB/c mice (34) that had been infected with a high or a low dose of LCMV-WE 7 days previously (Fig. 4). In the absence of IFN-γ the induction of LMP2 and LMP7 was reduced by about 50% despite an enhanced virus titer, indicating that a complete replacement of active site proteasome subunits, as in the wild-type BALB/c mouse, could not be obtained. Hence, other cytokines must be able to induce the 7-fold induction of LMP2 and LMP7 observed in IFN-γ−/− mice. We tested the effects of IFN-α and β in IFN-αR−/− mice and found that the replacement of constitutive proteasomes by immunoproteasomes in the liver was only slightly reduced. Apparently, type 1 IFNs do not contribute much to the proteasome replacement in vivo, which is consistent with a lack of LMP2 and LMP7 up-regulation after LCMV infection in vitro that led to an induction of IFN-α/β (data not shown). Another gene-targeted mouse that we examined was the perforin−/− mouse, because we wanted to determine whether perforin-mediated destruction of LCMV-infected cells in the liver by CTLs or NK cells would be required to promote the removal of constitutive proteasomes and the replacement by immunoproteasomes during tissue regeneration. As shown in the bottom panel of Fig. 4, perforin...
deficiency affected the replacement of constitutive proteasomes in the liver to only a minor extent, suggesting that perforin-mediated cell death contributed only marginally to these replacements.

Infection of mice with Listeria leads to an extensive replacement of constitutive proteasomes by immunoproteasomes in the liver

We investigated whether the proteasome replacements in the liver during LCMV infection was a virus-specific phenomenon or whether an immune response against bacteria would have a similar consequence. BALB/c mice were infected i.v. with 9800 CFU of the Lm strain 10304S, and livers were removed on days 3 and 7 postinfection for isolation of 20S proteasomes and analysis on Coomassie-stained two-dimensional gels. As depicted in Fig. 5, Lm infection led to a comparable exchange of constitutive proteasomes by immunoproteasomes as had previously been observed with LCMV infection. The onset of proteasome replacements appeared to be very early after Lm infection, as it was more pronounced on day 3 of Lm infection than on day 4 after LCMV infection, a finding that was consistently obtained in both BALB/c (Fig. 5) and C57BL/6 (data not shown) mice. Taken together, the extensive proteasome exchanges observed during the course of LCMV infection do not seem to be a solitary phenomenon confined to this virus, but may be extended to bacteria and possibly other pathogens.

PA28α and β are up-regulated, whereas PA28γ is down-regulated, in the liver of LCMV-infected mice

Since PA28α/β is known to be transcriptionally up-regulated by IFN-γ and since PA28γ was reported to be down-regulated by IFN-γ by a to date uncharacterized post-transcriptional mechanism, we decided to follow the protein levels of PA28-α, -β, and -γ by Western analysis using peptide antisera against these three subunits of proteasome regulators. Liver tissues were obtained from C57BL/6 mice that were either uninfected or infected with a high dose of LCMV-WE on the indicated days before analysis (Fig. 6). The Western blots revealed that the amounts of PA28α and -β increased by a factor of 3.5 from day 0 to day 8 of infection and declined thereafter. As we have observed for the induction of LMP2 and LMP7, the induction was already visible on day 3 after LCMV infection and reached a peak when the CTL response is expected to be maximal on day 8. Interestingly, the level of PA28γ protein was strongly reduced during days 4, 8, and 15 of infection compared with that in uninfected mice, which has not previously been documented for a viral infection. In contrast to the induction

FIGURE 3. Composition of 20S proteasome subunits from livers of BALB/c mice after low dose and high dose infections with LCMV-WE.

A, NEPHGE/SDS-PAGE analysis of 60 μg 20S proteasome purified from the liver of uninfected BALB/c mice or mice on day 7 after infection with high (10⁶ PFU) or low (200 PFU) doses of LCMV-WE as indicated. The proteins were visualized by Coomassie stain, the positions of proteasome subunits LMP2, LMP7, Δ, and MB1 are marked. B, Densitometric evaluation of two-dimensional gels containing proteasome subunits from uninfected and infected BALB/c mice (A) and LCMV-infected IFN-γ−/− mice (Fig. 4).
of LMP2 and LMP7 that occurred at least to some degree in IFN-γ−/− mice, neither the induction of PA28α nor the disappearance of PA28γ occurred on day 7 after LCMV infection in the absence of IFN-γ, indicating that other cytokines cannot compensate for the lack of IFN-γ in this respect.

The peptidolytic activity of liver 20S proteasomes is strongly altered during the infection with LCMV

To address what consequences the proteasome subunit replacements during LCMV infection have on proteasome activity, we determined the activity of purified 20S proteasomes from livers of uninfected BALB/c mice as well as livers of LCMV-infected BALB/c wild type and IFN-γ−/− mice 7 days postinfection in peptidolytic assays. The respective 20S proteasomes, which were the same as those analyzed on the two-dimensional gels in Figs. 3 and 4, were incubated with the fluorogenic peptide substrates (Z)-LLE-β-nitroanilide (βNA), Suc-LLVY-7-amido-4-methylcoumarin (MCA), (Z)-GGL-MCA, and Bz-VGR-MCA, and the release of the fluorogenic leaving groups βNA or MCA was measured at different substrate concentrations after 30, 60, and 90 min. The 60-min values of the linear and very reproducible reaction are shown in Fig. 7 and indicate that the cleavage of the (Z)-LLE-βNA substrate at the C terminus of glutamic acid, which is frequently used to determine the peptidylglutamyl peptide-hydrolyzing or

![FIGURE 4](image-url)

FIGURE 4. Liver proteasomes from LCMV-infected mice deficient for IFN-γ, IFN-αR, and perforin were analyzed. 20S proteasomes were purified from the livers of IFN-γ−/− (top), IFN-αR−/− (middle), and perforin−/− (bottom) mice 7 days after infection with 10⁶ PFU LCMV-WE. Proteasome subunits were separated on NEPHGE/SDS-PAGE and stained with Coomassie blue. The positions of proteasome subunits LMP2, LMP7, Δ, and MB1 are indicated.

![FIGURE 5](image-url)

FIGURE 5. Effect of Lm infection on proteasome subunit composition in the mouse liver. BALB/c mice were infected with 9800 CFU Lm 10304S, and 20S proteasomes were purified from livers on days 3 and 7 after infection. Proteasome subunits were separated on NEPHGE/SDS-PAGE and stained with Coomassie blue.

![FIGURE 6](image-url)

FIGURE 6. Western analysis of PA28α-, β-, and γ-expression in the livers of LCMV-infected mice. Liver samples were taken from C57BL/6 wild-type mice that were either uninfected (day 0) or had been infected with 10⁶ PFU LCMV-WE on the indicated days before hepatectomy. For comparison, an IFN-γ−/− BALB/c mouse was analyzed on day 7 post-LCMV infection. Total lysates of liver samples were blotted and probed with antisera specific for PA28α, PA28β, and PA28γ as indicated, and reactive bands were visualized on x-ray films by ECL. The position of a 30-kDa marker is indicated on the left.

![FIGURE 7](image-url)

FIGURE 7. Peptide hydrolyzing activity of 20S proteasomes purified from the livers of LCMV-infected and uninfected (not inf.) BALB/c mice. The purified 20S proteasomes from livers of uninfected BALB/c mice or LCMV-WE-infected BALB/c wild-type and IFN-γ−/− mice (the same preparations as analyzed in Figs. 3 and 4) were assayed for hydrolysis of the indicated fluorogenic substrates at various concentrations. The activities are calculated from fluorescence of the MCA or βNA leaving groups after 60 min of incubation. Values are the means of triplicate determinations with an SE of <5% for all data points. d, Day.
caspase-like activity of the proteasome, was almost completely lost on day 7 of LCMV infection in wild-type mice and was reduced by approximately 50% in IFN-γ−/− mice. According to our previous transfection experiments (8, 10), this dramatic change in the caspase-like activity must be due to the replacement of δ by LMP2, which is almost quantitative in liver proteasomes on day 7 post-LCMV infection. The trypsin-like activity, as determined by hydrolysis of the Bz-VGR-MCA substrate, was slightly reduced in LCMV-infected mice, whereas the chymotrypsin-like activity measured by hydrolysis of (Z)-GGL-MCA was not significantly different among the three proteasome populations. The hydrolysis of the Suc-LLVY-MCA substrate, in contrast, was markedly reduced in liver proteasomes of LCMV-infected mice, as we had observed consistently in cell lines after IFN-γ treatment and in cell lines transfected with LMP2, LMP7, and MECL-1 (7, 8, 10). Together, the results obtained corresponded very well with data obtained in LMP2/LMP7/MECL-1 triple transfectants (56), indicating that these marked changes in proteasome activity are probably attributed to the almost complete replacement of constitutive proteasomes by immunoproteasomes in the liver of LCMV-infected mice.

Discussion

In this study we analyzed to what extent an exchange of constitutive proteasomes by immunoproteasomes occurs at the steady state level during viral or bacterial infection of an animal. We found that the replacement of constitutive proteasomes by immunoproteasomes in the liver starts on day 2 of LCMV or Lm infection and gradually proceeds to an almost complete exchange of proteasomes in this organ by day 7 or 8 of infection. Simultaneously, the expression of PA28α/β is markedly enhanced, while the PA28γ regulator disappears. The extent of 20S proteasome replacement in the liver is striking and indicates that immunoproteasomes can take over the numerous housekeeping functions of constitutively expressed proteasomes at least for a few days. In the priming phase of the cytotoxic immune response 4 days after LCMV infection, the proteasome population in the liver consists of about equal amounts of immunoproteasomes and constitutive proteasomes, which may enhance the diversity of Ag processing. In the main effector phase of the CTL response on day 7 or 8 after infection, however, the balance is shifted toward immunoproteasomes, suggesting that the recognition of infected cells and the clearance of the pathogen rely on the presentation of epitopes that are produced by immunoproteasomes under an increased influence of the PA28α/β regulator.

The short time period of 7 days in vivo until the constitutive proteasomes containing the active site subunits δ and MB1 disappear is unexpected, since 20S proteasomes were shown to have an extraordinarily long half-life of 12–15 days in the liver of metabolically labeled rats (53). Since the replacement of active site subunits in the proteasome population cannot occur in preformed and matured 20S proteasomes (55), it relies on the de novo assembly of immunoproteasomes and the relative loss of constitutive proteasomes. Because of the long half-life of 20S proteasomes, we expected that immunoproteasomes would at best add a population to the pre-existing constitutive pool until the virus is cleared. A possible explanation for the rapid elimination of housekeeping proteasomes in the inflamed liver would be a massive destruction of LCMV-infected hepatocytes by virus-specific CTLs. Indeed, serum levels of liver enzymes such as alanine aminotransferase or aspartate aminotransferase were shown to transiently rise by a factor of 10–20 in LCMV-WE-infected mice, indicating the lysis of hepatocytes (47). However, based on the enhancement of alanine aminotransferase levels, it has been estimated that only 5% of hepatocytes are lysed during an acute immune response to LCMV-WE (49) in accordance with the small effect that perforin deficiency had on proteasome replacements in the liver (Fig. 4). A histological assessment of LCMV infection by in situ hybridization indicated that only 5–10% of hepatocytes contained the viral mRNA on day 5 after infection, whereas all Kupffer cells were infected (49). Even if the destroyed tissue would be immediately replaced by new hepatocytes, a cellular turnover of 10% within 7 days would not suffice to account for a complete proteasome exchange if the half-life of constitutive proteasomes in the liver is 12–15 days. It will therefore be interesting to determine the in vivo half-life of constitutive proteasomes in the liver of LCMV-infected and uninfected mice to test whether an accelerated degradation of constitutive 20S proteasomes may occur in inflamed organs. An alternative contribution to the change in proteasome composition could be the infiltration of the liver with leukocytes that possess roughly equal amounts of immunoproteasomes and constitutive proteasomes in the uninduced state. The total lymphocyte number in the liver increases by a factor of 100 from day 4 until day 6, adding up to a total of 20 million lymphocytes/liver throughout days 6–10 of infection (47). However, even in the peak phase of the immune response the cell number of lymphocytes is about 10-fold lower than the number of the much larger hepatocytes and hence contributes only marginally to the total proteasome pool of the liver.

Our experiments performed in IFN-γ-deficient mice showed that the induction of PA28αβ as well as the disappearance of PA28γ relied entirely on IFN-γ production in the LCMV-infected liver. While a vigorous induction of PA28αβ by IFN-γ could be predicted from previous in vitro data (25), the disappearance of PA28γ after IFN-γ treatment has not been observed in all cell lines (M. Groettrup, unpublished observations) and is still a matter of debate. Our in vivo data clearly support this phenomenon first observed by Tanahashi et al. (32) and pose the question of its functional implication. One could imagine that PA28γ competes with PA28αβ for binding to the proteasome, which may adversely affect Ag processing, and we are currently addressing this possibility in our laboratory. Also, the mechanism that leads to the down-regulation of PA28γ protein during LCMV infection needs to be investigated, because mRNA levels of PA28γ are not affected by IFN-γ treatment of cells in vitro (25). In contrast to the alteration of PA28 regulators, the replacement of δ, MB1, and MC14 by LMP2, LMP7, and MECL-1 did occur in IFN-γ-deficient mice, albeit at a 50% reduced level. Thus, IFN-γ is required for a full replacement of constitutive proteasomes by immunoproteasomes, but other factors must be able to cause a half-maximal exchange. TNF-α is a prime candidate to mediate this effect, as it is known to induce LMP2 and LMP7 in vitro (55), and since TNF-α mRNA has been found in the liver 2 days after LCMV-WE infection (49). The cells that produce IFN-γ and TNF-α during the first 4 days of infection are most likely NK cells, NKT cells, and macrophages, respectively. NK cells are found in 4-fold greater number between days 1–5 of LCMV infection in the liver (57). However, our real-time RT-PCR analysis revealed that the enhancement of TNF-α and IFN-γ mRNAs was not very prominent in the liver of C57BL/6 mice on day 4 after LCMV-WE infection (Table II), which could indicate that other cytokines may also contribute to the early induction of immunoproteasomes. Beginning on day 5 of infection, LCMV-specific CTLs and Th cells can be found in the liver (data not shown) (47), which are likely to account for the strongly elevated levels of IFN-γ and TNF-α observed on day 8 of infection.

Another class of cytokines that is immediately induced after LCMV infection in vivo is IFN-α/β (58, 59). LCMV is a (−) strand RNA virus that replicates via dsRNA intermediates known
to be potent inducers of IFN-α/β. Nevertheless, we could not ob-
serve an induction of PA28α (data not shown) or LMP2 and LMP7
after productive infection of a fibroblast line, although the induc-
tion of IFN-β could be demonstrated by RT-PCR after LCMV-WE
infection in vitro (K. Schwarz, unpublished observations). This
indicates that an autonomous production of IFN-α/β does not
effectively induce immunoproteasomes and that other cytokines,
such as IFN-γ and TNF-α, are required. In accordance with this
result, a deficiency of the IFN-αR only marginally affected pro-
tease exchange in mouse liver after LCMV infection (Fig. 4).
What consequences does virtually complete replacement of
constitutive proteasomes by immunoproteasomes have on our un-
derstanding of the immune response to LCMV in particular and of
the functions of LMP2, LMP7, and MECL-1 induction in general?
Although the CTL response against LCMV has not yet been in-
vestedigated in mice that are deficient for LMP2 or LMP7, it is al-
ready clear from studies in IFN-γR-/- mice that the IFN-γ-me-
diated induction of these proteasome components is not required
for elimination of the virus, although virus tiers were elevated and
the CTL response reduced when the IFN-γR was genetically ab-
lated (35) or when IFN-γ was neutralized by Abs in vivo (60, 61).
With respect to the generation of LCMV epitopes, we have re-
cently shown that the transcription of fibroblasts with LMP2,
LMP7, and MECL-1 results in a markedly enhanced presentation of
the H-2Ld-restricted nucleoprotein epitope nucleoprotein 118 and
that purified immunoproteasomes produced 6-fold more pre-
cursors of this epitope compared with constitutive proteasomes in
vitro (22). Recently, we have investigated the generation of the
H-2Dd-restricted glycoprotein epitopes GP33 and GP276 and
found that IFN-γ efficiently诱发 GP33 epitope is affected by proteasome subunit compo-
nity.

References
1. Yoges, D., P. Zwicki, and W. Baumeister. 1999. The 2S proteasome: a molec-
production by the proteasome: complexity provides efficiency. Immunol. Today
17:429.
multicatalytic protease complex (proteasome) replacement of X, Y, and Z subunits by LMP7, LMP2, and MECL1 and changes in properties and spe-
histocompatibility complex-encoded subunits on peptide activities of human
P. M. Kloetzel. 1994. Interferon-γ stimulation modulates the proteolytic activity
8. Groettrup, M., T. Ruppert, L. Kuehn, M. Seeger, S. Standerer, U. Koszinowski,
and P. P. Kloetzel. 1995. The interferon-γ-inducible 11S regulator (PA28) and the
LMP2/LMP7 subunits govern the peptide production by the 20S proteasome in vitro.
J. Biol. Chem. 270:23306.
tivities of proteasomes are differentially regulated by the major histocompatibility
complex-encoded genes for LMP 2 and LMP 7. Proc. Natl. Acad. Sci. USA
91:2921.
10. Kuckelkorn, U., S. Frentzel, R. Kraft, S. Koskta, M. Groettrup, and P. M. Kloet-
zel. 1995. Incorporation of major histocompatibility complex-encoded subunits
LMP2 and LMP7 changes the quality of the 20S proteasome polypeptide pro-
11. Salazar, U., S. Kral, B. Braun, S. Standerer, M. Schmid, P. M. Kloetzel, and
A. Sijts. 1999. Mutational analysis of subunit iβ2 (MECL-1) demonstrates con-
servation of cleavage specificity between yeast and mammalian proteasomes.
FEBS Lett 454:11.
Nature 386:463.
1993. Proteasome subunits encoded in the MHC are not generally required for the
1993. Proteasome subunits encoded by the major histocompat-
15. Van Kaer, L., P. G. Ashton-Rickardt, M. Eichelberger, M. Gaczyńska,
Immunity 1:513.
and H. von Boehmher. 1994. MHC class I expression in mice lacking proteasome
18. Gileadi, U., H. T. MoisTrosserenc, I. Correa, B. L. Booth, P. R. Dunbar,
an immunodominant CTL epitope is affected by proteasome composi-
J. Trowsdale, R. E. Phillips, and V. Cerundolo. 1999. IFN-γ exposes a cryptic
162:7073.
20. Sijts, A. J. A. M., S. Standerer, R. E. F. Toes, T. Ruppert, N. J. C. M. Beekman,
MHC class I antigen processing of an adenovirus CTL epitope is linked to the
levels of immunoproteasomes in infected cells. J. Immunol. 164:4500.
and P. M. Kloetzel. 2000. Efficient generation of a hepatitis B virus cyto-
totoxic T lymphocyte epitope requires the structural features of immunoproteasomes.
22. Schwarz, K., M. van den Broek, S. Koskta, R. Kraft, A. Soza, G. Schmidke,
P. M. Kloetzel, and M. Groettrup. 2000. Overexpression of the proteasome sub-
units LMP2, LMP7, and MECL1 but not PA28αβ enhances the presentation of an
immunodominant lymphocytic choriomeningitis virus T cell epitope. J. Im-
munol. 165:768.
23. Morel, S., F. Levy, O. BarletSchif, F. Brassee, M. ProbstKeppe,
2000. Processing of some antigens by the standard proteasome but not by the

grateful to Nathalie Oetiker and Hans Christian Probst for help with LCMV
infection of mice.

Acknowledgments
We thank Rolf M. Zinkernagel and Gunter Schmitz for critical reading of the
manuscript and for technical advice. Manfred Kopf is acknowledged for
providing the IFN-γ-deficient mice, and Peter-M. Kloetzel, Ulrike
Kuckelkorn, Alice Sijts, and Klavs Hendill for contributing Abs. We are

The Journal of Immunology 6867

Downloaded from http://www.jimmunol.org/ by guest on September 15, 2017