Reduced Early Alcohol-Induced Liver Injury in CD14-Deficient Mice

Ming Yin, Blair U. Bradford, Michael D. Wheeler, Takehiko Uesugi, Matthias Froh, Sanna M. Goyert and Ronald G. Thurman

J Immunol 2001; 166:4737-4742; doi: 10.4049/jimmunol.166.7.4737

http://www.jimmunol.org/content/166/7/4737

References

This article cites 46 articles, 18 of which you can access for free at: http://www.jimmunol.org/content/166/7/4737.full#ref-list-1

Subscription

Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts
Reduced Early Alcohol-Induced Liver Injury in CD14-Deficient Mice

Ming Yin,* Blair U. Bradford,2 Michael D. Wheeler,* Takehiko Uesugi,* Matthias Froh,* Sanna M. Goyert,† and Ronald G. Thurman*

Activation of Kupffer cells by gut-derived endotoxin is associated with alcohol-induced liver injury. Recently, it was shown that CD14-deficient mice are more resistant to endotoxin-induced shock than wild-type controls. Therefore, this study was designed to investigate the role of CD14 receptors in early alcohol-induced liver injury using CD14 knockout and wild-type BALB/c mice in a model of enteral ethanol delivery. Animals were given a high-fat liquid diet continuously with ethanol or isocaloric maltodextrin as control for 4 wk. The liver to body weight ratio in wild-type mice (5.8 ± 0.3%) was increased significantly by ethanol (7.3 ± 0.2%) but was not altered by ethanol in CD14-deficient mice. Ethanol elevated serum alanine aminotransferase levels nearly 3-fold in wild-type mice, but not in CD14-deficient mice. Wild-type and knockout mice given the control high-fat diet had normal liver histology, whereas ethanol caused severe liver injury (steatosis, inflammation, and necrosis; pathology score = 3.8 ± 0.4). In contrast, CD14-deficient mice given ethanol showed minimal hepatic changes (score = 1.6 ± 0.3, p < 0.05). Additionally, NF-κB, TGF-β, and TNF-α were increased significantly in wild-type mice fed ethanol but not in the CD14 knockout. Thus, chronic ethanol feeding caused more severe liver injury in wild-type than CD14 knockouts, supporting the hypothesis that endotoxin acting via CD14 plays a major role in the development of early alcohol-induced liver injury. The Journal of Immunology, 2001, 166: 4737–4742.

Endotoxins (LPS) represent the major component of the outer membrane of Gram-negative bacteria and have been implicated in sepsis, organ failure, and shock (1). Accumulating evidence suggests that endotoxins and proinflammatory cytokines also participate in early alcohol-induced liver injury (2). Elevated circulating endotoxin most likely activates Kupffer cells to release many potent effectors and cytokines, thus leading to tissue injury. The following evidence supports this hypothesis: 1) Ethanol increases permeability of the isolated small bowel to endotoxin in a dose-dependent manner (3) and elevates circulating endotoxin (4). 2) Reduction of Gram-negative bacteria in the intestines (i.e., sources of endotoxin) with antibiotics (5) or lactobacillus administration (6) minimized early alcoholic liver injury. 3) Early ethanol-induced liver injury can be prevented by gadolinium chloride, a selective Kupffer cell toxicant (7). 4) Early alcohol-induced liver injury was attenuated with TNF-α Abs and was prevented in TNF receptor-1 knockout mice (8, 9).

CD14, a GPI-anchored glycoprotein that is highly expressed on the surface of human monocytes and most macrophages (10), has been demonstrated to be part of a specific cellular LPS binding site (11) and is a key mediator of septic shock induced by endotoxin (10, 12, 13). Circulating LPS binds to LPS-binding protein (LBP)3 and activates monocytes/macrophages via binding to the CD14 receptor (14, 15). Kupffer cells, the resident liver macrophages, are the major population of the monocyte-macrophage lineage (16) and contain CD14 receptors (4, 17). Recent studies show that alcohol exposure increases the expression of CD14 in Kupffer cells (18) and estrogen sensitizes Kupffer cells to LPS via increases in CD14. The interaction of LPS with CD14 triggers a signaling cascade and results in induction of cytokines (IL-6, IL-1, and TNF-α) that are known to participate in liver injury (2). It has been shown previously that CD14-deficient mice do not produce significant levels of these cytokines even when exposed to high levels of LPS (12). To test the hypothesis that CD14 is involved in early alcohol-induced liver injury, the response of CD14-deficient mice to ethanol was compared with that wild-type mice by evaluating parameters of hepatic injury using a murine enteral ethanol feeding model (9). After 4 wk of continuous enteral ethanol feeding, not only was steatosis observed, but inflammation and necrosis also occurred in livers of wild-type mice. However, in mice lacking CD14 receptors, hepatic pathology due to alcohol was largely blocked. These studies show that CD14, presumably on Kupffer cells, plays a critical role in early alcohol-induced liver injury and further support a role for endotoxin in this disease. Preliminary accounts of this study have been reported elsewhere (19).

Materials and Methods

Animals

Female CD14-deficient mice generated as described elsewhere (12, 20) were backcrossed 10 times with BALB/c mice (The Jackson Laboratory, Bar Harbor, ME). Age- and sex-matched wild-type BALB/c mice, weighing 21–24 g, served as controls. Mice were screened for the presence of the CD14 receptor mRNA (+/+ in wild-type mice and the absence of the CD14 receptor (+/−) mRNA in knockout mice by RNase protection assay.

3 Abbreviations used in this paper: LBP, LPS-binding protein; ALT, alanine aminotransferase; LT-β, lymphotixin-β; MIP, migration inhibitory factor.
All animals received humane care in compliance with institutional guidelines. Body weight was measured before surgery and at necropsy after 4 wk of continuous delivery of control or ethanol-containing diet.

Surgery

The principle surgical procedures were similar to methods previously described by Tsukamoto et al. (21) in rats, with modifications based on the size of mice (9). Briefly, mice were anesthetized by injection of pentobarbital sodium (50 mg/kg; Abbott Laboratories, North Chicago, IL), and laparotomy was performed under sterile surgical conditions. A PE90 polyethylene tube (Becton Dickinson, Sparks, MD) was placed in the squamous part of the stomach. The tube was anchored to the stomach wall with Dacron and fixed to the abdominal wall. It was then tunneled s.c. to the dorsal aspect of the neck followed by closing of the abdominal wall with 7-0 prolene sutures. The tube was then pulled through a 250P polysulfone attachment mouse button (Instech Laboratories, Plymouth Meeting, PA) and spring coil. The button was fixed under the skin with its metal spring coil outside of the body to protect the tube. The feeding tube was attached to an infusion pump by means of a swivel, allowing complete mobility of the mouse within a metabolic cage. Animals were allowed to recover for 1 wk with free access to chow diet and water before starting alcohol-containing or control high-fat liquid diets.

Diets

A basic liquid diet was prepared according to Thompson and Reitz (22) as described previously and supplemented with lipotropes as described by Morimoto et al. (23). The control diet (1.3 kcal/ml) contained corn oil as fat (34% of total calories), protein (23%), carbohydrate (43%), plus minerals and vitamins. For the isocaloric high-fat control diet, animals received diets by infusion through an intragastric cannula for up to 4 wk as described previously (9). Usually, the ethanol dose was 28–29 g/kg/d during the fourth week of feeding. CD14-deficient and wild-type mice were sacrificed after 4 wk and blood samples were collected via the inferior vena cava at necropsy. Serum was stored at −20°C until alanine aminotransferase (ALT) was analyzed by standard enzymatic procedures (24). Livers were removed and weighed and tissue samples were divided; some were fixed in Formalin, others were frozen in liquid nitrogen and stored at −80°C.

Urine collection and assay for ethanol

Concentrations of ethanol in urine are representative of blood alcohol levels (25). Mice were housed in metabolic cages that separated urine from feces and urine samples were collected over 24 h for each mouse. Ethanol levels in urine were determined daily by measuring absorbance at 366 nm resulting from the reduction of NAD+ by alcohol dehydrogenase (24).

Pathological evaluation

Formalin-fixed liver samples were embedded in paraffin and stained with hematoxylin and eosin to assess steatosis, inflammation, and necrosis. Liver pathology was scored as described by Nanji et al. (26) as follows: (1) normal; (2) <25% steatosis; (3) >25% and <50% steatosis; (4) >50% steatosis; (5) inflammation and necrosis: 0 focus per low-power field; 1 focus per low-power field; 2 or more foci. One point was given for each grade of severity of histological abnormality and a total score was calculated for each liver.

RT-PCR amplification of CD14 cDNA

Mouse Kupffer cell RNA was extracted by standard phenol/chloroform extraction in guanidinium isothiocyanate (RNA-STAT60; Tel-Test, Friendswood, TX) followed by ethanol precipitation. mRNA (5 μg) was added to reverse transcription buffer containing 0.5 U of RNase (Promega, Madison, WI), 5 mM DTT, 2 mM dNTPs (Life Technologies, Rockville, MD), 1 μM random hexamer primer (Boehringer Mannheim, Indianapolis, IN), and 0.5 mM of avian myeloblastosis virus reverse transcriptase (Promega). The reaction was incubated at 42°C for 45 min and terminated at 95°C for 2 min. An aliquot (5 μl) of the RT reaction was added to PCR amplification buffer containing 2 mM dNTPs (Life Technologies), 0.4 μM forward and reverse primers, and 0.5 μ of Taq DNA polymerase (Boehringer Mannheim). PCR was initiated by a 7-min incubation at 95°C, followed by 20 cycles of 1 min at 95°C, 1 min at 48°C, and 2 min at 72°C. The amplification product was resolved on 1.5% agarose gel. PCR primers for CD14 which generated a 180-bp fragment were as follows: forward, 5′-GCAAACCTCTCAGATC CGAAGCC-3′; and reverse, 5′-CAACAGTAACCGCCCC TTAAGAC-3′.

RNase protection assay

Total RNA was isolated from hepatic tissue using RNA STAT-60 (Tel-Test). Samples of total RNA (30 μg) were hybridized with 102 cpm of [32P]UTP (3000 Ci/mmol; Amersham, Arlington Heights, IL)-labeled probe (see below) at 42°C overnight. RNase digestions were conducted with a mixture of RNase A and RNase T1 (PharMingen, San Diego, CA) at 37°C for 45 min, followed by proteinase K treatment for 15 min, and phenol:chloroform extraction and ethanol precipitation. The digested products were separated on a 6% acrylamide gel. The RNA probe used to detect CD14-specific RNA was generated by in vitro transcription of linearized pCR-cDNA after cleavage with HindIII. The pCR-cDNA plasmid was generated by insertion of the RT-PCR amplification fragment (180 bp) of mouse Kupffer cell cDNA into the pCR-TOPO cloning plasmid (Invitrogen, San Diego, CA). The RNA probes (PharMingen) used to detect GAPDH-specific RNA (as control), L32 as a ribosomal housekeeping gene, TNF-α, lymphotoxin-β (LT-β), macrophage migration inhibitory factor (MIF), and TGF-β were generated by in vitro transcription of mouse GAPDH template (PharMingen). The protected RNA was visualized by autoradiography.

EMSA

A gel mobility shift assay was used in this study to assess the amount of active protein involved in protein-DNA interactions. The limitations of this method are the amount of nuclear protein needed for assay as well as the number of cells isolated from the rat liver. Binding conditions for NF-xB were characterized and EMAS were performed as described in detail elsewhere (27). Briefly, extracts (40 μg) from liver tissues were preincubated for 10 min on ice with 1 μg of poly(dI-dC) and 20 μg of BSA (both from Pharmacia Biotech, Piscataway, NJ) in a buffer that contained 1 mM HEPES (pH 7.6), 40 mM MgCl2, 0.1 M NaCl, 8% glycerol, 0.1 mM DTT, 0.05 mM EDTA, and 2 μl of a 32P-labeled DNA probe (10,000 cpm/μl) that contained 0.4 ng of double-stranded oligonucleotide. Mixtures were incubated for 20 min on ice and resolved on 5% polyacrylamide (29:1 cross-linking) and 0.4× Tris-borate-EDTA gels. After electrophoresis, gels were dried and exposed to Kodak film (Kodak, Rochester, NY). Data were quantitated by scanning autoradiograms with GelScan XL (Pharmacia).

Statistics

ANOVA was used for the determination of statistical significance as appropriate. For comparison of pathological scores, the Mann-Whitney U rank sum test was used. Data are presented as mean ± SEM. A p < 0.05 was selected before the study as the level of significance.

Results

Body and liver weights

Liver and body weight were determined to assess the general health of the animals. All animals survived surgery and gained weight during 4 wk of continuous delivery of high-fat liquid diets with or without ethanol. There were no significant differences in body weight among the groups studied. At necropsy, liver to body weight ratios in wild-type mice receiving ethanol were significantly higher than in wild-type mice fed control diet (Fig. 1). In contrast, the ratio in CD14-deficient mice given ethanol was significantly lower than in wild-type mice fed ethanol. Thus, ethanol caused significantly greater enlargement of livers in wild-type than in CD14 knockout mice.

Urine ethanol

Urine ethanol concentrations were monitored to compare the degree of intoxication. As reported previously in studies with rats (28) or C57BL mice (7, 9), urine ethanol levels also fluctuated in the cyclic pattern from 18 to >500 mg/dl likely due to thyroid hormones and stress as was recently reported in rats (29). Average urine ethanol concentrations...
during 4 wk of ethanol exposure were 158 ± 25 mg/dl in wild-type mice and 162 ± 26 mg/dl in the knockouts, values which were not statistically different.

Serum transaminases

As a marker of liver injury, serum ALT was monitored throughout the study. Before continuous administration of liquid diets, the serum level of ALT in both wild-type and CD14 knockout mice was 44 ± 5 U/L. In wild-type mice, 4 wk of ethanol exposure significantly increased the serum ALT; 3-fold (126 ± 27 U/L; Fig. 2); however, ethanol exposure did not increase ALT in CD14-deficient mice.

Pathological evaluation

Fig. 3 shows representative photomicrographs of livers from wild-type and CD14 knockout mice after 4 wk of exposure to control or ethanol diets. There were no pathological changes seen in wild-type or CD14 knockout mice receiving high-fat control diet (Fig. 3, A and B). Accordingly, the pathology score of livers from wild-type and knockout mice fed control high-fat diet was minimal (Fig. 4). However, marked fatty accumulation and mild to moderate inflammation and necrosis were observed in wild-type mice given ethanol (Fig. 3C), with an average pathology score of 3.8 ± 0.6 (Fig. 4D). This value was significantly greater than values observed in wild-type mice given control diet (Fig. 4D). Fatty accumulation in wild-type mice receiving ethanol was panlobular, with massive large droplets of fat in pericentral areas and midzonal regions near central veins. In livers from CD14-deficient mice, however, only mild fatty accumulation was detected (Fig. 3D), with mild inflammation but no necrosis. As a result, the pathology scores of livers from CD14 knockout mice receiving ethanol diet were only 1.7 ± 0.4 (Fig. 4D), values which were significantly lower than ethanol-treated, wild-type mice (p < 0.05).

Inflammatory markers in liver

An RNase protection assay was used to determine the tissue levels of message for TNF-α, LT-β, MIF, and TGF-β. Ethanol caused

FIGURE 1. Changes in liver to body weight ratio in mice after 4 wk of enteral high-fat control or ethanol-containing diet. Body and liver weights were determined at necropsy. H-F is high-fat control diet; EtOH represents ethanol-containing diet. There were five to seven mice in each group. Data are presented as mean ± SEM. a, p < 0.05 compared with the mice that received high-fat control diet. b, p < 0.05 compared with the wild-type mice that received ethanol by one-way ANOVA with Tukey’s post hoc test. KO, Knockout.

FIGURE 2. Effect of continuous diet delivery with or without ethanol on serum ALT levels. Blood samples were collected at necropsy, i.e., 4 wk after high-fat liquid diet feeding in the presence or absence of ethanol. ALT levels were determined as described in Materials and Methods. Data presented are mean ± SEM, n = 5–7 mice/group. Two-way ANOVA was used for determination of statistical differences. *p < 0.05 compared with the other three groups of mice by one-way ANOVA with Tukey’s post hoc test. KO, Knockout.

FIGURE 3. Representative photomicrographs of livers from wild-type and CD14 knockout mice after 4 wk of continuous diet delivery with or without ethanol. Animals were treated as described in Materials and Methods. Livers from wild-type mice receiving high-fat control diet (A), CD14 knockouts fed high-fat control diet (B), wild-type mice given ethanol diet (C), and CD14 knockouts given ethanol diet (D) are shown. Original magnification, ×100. With higher magnification, E and F show inflammation and necrosis in wild-type animals fed ethanol; G and H depict histology without inflammation and necrosis in CD14-deficient mice receiving ethanol. H-F represents high-fat; EtOH represents animals given the ethanol diet. Representative photomicrographs.
about a 2.5-fold increase in tissue levels of TNF-α mRNA in livers from wild-type mice (Fig. 5) as well as the inflammatory cytokine LT-β. This phenomenon was not observed in CD14 knockout mice. TGF-β and LT-β were doubled after ethanol in the wild-type but not in CD14 knockout mice (Fig. 5). MIF was detected in all groups. To assess the involvement of NF-κB after alcohol treatment in both strains of mice, activation was measured by the EMSA in liver (Fig. 6). A doubling of NF-κB activation occurred after ethanol treatment in wild-type mice. In CD14 knockout mice, however, activation of NF-κB did not occur after ethanol treatment.

Discussion

The role of LBP and CD14 in early alcohol-induced liver injury

Activation of monocytes and macrophages by endotoxin (LPS) from Gram-negative bacteria has been extensively studied to define the mechanisms that underlie innate immune responses against bacterial pathogens (30). Numerous studies have revealed that LPS, instead of being directly toxic to cells or organs, exerts its biological effects indirectly through stimulation of host cells to produce endogenous mediators including cytokines and free radicals (15, 30–33), leading to inflammation and requires additional molecules for signal transduction, including Toll-like receptors (34, 35). It was very recently reported that alcohol-induced liver injury, using the same model used in this study, is blunted in the Toll-like receptor 4 mutant C3H/HeJ mouse (36). Taken together, this study and the work presented here support the hypothesis that a signaling pathway comprised of CD14 and Toll-like receptor 4 is required for development of pathology due to ethanol.

Ethanol and endotoxin

Studies demonstrating the strong resistance of CD14-deficient mice to endotoxin suggest that CD14 plays a predominant role in endotoxin shock (12, 37). The development of the CD14 knockout mice provides a powerful tool for studies of the role of endotoxin in various diseases. It is well known that ethanol exposure increases circulating endotoxin (4). However, ethanol-induced hepatic injury was minimized significantly here in CD14-deficient mice (Fig. 4). This indicates that cells of the immune system respond to LPS through a pathway involving the CD14 receptor (13, 38) and supports the hypothesis that...
Cytokines

TNF-α is a central proinflammatory cytokine (42). TNF-α acting through its receptor-1 pathway plays a predominant role in LPS-induced inflammatory diseases (43) and mediates the lethal effects of endotoxin (44). TNF-α is increased in alcoholics with hepatitis and levels correlate with survival (35) and appears to be the principle mediator of early alcohol-induced liver injury since injury was blocked in mice lacking the TNF receptor-1 (9). In the present study, increased levels of TNF-α (Fig. 5) along with the most severe hepatic injury among the groups studied were observed in the livers from wild-type mice fed ethanol, whereas these effects were blocked in CD14-deficient mice. Therefore, these results are consistent with the hypothesis that excessive intake of alcohol increases circulating endotoxin which activates Kupffer cells via the CD14 receptor to release TNF-α, leading to liver injury (Fig. 7).

In this study, macrophage MIF was detected in all treatment groups studied (Fig. 5) and is commonly expressed in liver and other tissues (45) as an inflammatory cytokine that can also induce TNF-α (46). Studies with anti-MIF Ab demonstrate a protective effect in models of endotoxin-induced injury (47). After 4 wk of dietary treatment with or without ethanol, a mild inflammatory infiltration was observed in mice receiving a high-fat control diet. This is different from the results of a previous study using mice on a C57BL/6J background (9), where no inflammation was detected in animals receiving a high-fat control diet. This phenomenon is possibly due to the fact that BALB/c mice are more susceptible to inflammation (48) involving, in part, the inflammatory cytokine MIF.

In summary, the results of the present study are consistent with the hypothesis that CD14 receptors play a major role in vivo in the pathogenesis of alcohol-induced liver injury; thus, drugs or genes that target CD14 signaling pathways may prove beneficial in treating alcoholic hepatitis.

References

