Mice Lacking the Multidrug Resistance Protein 1 Are Resistant to *Streptococcus pneumoniae*-Induced Pneumonia

Marc J. Schultz, Jan Wijnholds, Maikel P. Peppelenbosch, Margriet J. B. M. Vervoordeldonk, Peter Speelman, Sander M. J. Schultz, Jan Wijnholds, Maikel P. Peppelenbosch, Piet Borst and Tom van der Poll

J Immunol 2001; 166:4059-4064; doi: 10.4049/jimmunol.166.6.4059

http://www.jimmunol.org/content/166/6/4059

References

This article cites 30 articles, 16 of which you can access for free at: http://www.jimmunol.org/content/166/6/4059.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at: http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts
Mice Lacking the Multidrug Resistance Protein 1 Are Resistant to *Streptococcus pneumoniae*-Induced Pneumonia

Marc J. Schultz, ‡ Jan Wijnholds, † Maikel P. Peppelenbosch,* Margriet J. B. M. Vervoordeldonk,* Peter Speelman,* Sander J. H. van Deventer,* Piet Borst, ‡ and Tom van der Poll*†

Leukotrienes (LTs) are considered important for antibacterial defense in the lung. Multidrug resistance protein 1 (mrp1) is a transmembrane protein responsible for the cellular extrusion of LTC₄. To determine the role of mrp1 in host defense against pneumonia, *mrp1*²⁻⁻ and wild-type mice were intranasally inoculated with *Streptococcus pneumoniae*. *mrp1*²⁻⁻ mice displayed a diminished outgrowth of pneumococci in lungs and a strongly reduced mortality. These findings were related to an effect of mrp1 on LT metabolism, because survival was similar in *mrp1*²⁻⁻ and wild-type mice treated with the 5-lipoxygenase-activating protein inhibitor MK-886. Although LTC₄ levels remained low in the bronchoalveolar lavage fluid of *mrp1*²⁻⁻ mice, LTB₄ concentrations were higher than in wild-type mice. These elevated LTB₄ concentrations were important for the relative protection of *mrp1*²⁻⁻ mice, because the LTB₄ antagonist LTB₄-dimethyl amide abolished their survival advantage. In vitro experiments suggested that the intracellular accumulation of LTC₄ in *mrp1*²⁻⁻ mice results in product inhibition of LTC₄-synthase, diminishing substrate competition between LTA₄-hydrolase (which yields LTB₄) and LTC₄-synthase for the available LTA₄. We conclude that *mrp1*²⁻⁻ mice are resistant against pneumococcal pneumonia by a mechanism that involves increased release of LTB₄. These results identify mrp1 as a novel target for adjunctive therapy in pneumonia. *The Journal of Immunology*, 2001, 166: 4059–4064.

Leukotrienes (LTs)³ comprise a group of highly potent lipid mediators synthesized by 5-lipoxygenase (5-LO). Biosynthesis of LTs is initiated by the release of arachidonic acid from cell membrane phospholipids via the action of phospholipase A₂. Arachidonic acid is a substrate for 5-LO, an enzyme that catalyzes two different reactions, first inducing the peroxidation of arachidonic acid to 5-hydroxyperoxideicosaatetraenoic acid, followed by dehydration of the hydroperoxide moiety to yield LTA₄ (1). From LTA₄ two metabolic routes lead to the production of biologically active compounds. The first involves the hydrolysis of LTA₄ by LTA₄-hydrolase to produce LTB₄ (2); the second pathway involves conjugation of LTA₄ with glutathione by LTCT₄-synthase, yielding LTC₄ (3). Hence, two distinct biochemical pathways, leading to LTB₄ and LTC₄ synthesis, respectively, compete for LTA₄ as a substrate. LTC₄ is actively transported across the plasma membrane by multidrug resistance protein 1 (mrp1) (4–6), and extracellularly LTD₄ and LTE₄ are formed by the action of γ-glutamyl-transpeptidase and dipetidase, respectively.

The three cysteinyl LTs have been implicated as mediators of host defense against bacterial infection, especially in the lung. LT synthesis in human leukocytes is induced by various microorganisms under different conditions (7, 8). High levels of LTB₄ are measured in lung tissue and bronchoalveolar lavage fluids (BALF) derived from animals infected with *Pseudomonas aeruginosa* (9) or *Klebsiella pneumoniae* (10), and in BALF from patients with pneumonia (11). Moreover, alveolar macrophages from patients infected with the HIV demonstrate a marked reduction in LT synthesis, which has been considered to contribute to the higher occurrence of pneumonia in these subjects (12). The most dramatic proof for the action of LTs in pneumonia comes from studies in mice bearing two inactivated copies of the 5-LO gene, which manifest enhanced bacterial outgrowth and lethality from *K. pneumoniae pneumonia* (10). However, 5-LO⁻⁻ mice can produce neither LTB₄ nor cysteinyl LTs, and thus the distinct roles of these LT pathways in host defense against pneumonia cannot be deduced from these mice.

mrp1 is an important regulator of cysteinyl LT bioavailability (4–6). Although mrp1 is best known for the cellular excretion of anti-cancer drugs, resulting in a decreased susceptibility of cancer cells to these drugs (13–15), the cysteinyl LTs feature prominently among the physiological substrates of this molecular pump (6). However, the importance of mrp1-dependent LT extrusion for host defense against pulmonary infection remains ill defined. Therefore, we compared *mrp1*⁻⁻ mice (6) and wild-type mice in a well-established model of pneumonia induced by *Streptococcus pneumoniae* (16, 17).

Materials and Methods

Animals

The animals used were female *mrp1*⁻⁻ mice, generated by gene targeting in embryonic stem cells as described previously (6). Control and mutant mice were on the genetic background (129/Ola)/FVB (50%/50%). The animals used were female *mrp1*⁻⁻ mice, generated by gene targeting in embryonic stem cells as described previously (6). Control and mutant mice were on the genetic background (129/Ola)/FVB (50%/50%).
ROLE OF MULTIDRUG RESISTANCE PROTEIN 1 IN PNEUMONIA

Reagents

LTB4·dimethyl amide (a specific LTB4 antagonist) was obtained from ICN Pharmaceuticals (Aurora, OH). MK-886 (a 5-LO-activating protein inhibitor) was purchased from Alexis (San Diego, CA). The doses of LTB4·dimethyl amide (0.4 nmol/mouse) and MK-886 (1 nmol/mouse) used in the in vivo experiments were extrapolated from in vitro studies in which the effectiveness of the inhibitors was assessed (18). The concentrations used represent a 10-fold excess of those required for an optimal in vitro effect. Arachidonic acid, LTB4, and LTC4 were acquired from Sigma (St. Louis, MO).

Induction of pneumonia

Pneumonia was induced as described previously (16, 17). Briefly, S. pneumoniae serotype 3 was obtained from American Type Culture Collection (ATCC 6303; Manassas, VA). Pneumococci were grown for 6 h to mid-logarithmic phase at 37°C in 5% CO2 using Todd-Hewitt broth (Difco, Detroit, MI), harvested by centrifugation at 1500 × g for 15 min, and washed twice in sterile isotonic saline. Bacteria were then resuspended in sterile isotonic saline at a concentration of 2 × 105 CFU/mL, as determined by plating serial 10-fold dilutions onto sheep–blood agar plates. Mice were lightly anesthetized by inhalation of isoflurane (Upjohn, Ede, the Netherlands), and 50 μL (105 CFU) was inoculated intranasally. Some mice were inoculated intranasally with 50 μL of isotonic saline only (control mice).

Preparation of lung homogenates

At 24 and 48 h after inoculation mice were anesthetized with Hypnorm (Janssen Pharmaceutica, Beersel, Belgium) and midazolam (Roche, Mechelen, the Netherlands), and blood was collected from the vena cava inferior. Whole lungs were harvested and homogenized at 4°C in 5 volumes of sterile 0.9% NaCl in a tissue homogenizer that was carefully cleaned and disinfected with 70% alcohol after each homogenization. Serial 10-fold dilutions in sterile isotonic saline were made of these homogenates (and blood), and 50 μL volumes were plated onto sheep–blood agar plates and incubated at 37°C and 5% CO2, CFU were counted after 24 h. For cytokine measurements, lung homogenates were spun at 1500 × g for 15 min at 4°C, and supernatants were filtered through a 35 μm filter (Becton Dickinson, Lincoln Park, NJ) and frozen at −20°C until cytokine measurement.

Bronchoalveolar lavage

The trachea was exposed through a midline incision and cannulated with a sterile 22-gauge Abbocath-T catheter (Abbott Laboratories, Sligo, Ireland). Bronchoalveolar lavage was performed by instilling two 0.5-ml aliquots of sterile 22-gauge Abbocath-T catheter (Abbott Laboratories, Sligo, Ireland). The trachea was exposed through a midline incision and cannulated with a polypropylene tubes were prefilled with 100 μL RPMI 1640 containing heat-killed S. pneumoniae (105 CFU/mL), after which 250 μL of the peritoneal washing was added. Tubes were gently mixed and placed in the incubator at 37°C for 20 min. After incubation, supernatants were stored at −20°C until assays were performed.

Determination of LTB4·dimethylamide and MK886 activity in vivo

Normal wild-type mice received an i.p. injection with 0.4 nmol LTB4·dimethyl amide, and were inoculated intranasally with 2 × 104 CFU LTB4 24 h after. BALF was obtained 4 h after the administration of LTB4, and granulocytes were counted according to the methods described above. In another experiment, mice received an i.p. injection with 1 nmol MK886. After 24 h, heparinized whole blood was obtained and stimulated with heat-killed S. pneumoniae. For these experiments, polycarbonate tubes were prefilled with 100 μL RPMI 1640 containing heat-killed S. pneumoniae (105 CFU/mL), after which 200 μL whole blood was added. Tubes were gently mixed and placed in the incubator at 37°C for 20 min. After incubation, plasma was prepared by centrifugation and stored at −20°C until assays were performed.

Assays

Levels of the following cytokines and chemokines were measured by ELISA according to the manufacturer’s recommendations: TNF-α (Genzyme, Cambridge, MA), IL-6 (PharMingen, San Diego, CA), IFN-γ (R&D Systems, Minneapolis, MN), IL-12 p40 (PharMingen), macrophage-inflammatory protein-2 (R&D Systems), and KC (R&D Systems). LTB4 and LTC4 levels were measured by enzyme immunoassays (Amersham, Buckinghamshire, U.K.), according to the instructions of the manufacturer.

LTB4 production by peritoneal macrophages

Peritoneal macrophages from mrp1−/− and wild-type mice were isolated by washing the peritoneal cavity with RPMI 1640 according to routine procedures. After isolation, macrophages were allowed to adhere to 6-well plates (106 cells/cm2) for 1 h at 37°C, washed, and maintained in RPMI 1640/10% FCS until experimentation. For experiments in which LT production was studied, the medium was replaced by 2 ml RPMI 1640/10% FCS containing arachidonic acid. This medium was immediately aspirated again, resulting in a film of medium over the cells containing the stimuli. This method was used to minimize the amount of liquid in the culture system during stimulation, facilitating subsequent LT extraction by ethanol and allowing a more accurate measurement of LTs produced within cells and excreted from cells. Hence, this low volume method was used to avoid complaints of uncontrollable release of intracellular and extracellular LTs. Stimulation was performed for 20 min at 37°C with arachidonic acid (20 μM, final concentration). Arachidonic acid was chosen to stimulate lipoxygenase metabolism rather than a calcium-raising agent (e.g., a ionophore), because calcium preferentially stimulates LTC4 synthesis over LTB4 generation (19). At the end of the 20-min incubation period, LTs were extracted as described below. In a separate experiment, peritoneal macrophages were stimulated with heat-killed S. pneumoniae. For these experiments, polycarbonate tubes were prefilled with 100 μL RPMI 1640 containing heat-killed S. pneumoniae (105 CFU/mL), after which 250 μL of the peritoneal washing was added. Tubes were gently mixed and placed in the incubator at 37°C for 20 min. After incubation, supernatant was stored at −20°C until assays were performed.

LTB4 production in immortalized macrophages

To test whether increased intracellular levels of LTC4 lead to an increased production of LTB4, we used the 4-4 clone of VNN1 retrovirus-immortalized macrophages, generated from the spleen of a C57BL/6 mouse (20). Extensive immunologic and functional characterization of these cells have indicated that these cells are phenotypically and functionally similar to primary isolated mature macrophages (20). For experiments equal amounts of cells were seeded in 24-well plates (number of cells varied between 2 × 104 cells/cm2 in different experiments) and used 16 h later. Because a fully T20-permeabilized system was not able to sustain LT production, we used a semipermeabilized system (1% DMSO/1% ethanol) in which 100 ng/ml LTC4 was applied together with 20 μM arachidonic acid in RPMI 1640/10% FCS for 0–20 min, following the same procedures as for stimulation of peritoneal macrophages. Arachidonic acid was added in these experiments to increase the activity of the lipoxygenase pathway (we anticipated that in macrophages exposed to LTC4 only, LTC4 synthesis would be very low). At the end of each incubation, LTs were extracted as described below.

Extraction of LTB4 from culture system

LTB4 levels were determined as described earlier (18). Briefly, LTB4 were extracted by adding 1 ml ethanol to the culture system (cells with film of medium). Insoluble matter was spun down at 14,000 rpm for 10 min, after which the supernatant was evaporated in a speed vac. Subsequently, samples were represurized with 100% N2. The sample was reconstituted in 100 μL ethanol, evaporated again, and finally taken up in a 60-μl assay buffer of which a 50-μl sample was used for measuring LTs. The cross-reactivity profile of the assay provided by the manufacturer indicated that it is unlikely that the exogenously applied LTC4 would result in an aspecific LTB4 signal, and in various control experiments we failed to detect an effect of LTC4 addition on LTB4 immunoreactivity. The specificity of the assay was confirmed by the observation that LTB4 production was sensitive to MK-886.

Statistical analysis

Comparisons of survival data were made using the log-rank test. All other data are expressed as means ± SEM. Comparisons between means were conducted using the Wilcoxon test. Significance was set at p ≤ 0.05.

Results

mrp1−/− mice are resistant to S. pneumoniae pneumonia

To determine the role of mrp1 in host defense against pneumonia, we first assessed the outgrowth of pneumococci in lungs of mrp1−/− and wild-type mice after intranasal inoculation with 104 CFU of S. pneumoniae. Although at 24 h postinoculation the number of CFUs in lungs was similar in both mouse strains, after 48 h wild-type mice had two orders of magnitude more CFUs in lungs
than mrp1−/− mice (1.9 ± 0.9 × 10^8 and 1.0 ± 0.7 × 10^6 CFU/ml, respectively; p < 0.05; Fig. 1A). In addition, blood from mrp1−/− mice contained fewer pneumococci than wild-type mice at this time point (1.6 ± 1.6 × 10^8 vs 6.1 ± 2.6 × 10^8 CFU/ml; p < 0.05) with 37% of mrp1−/− mice and 75% of wild-type mice having positive blood cultures. The reduced growth of S. pneumoniae in mrp1−/− mice corresponded with an enhanced survival, the difference with wild-type mice becoming evident at 72 h postinoculation (p < 0.05, Fig. 1B). 14-day survival rates were 7/16 (43.8%) for mrp1−/− mice and 2/16 (12.5%) for wild-type mice. Mice surviving for 14 days postinoculation appeared permanent survivors.

mrp1−/− mice display a reduced inflammatory response to S. pneumoniae within the pulmonary compartment, but increased LTB4 concentrations

Pneumonia elicits a number of inflammatory responses within the lungs that have been found to contribute to local antibacterial host defense. These “protective” responses include the influx of neutrophilic granulocytes, and the production of certain cytokines (TNF, IL-6, IL-12, IFN-γ) and chemokines (macrophage-inflammatory protein-2, KC) (17, 21–25). In a first attempt to obtain insight in the mechanism by which mrp1−/− mice are resistant against pneumococcal pneumonia, we compared these responses in mrp1−/− and wild-type mice. mrp1−/− mice demonstrated a reduced influx of granulocytes in BALF (Table I), and a reduced production of protective cytokines and chemokines in lung homogenates (Table II), when compared with wild-type mice. Hence, these data suggested that other mechanisms likely are responsible for the relative protection of mrp1−/− mice. As expected, LTC4 was barely detectable in BALF of mrp1−/− mice, while high levels of LTC4 were observed in BALF of wild-type mice (Table I). LTB4 release followed different kinetics than the release of LTC4, elevated LTB4 levels especially being detected 24 h postinoculation. Remarkably, at this time point, but not after 48 h, significantly higher LTB4 concentrations were found in BALF from mrp1−/− mice than in BALF from wild-type mice.

Increased LTB4 production in mrp1−/− mice mediates increased resistance during pneumonia

5-LO−/− mice displayed reduced survival during Klebsiella pneumonia, and alveolar macrophages from these mice exhibited impaired bacterial phagocytosis and killing in vitro, which could be overcome by the addition of exogenous LTB4 (10). Therefore, to determine whether the increased LT levels in mrp1−/− mice played a role in the relative protection of these mice during pneumonia, we treated mrp1−/− mice with the LTB4 receptor antagonist LTB4-dimethyl amide. As evident from Fig. 2A, this treatment resulted in the complete abolition of the survival advantage of mrp1−/− mice over wild-type mice. In addition, we treated mrp1−/− and wild-type mice with MK-886 to determine whether the difference in survival between wild-type and mrp1−/− mice indeed was due to altered LT synthesis, or to an unknown function of mrp1 unrelated to LT release. In case the latter possibility is true, differences between wild-type and mrp1−/− mice should still be detectable after MK-886 treatment. However, mortality of wild-type and mrp1−/− mice was similar after treatment with MK-886 (Fig. 2B), suggesting that disruption of the mrp1 function in LT release mediates enhanced resistance of mrp1−/− mice to S. pneumoniae-induced pneumonia. Administration of MK-886 to mice without pneumonia for 2 wk did not produce any detectable toxicity. To ascertain that LTB4-dimethyl amide blocks LTB4 effects in vivo, and that MK-886 inhibits LT production in vivo, we performed the following experiments. First, we established that i.p. injection of LTB4-dimethylamide strongly reduced granulocyte influx into BALF after intranasal inoculation with LTB4 (Fig. 3A). Second, we found that i.p. injection of MK886 strongly attenuated LTB4 production by whole blood harvested 24 h later and stimulated ex vivo with heat-killed S. pneumoniae (Fig. 3B).

Increased intracellular LTC4 levels stimulate LTB4 production

We wondered whether increased LTB4 synthesis is a direct consequence of the absence of mrp1, or dependent on the production of a secondary mediator. Therefore, we isolated peritoneal macrophages from wild-type and mrp1−/− mice, and measured LTB4 production by these cells in vitro. LTB4 production induced by either arachidonic acid or heat-killed S. pneumoniae was higher in cells derived from mrp1−/− mice (Fig. 4, A and B). In search for

Table I. LT levels and number of neutrophil cells in BALF*

<table>
<thead>
<tr>
<th></th>
<th>LTC4 (pg/ml)</th>
<th>LTB4 (pg/ml)</th>
<th>Neutrophils, ×10^6/ml (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24 h</td>
<td>48 h</td>
<td>24 h</td>
</tr>
<tr>
<td>mrp1−/−</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wild type</td>
<td>3 ± 2</td>
<td>16 ± 5</td>
<td>40 ± 4</td>
</tr>
<tr>
<td>Control mrp1−/−</td>
<td>1 ± 1</td>
<td>228 ± 39*</td>
<td>24 ± 4*</td>
</tr>
<tr>
<td>Control wild type</td>
<td>12 ± 7</td>
<td></td>
<td>14 ± 1</td>
</tr>
<tr>
<td></td>
<td>3 ± 0</td>
<td></td>
<td>12 ± 2</td>
</tr>
</tbody>
</table>

* Mice were intranasally inoculated with S. pneumoniae (10^8 CFU) or sterile saline (control mice) at 0 h. The data represent means ± SEM of five or more mice per group.
* p < 0.05, compared to mrp1−/− mice.
an explanation for this phenomenon, we investigated the possibility that the increased intracellular accumulation of LTC₄ in mrp1⁻/⁻ cells may reduce substrate competition between LTA₄ and LTC₄ synthase for the available LTA₄ (the precursor of both LTB₄ and LTC₄). We tested the effect of increasing intracellular LTC₄ concentrations on LTC₄ generation (see Materials and Methods). To this end we incubated semipermeabilized cells from the 4-4 clone of VN11 retrovirus-immortalized macrophages (20) with 100 ng/ml LTC₄. Cells were stimulated for various time periods with arachidonic acid and, subsequently, LTB₄ production was measured. As shown in Fig. 4C, increasing intracellular LTC₄ levels resulted in enhanced LTB₄ release.

Discussion

mrp1 is involved in the cellular excretion of many different (anti- cancer) drugs, glutathione-S-conjugates of lipophilic xenobiotics and cysteinyl LTs (4, 5, 14, 15). The recent generation of mrp1⁻/⁻ mice has enabled detailed analysis of the function of this cellular pump in vivo. mrp1⁻/⁻ mice appeared hypersensitive to the anticancer drug etoposide (6, 26, 27), and had an impaired response to a selective disruption of the cysteinyl LT pathway. Indeed, MK-886 administration abolished the survival advantage of mrp1⁻/⁻ mice, which has a general deficiency of all LTs, demonstrated an enhanced lethality from Klebsiella pneumonia in association with an increased outgrowth of bacteria in lungs (10). We report here that mrp1⁻/⁻ mice behave completely opposite to 5-LO⁻/⁻ mice during pneumonia. By treating mrp1⁻/⁻ mice with MK-886, we confirmed that their increased resistance was related to a selective disruption of the cysteinyl LT pathway. Indeed, MK-886 administration abolished the survival advantage of mrp1⁻/⁻ mice, indicating that the relative protection of these mice was not mediated by a function of mrp1 unrelated to LT metabolism. In addition, we confirmed that mrp1⁻/⁻ mice are unable to release significant quantities of LTC₄ in BALF during pneumonia.

![FIGURE 2. A. The LTB₄-antagonist LTB₄-dimethyl amide reverses the survival advantage of mrp1⁻/⁻ mice. mrp1⁻/⁻ mice received a daily i.p. injection for 14 consecutive days with either 0.4 nmol LTB₄-dimethyl amide (●; n = 18) or isotonic saline (□; n = 17). Wild-type mice were injected daily with isotonic saline (■; n = 14). B. Inhibition of 5-LO abolishes the survival advantage of mrp1⁻/⁻ mice. mrp1⁻/⁻ mice (□; n = 17) and wild-type mice (■; n = 14) received a daily i.p. injection with MK-886 (1 nmol) for 14 consecutive days. In all experiments shown, mice were intranasally inoculated with 10⁴ CFU S. pneumoniae at 0 h.](https://www.jimmunol.org/doi/10.4049/jimmunol.1700805)

![FIGURE 3. A. Compared with i.p. injection of sterile saline (□), i.p. injection of LTB₄-dimethyl amide (0.4 nmol) strongly reduced granulocyte influx into BALF after intranasal inoculation with LTB₄ (2 × 10⁻⁴ μmol) (■). Data are mean ± SE of four determinations for each point. *, p < 0.05. B. Compared with i.p. injection of sterile saline (□), i.p. injection of MK886 (1 nmol) strongly attenuated LTB₄ production by whole blood harvested 24 h later and stimulated ex vivo with heat-killed S. pneumoniae (10⁵ CFU) (■). Data are mean ± SE of seven to nine determinations for each point. *, p < 0.05.](https://www.jimmunol.org/doi/10.4049/jimmunol.1700805)
unexpectedly, LTB$_4$ concentrations in BALF were higher in $mrp1^{−/−}$ mice than in wild-type mice early after the induction of pneumonia. Additional experiments revealed that these increased LTB$_4$ levels were essential for the protection of $mrp1^{−/−}$ mice, as indicated by the finding that treatment with the LTB$_4$ receptor antagonist LTB$_4$-dimethyl amide reversed the survival advantage of $mrp1^{−/−}$ mice. Alternatively, the enhanced bacterial clearance of $mrp1^{−/−}$ mice may be a direct consequence of intracellular accumulation of LTB$_4$ in these mice, and may be independent of the observed enhanced LTB$_4$ release. Increased intracellular levels of LTs have been associated with altered cellular Ca$^{2+}$ influx (31) and actin reorganization (31), and hence it is well envisionable that such accumulation would result in enhanced bactericidal activity of phagocytes. Contradicting with this hypothesis is the remarkably negative effect of LTB$_4$ antagonists in $mrp1^{−/−}$ mice. Therefore, we favor the hypothesis that the increased LTB$_4$ release mediates enhanced bacterial clearance in these mice, but obviously definitive proof of this notion awaits experiments in LTB$_4$ synthase mice.

MK886 treatment did not influence survival in normal wild-type mice. This finding contrasts with the finding of increased mortality of 5-LO$^{−/−}$ mice during pneumonia caused by K. pneumoniae (10). Possible explanations for this discrepancy include incomplete inhibition of 5-LO by MK886 and/or the fact that the model may be too severe to detect a harmful effect of MK886 in normal mice (i.e., <20% of wild-type mice recovered from pneumococcal pneumonia).

It should be noted that in wild-type mice, LTB$_4$ release in BALF occurred earlier than LTB$_4$ release. This finding is surprising in light of the fact that both lipids are probably predominantly derived from alveolar macrophages. We do not have a clear explanation for this observation; further studies are warranted to determine possible underlying mechanisms. In addition, the finding at 48 h of similar LTB$_4$ concentrations in BALF of wild-type and $mrp1^{−/−}$ mice is remarkable in light of the presence of up to 4-fold more neutrophils in BALF of the former strain, considering that neutrophils can be a source of LTB$_4$. Taken together with the fact that LTB$_4$ levels were already significantly elevated at 24 h (i.e., when neutrophil influx was still marginal), these data suggest that during pneumonia alveolar macrophages are a more important source of LTB$_4$ than neutrophils.

Two of us (J.W. and P.B.) have reported that the capacity of unstimulated $mrp1^{−/−}$ bone-marrow derived mast cells to secrete LTB$_4$ is unaltered in comparison to wild-type cells (6). In the present study, we documented enhanced LTB$_4$ secretion in BALF of intact $mrp1^{−/−}$ mice during pneumonia. In accordance, one of us (S.J.H.v.D.) recently found higher LTB$_4$ concentrations in colon homogenates of $mrp1^{−/−}$ mice than in colon homogenates of wild-type mice in a model of 2,4,6-trinitrobenzene sulfonic acid-induced colitis (T. Len Hove, P. Drillenburg, F. Wynholds, A. te Velde, and S. van Devenstir, manuscript in preparation). Importantly, also macrophages isolated from $mrp1^{−/−}$ mice displayed increased LTB$_4$ synthesis, demonstrating that enhanced LTB$_4$ production is an inherent property of these cells and is not secondary to other effects induced by the absence of mrp1. The absence of mrp1 results in accumulation of intracellular LTC$_4$ (6). Here we provide evidence that this increased intracellular LTC$_4$ concentrations can stimulate LTB$_4$ production. Indeed, semipermeabilized macrophages exposed to high concentrations of LTC$_4$ released more LTB$_4$ upon stimulation. It should be noted that immortalized macrophages and peritoneal, rather than alveolar, macrophages from wild-type and $mrp1^{−/−}$ mice were used for metabolic LT studies in vitro. Although alveolar macrophages may have been more appropriate for these studies, we consider our in vitro data reliable especially because they are strictly in accordance with the in vivo observation of elevated LTB$_4$ concentrations in BALF of $mrp1^{−/−}$ mice at 24 h after the induction of pneumonia. Hence, together, these data suggest that the increased intracellular LTC$_4$ levels, due to the absence of mrp1, enhance LTB$_4$ generation, which then results in enhanced resistance to pneumococcal pneumonia. Enhanced LTB$_4$ synthesis could occur in two ways. Intracellular LTC$_4$ accumulation may give rise to product inhibition of LTC$_4$ synthase thus removing substrate competition between LTC$_4$ synthase and LTA$_4$ hydrolase (the LTB$_4$ producing enzyme) for LTA$_4$ (the precursor of both LTB$_4$ and LTC$_4$), yielding enhanced LTB$_4$ synthesis. Alternatively, LTC$_4$ may be converted into a LTB$_4$ precursor. Because an enzymatic activity supporting such a reaction has hitherto not been described, we favor the former explanation.

FIGURE 4. A. Peritoneal macrophages of $mrp1^{−/−}$ mice (■) produce more LTB$_4$ than macrophages from wild-type mice (▲) after stimulation of the LT-pathway with 20 μM arachidonic acid. Data are mean ± SE of 5–10 determinations for each point. *p < 0.05. B, Peritoneal macrophages of $mrp1^{−/−}$ mice (■) produce more LTB$_4$ than macrophages from wild-type mice (▲) after stimulation of the LT-pathway with heat-killed S. pneumoniae (107 CFU). Data are mean ± SE of 12 determinations for each point. *p < 0.05. C, Semipermeabilized cells from the 4-4 clone of VN11 retrovirus-immortalized macrophages produce more LTB$_4$ upon stimulation with arachidonic acid in the presence of 100 ng/ml LTC$_4$ for various time periods (■), compared with stimulation in the absence of LTC$_4$ (▲). Data are mean ± SE of three determinations for each time point.
Normal wild-type mice, rather than heterozygous mrp1+/− mice, were used as controls in our investigations. Although Western blot results indicate that heterozygous mrp1(+/−) mice show less expression of mrp1 protein than wild-type mice, heterozygous mrp1(+/−) mice are identical with normal wild-type mice with respect to relevant physiological functions, in particular LTC4 transport (6). Therefore, we consider it less likely that heterozygous mrp1(+/−) mice have a phenotype that is different from wild-type mice in models in which differences in LT metabolism determine the difference in outcome between mrp1+/− mice and wild-type mice.

Although mrp1−/− mice had elevated LTβ levels in BALF at 24 h after infection, granulocyte numbers in BALF were similar in both mouse strains at that time point, while at 48 h wild-type mice even had significantly more granulocytes in their BALF than mrp1−/− mice. These findings are unexpected in light of the fact that LTβ is considered a potent chemoattractant for neutrophils. However, it should be noted that LTβR also can enhance bacterial killing by phagocytic cells, which at least in part may have increased antibacterial defense of mrp1−/− mice at early time points after infection. Indeed, the addition of exogenous LTβ to peritoneal or alveolar macrophages increased bacterial phagocytosis and killing of Salmonella typhimurium, P. aeruginosa and K. pneumoniae (10, 30). At later time points, the extent of inflammation (i.e., number of neutrophils in BALF, cytokine levels in lungs) likely merely is a reflection of the bacterial load present in the pulmonary compartment. Hence, at 48 h, the presence of many more S. pneumoniae CFUs in lungs of wild-type mice, caused by a relatively reduced defense against pneumococci early after the infection, likely are responsible for the higher granulocyte counts and cytokine levels in these mice. This is also why we consider measurements of inflammatory parameters later than 48 h after the induction of pneumonia of little value, i.e., mice dying from pneumococcal pneumonia invariably show extensive inflammation in lungs (our unpublished observation), and comparisons between mrp1−/− and wild-type mice would have been biased by an unbalanced mortality in these strains.

mrp1 has attracted widespread interest due to its action as a multidrug resistance protein, and wild-type mice would have been biased by an unbalanced mortality in these strains.

mrp1 has attracted widespread interest due to its action as a multidrug resistance protein, and wild-type mice would have been biased by an unbalanced mortality in these strains.

References
3. Nicholson, D. W., A. Ali, J. P. Vaillancourt, J. R. Calaycay, R. A. Mumford, R. I. Zamboni, and A. W. Ford-Hutchinson. 1993. Purification to homogeneity and the N-terminal sequence of human leukotriene C4 synthase: a homodimeric and wild-type mice are identical with normal wild-type mice with respect to relevant physiological functions, in particular LTC4 transport (6). Therefore, we consider it less likely that heterozygous mrp1(+/−) mice have a phenotype that is different from wild-type mice in models in which differences in LT metabolism determine the difference in outcome between mrp1+/− mice and wild-type mice.

Although mrp1−/− mice had elevated LTβ levels in BALF at 24 h after infection, granulocyte numbers in BALF were similar in both mouse strains at that time point, while at 48 h wild-type mice even had significantly more granulocytes in their BALF than mrp1−/− mice. These findings are unexpected in light of the fact that LTβ is considered a potent chemoattractant for neutrophils. However, it should be noted that LTβR also can enhance bacterial killing by phagocytic cells, which at least in part may have increased antibacterial defense of mrp1−/− mice at early time points after infection. Indeed, the addition of exogenous LTβ to peritoneal or alveolar macrophages increased bacterial phagocytosis and killing of Salmonella typhimurium, P. aeruginosa and K. pneumoniae (10, 30). At later time points, the extent of inflammation (i.e., number of neutrophils in BALF, cytokine levels in lungs) likely merely is a reflection of the bacterial load present in the pulmonary compartment. Hence, at 48 h, the presence of many more S. pneumoniae CFUs in lungs of wild-type mice, caused by a relatively reduced defense against pneumococci early after the infection, likely are responsible for the higher granulocyte counts and cytokine levels in these mice. This is also why we consider measurements of inflammatory parameters later than 48 h after the induction of pneumonia of little value, i.e., mice dying from pneumococcal pneumonia invariably show extensive inflammation in lungs (our unpublished observation), and comparisons between mrp1−/− and wild-type mice would have been biased by an unbalanced mortality in these strains.

mrp1 has attracted widespread interest due to its action as a multidrug resistance protein, and wild-type mice would have been biased by an unbalanced mortality in these strains.