CD40/CD40 Ligand Interactions Are Critical for Elicitation of Autoimmune-Mediated Fibrosis in the Lung

Jie Zhang-Hoover, Annika Sutton and Joan Stein-Streilein

J Immunol 2001; 166:3556-3563; doi: 10.4049/jimmunol.166.5.3556

http://www.jimmunol.org/content/166/5/3556

References

This article cites 46 articles, 22 of which you can access for free at:

http://www.jimmunol.org/content/166/5/3556.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at:

http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:

http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:

http://jimmunol.org/alerts
CD40/CD40 Ligand Interactions Are Critical for Elicitation of Autoimmune-Mediated Fibrosis in the Lung

Jie Zhang-Hoover,* Annika Sutton, † and Joan Stein-Streilein2*

Pulmonary interstitial fibrosis (PIF), associated with persistent inflammation and increased collagen deposition in the interstitium, is often considered an autoimmune disease. Haypen immune PIF (HIPIF), a model for PIF, is elicited in the lung by a single intratracheal (i.t.) challenge with hapten sensitized with hapten [2,4,6-trinitrobenzene sulfonic acid, TNBS]. In this study, we characterized the role of CD40/CD40 ligand (CD40L) interactions in the elicitation of secondary cell-mediated immune responses that lead to development of fibrosis in the lung using an adoptive transfer model of HIPIF. The expression of CD40 was detected on bronchoalveolar lavage (BAL) cells 1–3 days after i.t. challenge with hapten in the HIPIF lung, but not lungs from the control mice. The CD40bright BAL cells morphologically resembled infiltrating monocytes. Furthermore, blocking CD40/CD40L interactions with blocking Ab decreased BAL production of Th1-mediators (IL-12 and TNF-α). Moreover, either blocking CD40/CD40L interactions with the Ab or using IL-12 knockout recipient mice prevented the increased collagen deposition (accumulation of hydroxyproline) in the lungs during HIPIF induction. We conclude that second signals (CD40/CD40L interactions) are required for elicitation of secondary immune responses that lead to PIF in vivo. The results support the notion that CD40/CD40L interactions are involved in the pathogenesis of an ongoing autoimmune disease. The Journal of Immunology, 2001, 166: 3556–3563.

Received for publication July 3, 2000. Accepted for publication December 8, 2000.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 This work was supported in part by National Institutes of Health Grants R01 HL33709 (to J.S.-S.) and F32 HL10148-01A1 (to J.Z.-H.), and by Schepens Eye Research Institute.

2 Address correspondence and reprint requests to Dr. Joan Stein-Streilein, Schepens Eye Research Institute, 20 Stamford Street, Boston, MA 02114. E-mail address: jstein@vision.eri.harvard.edu

3 Abbreviations used in this paper: CD40L, CD40 ligand; PIF, pulmonary interstitial fibrosis; HIPIF, hapten immune PIF; ADT-HIPIF, adoptively transferred HIPIF; BAL, bronchoalveolar lavage; EAE, experimental allergic encephalitis; i.t., intratracheally; TNBS, 2,4,6-trinitrobenzene sulfonic acid; WT, wild type; rm, recombinant mouse; 2*, knockout.

Copyright © 2001 by The American Association of Immunologists

0022-1767/01/$02.00

CD40 is a coreceptor expressed on APCs that binds with CD40 ligand (CD40L)3 expressed on activated T cells during a primary immune response (1–3). CD40/CD40L interactions play a pivotal role in the initiation of most T cell-dependent immune responses (2–4). Although originally defined on B cells, it is now known that CD40 is expressed on both hematopoietic (B cells, activated macrophages, and dendritic cells) and nonhemopoietic cells (epithelial cells, fibroblast, and endothelial cells) (3, 5–7). Maturation of dendritic cells into fully competent APCs involves the up-regulation of CD40 on their surface (2, 3).

Although CD8+ T cells, eosinophils, mast cells, basophils, and NK cells are able to express the molecule, CD40L is expressed primarily by activated CD4+ T cells (2, 3). When CD40L ligates on dendritic cells or macrophages, B7 coreceptor molecules are up-regulated and inflammatory cytokines (IL-12, TNF-α, and IL-1) are produced (3, 8–11). Moreover, CD40/CD40L interactions are crucial in priming, expansion, and maturation of CD4+ T cells (2, 9, 12, 13) and are critical for the initiation and maintenance of macrophage/dendritic cell-mediated inflammation (7, 14–16). Blocking CD40/CD40L interactions reduces allograft rejection and prolongs graft survival (3, 17). It is well established that CD40/CD40L interactions are absolutely required for initiation of primary immune responses and accompanying inflammatory responses.

In contrast to what is known about CD40 and primary immune responses there are only a few studies evaluating the role of CD40 binding during secondary immune responses in vivo. Recently, Gerritse and colleagues showed that in vivo administration of anti-CD40L Ab inhibited the elicitation of experimental allergic encephalitis (EAE) in mice (16). Also, anti-CD40L immunotherapy reduced the severity of ongoing lupus nephritis (18). However, CD40 was not important for the elicitation of secondary immune responses observed by others. CD40/CD40L interactions were not critical for clearance of tumors after challenge in a vaccinated animal (2) nor modulated the outcome of colitis after induction by hapten 2,4,6-trinitrobenzene sulfonic acid (TNBS) (19).

The role of CD40 in pulmonary fibrosis was recently addressed by Phipps and colleagues when they showed that the blockade of CD40/CD40L interactions prevented fibrosis in lung injury models mediated by oxygen or radiation (nonimmune inflammation) (20, 21). Treatment of the mice with CD40L blocking Ab (MR1) before the oxygen or radiation exposure and even 48 h after oxygen exposure reduced the production of the proinflammatory enzyme cyclooxygenase-2 and blunted the injury-induced inflammation and lung fibrosis (20, 21). However, no studies have reported a role for CD40/CD40L interactions in secondary immune responses that lead to immune-mediated fibrosis.

Haptenes include known protein-reactive chemicals, metals, salts, and drugs that are considered major environmental noxae targeting the immune system of vertebrates (22). Haptenes are non-immunogenic but, because of their chemical reactivity, covalently bind to proteins and lipids as carriers and stimulate immune responses (22–24). Like viruses, haptens alter self-Ags, and part of the ensuing immune response includes an autoimmune component (22). Previously we reported that pulmonary interstitial fibrosis (PIF) was elicited in the lungs of hapten-sensitized mice after a local pulmonary challenge of the immunizing hapten (25). The intratracheally (i.t.) administered hapten induced a local recall cell-mediated immune response against self-Ag modified by hapten...
TNBS that eventuated into a chronic immune response alveolitis and fibrosis (26–28). The experimental model for pulmonary fibrosis is called hapten immune PIF (HIPIF) and resembles human idiopathic PIF, not only because of its abnormal regulation of inflammation in the lung and unresolved fibrosis, but also because it shares an autoimmune etiology (29, 30).

The elicitation of HIPIF is Ag specific and dependent on the genetic susceptibility of mouse strain to express a contact hypersensitivity response toward TNBS (25, 26, 28). HIPIF does not occur in mice that are made tolerant to the Ag and can be adoptively transferred with sensitized cells to naive mice before i.t. challenge with TNBS (25, 31). Using a modified HIPIF model called adoptively transferred HIPIF (ADT-HIPIF) where we adoptively transferred sensitized cells into naive recipient mice, we showed that sensitized CD4+ and CD8+ cells from donor mice and alveolar macrophages from recipient mice were absolutely required for the elicitation of HIPIF (28, 32). These studies also showed that alveolar macrophages were necessary for the effective recruitment of inflammatory cells (IL-12Rβ2 cells, activated T cells, and monocytes/immature dendritic cells) into the lung.

We reasoned that if HIPIF were to occur there must be a change in the normally suppressive phenotype of the alveolar macrophage to allow the recruitment of the inflammatory cells from the periphery and, perhaps, even promote the chronic secondary immune responses in the lung. Indeed data presented show that bronchoalveolar lavage (BAL) cells (including alveolar macrophages and infiltrating monocytes) produced inflammatory cytokines and expressed CD40 coreceptors on their surface. Importantly, CD40 was expressed on activated alveolar macrophages (25–27). CD40+ alveolar macrophages produced IL-12 that recruited inflammatory cells (IL-12Rβ2 cells, and monocytes) into the lung.

Materials and Methods

Animals

Female BALB/c ByJ mice were purchased from The Jackson Laboratory (Bar Harbor, ME) and maintained in the Schepens Eye Research Institute Vivarium until they reached the desired weight (20–24 g) for the experiments. The IL-12 p35 p40 knockout (−/−) mouse (BALB/c background) breeding pair was a gift from Dr. Keith Bishop (University of Michigan, Ann Arbor, MI), and mice used in the studies were bred in the Schepens Eye Research Institute Vivarium. All animals were treated humanely in accordance with National Institutes of Health guidelines and the approval of the Schepens Animal Care and Use Committee.

Reagents

TNBS, rat IgG, crystal violet, alkaline phosphatase-conjugated ExtrAvidin, and substrate p-nitrophenyl phosphate were purchased from Sigma (St. Louis, MO). Anti-CD40L Ab (MR1) was purchased from Bio Express (West Lebanon, NH). Normal Armenian hamster serum was purchased from Cytogen (West Roxbury, MA), and the hamster IgG was purified from the serum using protein A-agarose (Life Technologies, Grand Island, NY) column. Biotin- and PE-conjugated anti-CD40 Abs (3/23), purified anti-IL-12 (p70) Ab (9A5), anti-IL-12 (p40/p70) Ab (C15.6), biotin-conjugated anti-IL-12 (p40/p70) Ab (C17.8), Fc blocker (2.4G2), and rat IgG2a (R35-95) were purchased from BD Pharmingen (San Diego, CA). A TNF-α ELISA kit (DuoSet) was purchased from Genzyme (Cambridge, MA). Phenol red was purchased from Sigma (St. Louis, MO). PermeaFix reagent was purchased from Ortho Diagnostic Systems (Raritan, NJ). R-PE-conjugated streptavidin was purchased from Jackson ImmunoResearch (West Grove, PA). Recombinant mouse (rm) IL-12 (p70) was purchased from R&D Systems (Minneapolis, MN).

Animal model

HIPIF. Mice were sensitized on the abdomens with a water-soluble form of the hapten TNBS (3% in PBS, 100 μl/mouse) at day 0. Five days after sensitization, the mice were inoculated i.t. with 50 μl of 1% TNBS (28).

ADT-HIPIF. Donor mice were skin sensitized with 100 μl of 3% TNBS. Five to seven days after skin sensitization, spleen and draining lymph node cells were mixed, counted, and used as donor cells for adoptive transfer. The spleen and lymph node cells from naive mice were similarly collected and adoptively transferred as control. Recipient mice were irradiated (200 rad, Mark 1 irradiator; J.L. Shepherd and Associates, Glendale, CA) 24 h before donor cells (3 × 107/mouse) were transferred through tail vein inoculation. One day after the adoptive transfer, recipient mice were challenged i.t. with 50 μl of 1% TNBS in PBS.

CD40L neutralizing Ab (MR1) and rmIL-12 (p70) treatment

Recipient mice were given Ab (MR1) or normal Armenian hamster IgG (200 μg/mouse, i.p.) 1 day before i.t. challenge. The recipient mice received additional Ab (100 μg/mouse, intranasally) at 4 h, and 1, 3, and 7 days after i.t. challenge. rmIL-12 (p70) (100 or 500 ng) was inoculated i.p. per mouse on the day of i.t. challenge and was repeated 3 days after i.t. challenge. Each group for each dose contained five mice.

Flow cytometry analyses and sorting

BAL cells were collected by washing the lung with a total of 10 ml of PBS per lung (1 ml per wash). Cells in staining buffer (PBS, 1% BSA, 0.1% sodium azide) were incubated with blocking reagent (Fc blocker, 2 μg/106 cells, rat IgG 20 μg/106 cells), and then biotin-conjugated anti-CD40 or rat IgG2a (1 μg/106 cell) followed by PE-conjugated streptavidin. All cells were incubated on ice for 20 min and washed twice before the next reagent was added. To quench macrophage autofluorescence, cells were permeabilized and fixed with PermeaFix reagent to allow intracellular access of crystal violet (33) before the samples were analyzed by flow cytometry (EPICS XL; Beckman Coulter, Miami, FL).

For CD40+ cell sorting, the lavage cells were stained with PE-conjugated anti-CD40 Ab or control rat IgG2a (1 μg/106 cells) for 40 min on ice. CD40+ cells were sorted using flow cytometry (EPICS ELITE; Beckman Coulter). Biotin-conjugated Ab and rat IgG2a-PE were purchased from R&D Systems (Minneapolis, MN).

FIGURE 1. Flow cytometric analysis of CD40 expression on BAL cells from HIPIF mice. The histograms show the CD40 staining of BAL cells compared with their isotype control. BAL cells were collected 2 days after i.t. challenge and stained with biotin-conjugated anti-CD40 Ab followed by PE-conjugated streptavidin. Biotin-conjugated rat IgG2a was used as isotype control. Cells in a were harvested from the HIPIF mice. Cells in b were collected from i.t. challenge-only mice. Cells in c were obtained from naive mice. In each histogram the abscissa represents PE fluorescence intensity on the cells, and the ordinate represents relative cell number. The percentage of CD40+ cells is indicated in histogram a. The experiment was repeated four times.
and after CD40

3

b

shown. The percentage of cells in the gate is indicated in each histogram.

density. BAL cells were collected from the HIPIF mice 1 day after i.t. chal-

shaped nucleus with light blue granules in the cytoplasm; lymphocytes had

plasmic region and a single round nucleus); monocytes showed a kidney-

veolar macrophages were identified by their large size (with a large cyto-

(i.e., oil,

Fisher Scientific, Pittsburgh, PA), and then analyzed by light microscopy

followed by staining with Wright Giemsa staining (HEMA 3 Stain set;

40 and

3

3

3

Coulter). Cytospin preparations (Cytospin 2; Shandon Southern Products,

Astmoor, U.K.) were prepared from the sorted cells (5 \times 10^4 cells/slide),

by staining with Wright Giemsa staining (HEMA 3 Stain set; Fisher Scientific,

Pittsburgh, PA), and then analyzed by light microscopy (oil, \times 40 and \times 60) (Nikon ECLIPSE E-800; Nikon, Melville, NY). Al-

veolar macrophages were identified by their large size (with a large cyto-

plasmic region and a single round nucleus); monocytes showed a kidney-

shaped nucleus with light blue granules in the cytoplasm; lymphocytes had

a spherical nucleus that was dark blue and surrounded by a small cytoplasm

region; neutrophils had a nucleus consisting of two to five lobes linked by

fine threads of chromatin; and eosinophils contained a bilobed nucleus with

pink granules in the cytoplasm.

Cytokine ELISA

The lung lavage was collected from each individual mouse as the return

volume on 1 ml of PBS inserted i.t. The lavage wash was centrifuged at

200 \times g for 10 min, and the supernatant was used for the ELISA. TNF-\alpha

ELISA was performed using the TNF-\alpha ELISA kit according to the manu-

ufacturer’s instruction. IL-12 (p40/p70) ELISA was performed by using the

capture Ab (C15.6, 2 \mu g/ml) and the detecting Ab (C17.8, 1 \mu g/ml) fol-

lowed by alkaline phosphatase-conjugated ExtrAvidin (1:10,000 dilution)

and substrate p-nitrophenyl phosphate. We used anti IL-12 mAbs, 9A5 (2

\mu g/ml) for the capture Ab and C17.8 (1 \mu g/ml) for the detecting Ab in an

IL-12p70 ELISA.

Hydroxyproline assay

Changes in collagen deposition in the lung were measured by a colorimet-

ric hydroxyproline assay (34). In brief, lungs recovered from the experi-

mental mice were minced and hydrolyzed in 6 N HCl (2 ml/lung) for 16 h

at 110°C. The samples were filtered through Whatman no. 1 filter paper,

diluted with H2O, neutralized with 10 N NaOH, and assessed spectropho-

tometrically. The amount of hydroxyproline in the lungs was calculated

according to the standard curve generated using a serial dilution of trans-

4-hydroxy-t-proline (Sigma).

RT-PCR

Total RNA was extracted from cells by Trizol reagent (Life Technologies,

Rockville, MD). RNA purified from 3 \times 10^6 BAL cells was dissolved in

30 \mu l diethyl pyrocarbonate-treated H2O. One microliter of the RNA sample

was used for the one-step RT-PCR amplification using the Access RT-PCR

system (Promega, Madison, WI) and Gene Amp PCR System 9600 (Per-

kin-Elmer, Norwalk, CT). The primer pairs for IL-12 p35 (sense: ggctac
tagagacacttc, anti-sense: gigaacagagtgctagaggtc) (35), TNF-\alpha

(sense: atgacacagagcagctagctg, anti-sense: ccaagtagacggtccgacct) (36),

and \beta-actin (sense: tgtgccgctctagctg, anti-sense: cetttgtagt cagccaggttt) (37) were generated by Oligos Etc. (Wilsonville, OR). The

RT reaction was one cycle of 48°C for 45 min followed by 94°C for 2 min.

The PCR amplification was 40 cycles of 94°C for 30 s, 60°C for 1 min, and

68°C for 2 min followed by one cycle of 68°C for 7 min. The PCR products

were separated on a 1% agarose gel and visualized using GelStar nucleic

acid gel stain (FMC BioProducts, Rockland, ME) and UV illumination.

The density of the bands on the gel was measured using Gel Doc 2000

(Bio-Rad, Hercules, CA).

Ratio of A/B relative density

<table>
<thead>
<tr>
<th></th>
<th>D2</th>
<th>D5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp. 1</td>
<td>2</td>
<td>1.71</td>
</tr>
<tr>
<td>Exp. 2</td>
<td>1.57</td>
<td>1.86</td>
</tr>
<tr>
<td>Exp. 3</td>
<td>1.3</td>
<td>1.88</td>
</tr>
<tr>
<td>Mean ± SEM</td>
<td>1.62 ± 0.2</td>
<td>1.82 ± 0.05</td>
</tr>
</tbody>
</table>

Downloaded from http://www.jimmunol.org/ by guest on May 1, 2017
Statistical analyses

ANOVA and post hoc tests were used to evaluate the difference among experimental groups. Values of $p \leq 0.05$ were considered significant. In some cases, individual p values are given.

Results

BAL cells from HIPIF mice express CD40

The elicitation of immune responses in sensitized mice is thought to involve different and perhaps fewer signals than needed for the induction of a primary immune response (2, 19). Because there is a controversy as to the absolute requirement for CD40 during elicitation of secondary immune responses, we began by measuring the expression of CD40 in the autoimmune fibrosis model, HIPIF.

In contrast to unsensitized mice that receive a single inoculation of hapten in their lungs, HIPIF mice that are sensitized before the i.t. challenge with hapten develop a lasting fibrosis (28). Moreover, adherent cells from the lungs of HIPIF mice are immune supporting, whereas the adherent cells from the lungs of challenge-only mice are immune suppressive (32). Thus, we reasoned that the functional phenotype of the BAL-adherent cells would differ in HIPIF mice. As a marker for activated and effective accessory cells, we assessed the expression of CD40 on BAL cells from the various experimental groups with flow cytometry. BAL cells were obtained from the experimental mice 2 days post i.t. challenge with hapten and stained with anti-CD40 Ab. The BAL cells from naive mice (C group) that were 90–95% alveolar macrophages (data not shown) expressed low level (mean fluorescence intensity of CD40 Ab vs isotype Ab staining was 0.876 vs 0.623, respectively) of CD40 on their surface. The BAL cells from sensitized and challenged mice (A group) contained a subpopulation of cells (8%) expressing high level (mean fluorescence intensity of CD40 Ab vs isotype Ab staining was 12.9 vs 0.886, respectively) of CD40 on their surface (Fig. 1). Challenge-only mice (B group) had no CD40 on their surface. The expression of CD40 on BAL cells was also increased 1 and 3 days after i.t. challenge in HIPIF mice compared with control (data not shown).

The BAL cells with high CD40 expression are infiltrating monocytes/dendritic cells

Because the BAL cells from sensitized or naive mice that were i.t. challenged contained both alveolar macrophages and infiltrating monocytes, both of which have the potential for expressing CD40 (2, 3), we identified the CD40 bright cells in HIPIF mice by their morphology. The CD40 bright cells from BAL cells collected 1 day post i.t. challenge were enriched by FACS sorting, stained with Wright Giemsa, and examined by light microscopy (Fig. 2). About 80% of the sorted cells as analyzed by flow cytometry were CD40 bright, and the same percentage of the sorted cells exhibited morphology consistent with their being monocytes. The rest of the anti-CD40L Ab; B, i.t. challenge-only mice; C, naive mice. The treatment of each group is indicated under abscissa. In a, the HIPIF protocol was performed, and in b and c, the ADT-HIPIF protocol was performed. Sensitized or naive cells (30 × 10^6/mouse) were adoptively transferred (ADT) to syngeneic naive mice 1 day before i.t. challenge. Ab treatment is described in detail in Materials and Methods; αCD40L, anti-CD40L Ab (MR1); hIgG, normal Armenian hamster IgG. One day after i.t. challenge, lungs were washed using 1 ml of PBS, and supernatant from the recovered lavage was tested for IL-12 and TNF-α ELISA. Five mice were used in each group. The data is presented as mean ± SEM. An asterisk (*) indicates a statistical significant difference between the two groups indicated. IL-12 p70 ELISA sensitivity level was 5 pg/ml. Group B, B’, and C, IL-12 p70 was below detection level.

FIGURE 4. IL-12 and TNF-α ELISA on BAL samples from HIPIF mice treated with anti-CD40L Ab. Ab. Histograms show the level of IL-12 (p70) (a), IL-12 (p40/70) (b), and TNF-α (c) in the lavage from experimental mice (A, A’, B, C). A, HIPIF mice; A’, HIPIF mice treated with skin sensitization + + - - - - i.t. + + - - - - Ab (l.p., l.n.) h IgG αCD40L h IgG αCD40L

Treatment of recipient mice

<table>
<thead>
<tr>
<th>Treatment of recipient mice</th>
<th>IL-12 p70 (pg/ml ± SEM)</th>
<th>IL-12 p40/70 (pg/ml ± SEM)</th>
<th>TNF-α (pg/ml ± SEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 4. IL-12 and TNF-α ELISA on BAL samples from HIPIF mice treated with anti-CD40L Ab. Ab. Histograms show the level of IL-12 (p70) (a), IL-12 (p40/70) (b), and TNF-α (c) in the lavage from experimental mice (A, A’, B, C). A, HIPIF mice; A’, HIPIF mice treated with skin sensitization + + - - - - i.t. + + - - - - Ab (l.p., l.n.) h IgG αCD40L h IgG αCD40L

Treatment of recipient mice
CD40/CD40 LIGAND AND AUTOIMMUNE PULMONARY FIBROSIS

The effect of Ab blocking of CD40/CD40L interactions on cytokine production

The consequence of CD40/CD40L interactions in elicitation of hapten responses in the lungs of sensitized mice was studied first indirectly by monitoring inflammatory cytokine production. The level of IL-12 mRNA in lavage cells was measured by RT-PCR analysis in experimental and control mice 2 days after i.t. challenge (Fig. 3). Evaluation of IL-12 mRNA showed no differences in the p40 mRNA level in BAL cells collected from the various experimental groups of mice, but p35 mRNA level was consistently higher in BAL cells from HIPIF mice as compared with those from control mice at both 2 and 5 days after i.t. challenge. Reports show that the expression of IL-12 p35 is both transcriptionally and translationally regulated because multiple isoforms of p35 are expressed in different types of cells and stages of activation (38, 39). Therefore, we interpreted the double band seen in day 5 as two isoforms of p35. We included both bands in the densitometry analyses of the p35 RT-PCR product. During the elicitation of HIPIF, monocytes and T cells are recruited into the lung (32). Three days after i.t. challenge with TNBS, the HIPIF mice have significantly higher numbers of monocytes (9.58 ± 1.11 x 10⁴ vs. 5.28 ± 0.97 x 10⁴) and T cells (5.54 ± 0.52 x 10⁴ vs. 2.09 ± 0.06 x 10⁴) in BAL compared with the mice i.t. challenged-only (32). In addition, the cells in the HIPIF BAL are more activated (increased CD40 expression, IL-12 receptor expression, and TNF-α production) than the BAL cells from the control mice (32) (Fig. 1). Thus, the elevated level of IL-12 p35 mRNA in HIPIF BAL cell samples could be a result of increased numbers of infiltrating monocytes and enhanced activation of both monocytes and alveolar macrophages.

Active IL-12 protein is a heterodimer of p35 and p40. In the HIPIF lung p35 is inducible, whereas p40 is constitutively expressed. To show that the mRNA was indeed translated into a protein we measured IL-12 protein in the return from the first milliliter of lung wash in an IL-12 (p40/p70) ELISA and an IL-12 (p70) ELISA (Fig. 4, a and b). The results indicated that the HIPIF mice produced a higher level of IL-12 compared with the i.t. challenge-only or naive mice. Because HIPIF development is dependent on a Th1 immune inflammatory response (25, 26, 28, 32) the increase in IL-12 protein is biologically significant.

A number of publications show a direct relationship between CD40/CD40L interactions and IL-12 production (1–3, 10, 11). To confirm that IL-12 production in HIPIF mice was dependent on ligation of CD40, recipient mice were treated with CD40L-specific blocking Ab (MR1) on the day of transfer of hapten-sensitized cells (1 day before i.t. challenge with hapten), and IL-12 production was evaluated. BAL cells were harvested 1 day after i.t. challenge from several groups of HIPIF mice that were treated with different doses of MR1 (0, 50, 100, and 200 μg/mouse, i.p.). The mRNA level of IL-12 p35 and p40 in the BAL cells was analyzed by RT-PCR (Fig. 5). The BAL cells from HIPIF mice treated with 100 and 200 μg of anti-CD40L Ab had reduced IL-12 p35 mRNA levels (Fig. 5), as well as reduced production of IL-12 (p70) protein (Fig. 4a). The p35 mRNA levels on BAL cells were reduced by 37% at 2 days and 42% at 3 days after i.t. challenge from anti-CD40L (200 μg)-treated HIPIF mice (data not shown).

As expected, CD40L blocking Ab also interfered with TNF-α mRNA and protein production because there was a dose-dependent decrease of TNF-α mRNA in BAL cells and a reduction of TNF-α protein in BAL fluid from the mice treated with 200 μg CD40L Ab (Figs. 4c and 5). TNF-α mRNA levels were also reduced in BAL cells from anti-CD40L (200 μg)-treated HIPIF mice that were collected 2 and 3 days (53 and 51% reduction, respectively) after i.t. challenge (data not shown). These results support the postulate that CD40/CD40L interactions contribute to the effector phase of the hapten immune response in the lung by enhancing the production of proinflammatory cytokines IL-12 and TNF-α.

IL-12 is associated with the accumulation of hydroxyproline in HIPIF mice

To analyze the role of IL-12 in HIPIF, IL-120 BALB/c mice were used as recipient mice in ADT-HIPIF. TNBS-sensitized spleen and lymph node cells were collected from wild-type (WT) mice that were sensitized on their abdomen 5 days earlier and transferred to either WT or IL-120 mice. Recipient mice were challenged with TNBS (i.t.) 1 day later. The accumulation of hydroxyproline was measured in the lungs of experimental mice 14 days after i.t. challenge (Fig. 6). The IL-120 recipient mice had significantly less (p ≤ 0.05) hydroxyproline deposition in the lung compared with the WT recipient mice. Thus, IL-12 not only contributes to the process that eventuates into fibrosis, but also must be produced by...
monocytes and macrophages from the recipient mice after the i.t. challenge with Ag.

Effect of CD40L blocking Ab on hydroxyproline accumulation in the HIPIF lung

Thus far, data show that CD40/CD40L interactions promote the production of proinflammatory and fibrogenic cytokines that lead to the development of pulmonary fibrosis. To evaluate the role of CD40/CD40L in pulmonary fibrosis, recipient mice (ADT-HIPIF model) were treated with CD40L blocking Ab, and hydroxyproline accumulation in the lung was measured. Compared with the HIPIF mice treated with hamster IgG (control Ab), the HIPIF mice treated with anti-CD40L Ab developed less accumulation of hydroxyproline (Fig. 7). Therefore, both the production of inflammatory cytokines and hydroxyproline accumulation were dependent on CD40/CD40L interactions. When HIPIF mice that were treated with CD40L Ab were given rmIL-12 (p70), the accumulation of hydroxyproline in the lung was restored (Fig. 8). These results indicate that IL-12 from CD40/CD40L interaction is biologically significant and is critical for the fibrogenic process in the HIPIF lung.

Discussion

HIPIF is mediated by an immune response against hapten-modified self-Ag and thus resembles an autoimmune process (26–28). The studies in the adoptive transfer model of HIPIF demonstrate that CD40/CD40L interactions are critical for the elicitation of a primed immune response that leads to fibrosis in the lung. These results support the idea that CD40/CD40L interactions contribute to the ongoing autoimmune disease process.

Studies in several autoimmune disease models (EAE, lupus nephritis) show that CD40/CD40L interactions are important in both the priming and the effector phase of the disease process (2, 3). Blocking the CD40/CD40L interactions using anti-CD40L Ab prevents the development of the disease and dramatically suppresses clinical signs even when treatment starts after onset of disease in both EAE and lupus nephritis models (16, 18). However, in TNBS-induced colitis, a model for Th1-mediated and autoimmune inflammatory bowel disease, blocking CD40/CD40L interactions prevents the induction phase of the disease but has no effect on the disease after the onset (19). Although HIPIF and TNBS-induced colitis are elicited by the same hapten TNBS and mediated by Th1 type immune responses, their requirement for the costimulating molecule CD40 is different. This may suggest a role of local environment in regulating immune response and disease process. The intestine is home to a large variety of indigenous bacteria (intestinal microflora). Normally, hosts exhibit tolerance toward the indigenous intestinal flora; however, in the inflammatory bowel disease process, the tolerance is broken and the hyperresponsiveness toward intestinal flora is crucial in the pathogenesis of the disease (40). Therefore, the immune response toward the bacteria in the intestine may act as an adjuvant to bypass the total dependence on CD40 costimulating in the ongoing colitis. In contrast, the lung, although not sterile, is not populated with an abundance of natural flora and therefore lacks the adjuvant effect. In the environment of the lung, resting alveolar macrophages suppress dendritic cell Ag-presenting function, and TGFβ from epithelial cells can further down-regulate inflammatory responses (41–43). This suppressive environment may raise the threshold for elicitation of an immune response in the lung. Our data support this notion because CD40/CD40L interactions are critical for elicitation of a secondary immune response in the lung.
It is known that multiple cell types within the lung express CD40 on their surface (3, 20, 44, 45). We and others showed that alveolar macrophages express low levels of CD40. During the elicitation of fibrosis, infiltrating monocytes express high levels of CD40 and can be distinguished from the CD40

Many studies report that signals derived from CD40/CD40L interactions increase the production of proinflammatory cytokines (IL-12, TNF-α) and expression of B7 costimulatory molecules on macrophages, monocytes, and dendritic cells (3, 8–11). Activation of fibroblast and vascular endothelial cells through CD40 molecules stimulates their expression of adhesion molecules CD54 (ICAM-1) and CD106 (VCAM-1), and chemotactic factors (3). Wiley and colleagues showed that exogenous CD40L administered into the lung induces recruitment of polymorphonuclear leukocytes and accumulation of macrophages with up-regulated Ia expression (44) presumably by binding to CD40 on lung epithelial cells and macrophages. Recent data from our laboratory showed that alveolar macrophage-derived TNF-α was important for the recruitment of monocytes and the development of fibrosis in HPIF (32). Therefore, we propose that in HPIF mice the local TNBS challenge induces the infiltration of proinflammatory monocytes and presensitized activated T cells. The CD40L on these T cells interacts with CD40 on alveolar macrophages, epithelial cells, and, more importantly, infiltrating monocytes, and perpetuates the production of TNF-α, IL-12, and GM-CSF. These signals activate the resting alveolar macrophages and further enhance the inflammatory cascade and recruitment of immune inflammatory cells by promoting chemokine production and adhesion molecule up-regulation on endothelial cells and epithelial cells. The chronic immune inflammation in the lung eventually leads to matrix destruction and collagen deposition.

Haptens are nonimmunogenic small reactive chemicals that conjugate to proteins and lips (carrier molecules) to become immunogenic (22–24). Haptens are commonly used as tools to dissect Th1 and inflammatory responses in the skin and colon (19, 22, 23, 40, 46, 47). Here we show that pulmonary challenge with hapten in the lungs of sensitized mice leads to an abnormally regulated destructive immune response eventuating in fibrosis. Small reactive chemicals with haptenic properties are ubiquitous in our domestic and industrial environment and therefore potentially are part of the unknown etiology of human idiopathic pulmonary fibrosis.

PIF in humans manifests as persistent inflammation and enhanced collagen deposition in the lung. Many types of abnormal immune regulation are described in the fibrotic lung, which include the existence of anti-small nuclear protein Ab and immune complex deposition in the lung, infiltration of neutrophils, monocytes, and activated T cells (29, 30). Although the insults that cause a large percentage of PIF remain unknown, the disease process is considered to have an underlying autoimmune mechanism. Therapeutically, blocking CD40/CD40L interactions may be a benefit for fibrosis patients who exhibit an associated expression of CD40L on lymphocytes. Reagents that block CD40/CD40L interactions have been tested extensively in allotransplantation models. With the success of humanized CD40L blocking Ab (hu5C8) in preventing acute rejection in allotransplantation in primates (17), it is possible that innovative treatments may be forthcoming for the treatment of PIF patients.

Acknowledgments

We thank Drs. Koh-Hei Sonoda and Douglas E. Faunce (Schepps Eye Research Institute, Harvard Medical School, Boston MA) for the many helpful discussions of our data. We are grateful to Marie Ortega for careful management of the Schepps Vivarium and her efforts in special breeding of genetically altered mice, Vladimir Russakovskiy for providing technical assistance, and Dr. Jacqueline Doherty for providing us with the IL-12 knockout mice. We also thank Gayle Barry for the preparation of this manuscript.

References

