Vaccination with Allergen-IL-18 Fusion DNA Protects Against, and Reverses Established, Airway Hyperreactivity in a Murine Asthma Model

Holden T. Maecker, Gesine Hansen, David M. Walter, Rosemarie H. DeKruyff, Shoshana Levy and Dale T. Umetsu

J Immunol 2001; 166:959-965; doi: 10.4049/jimmunol.166.2.959
http://www.jimmunol.org/content/166/2/959

References
This article cites 57 articles, 31 of which you can access for free at:
http://www.jimmunol.org/content/166/2/959.full#ref-list-1

Subscription
Information about subscribing to The Journal of Immunology is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Vaccination with Allergen-IL-18 Fusion DNA Protects Against, and Reverses Established, Airway Hyperreactivity in a Murine Asthma Model


Vaccination with naked DNA encoding a specific allergen has been shown previously to prevent, but not reverse, the development of allergen-induced airway hyperresponsiveness (AHR). To enhance the effectiveness of DNA vaccine therapies and make possible the treatment of established AHR, we developed a DNA vaccination plasmid containing OVA cDNA fused to IL-18 cDNA. Vaccination of naive mice either with this fusion DNA construct or with an OVA cDNA-containing plasmid protected the mice from the subsequent induction of AHR. Protection from AHR correlated with increased IFN-γ production and reduced OVA-specific IgE production. The protection appeared to be mediated by IFN-γ and CD8+ cells because treatment of mice with neutralizing anti-IFN-γ mAb or with depleting anti-CD8 mAb abolished the protective effect. Moreover, vaccination of mice with preexisting AHR with the OVA-IL-18 fusion DNA, but not with the OVA cDNA plasmid, reversed established AHR, reduced allergen-specific IL-4, and increased allergen-specific IFN-γ production. Thus, combining IL-18 cDNA with OVA cDNA resulted in a vaccine construct that protected against the development of AHR, and that was unique among cDNA constructs in its capacity to reverse established AHR. The Journal of Immunology, 2001, 166: 959–965.

The prevalence of allergic asthma has dramatically increased over the last two decades and is a major public health concern (1, 2). Asthma is characterized by airway hyperresponsiveness (AHR) to a variety of specific and nonspecific stimuli, chronic pulmonary inflammation with eosinophilia, excessive mucus production, and high serum IgE levels. The pathology in asthma results from excessive production of IL-4, IL-5, and IL-13 by CD4+ Th2 cells (3, 4). Current treatments for asthma are not satisfactory, and disease prevention is not possible. Given the high prevalence of this disease, improved and more effective therapeutic strategies are needed.

One therapeutic approach for asthma might be to use DNA-based immunization to manipulate the immune system, and to alter the underlying Th2-biased allergic response in an allergen-specific manner. Vaccination with allergen in the form of naked plasmid cDNA stimulates allergen-specific immune responses with a Th1 bias and amplifies the expansion of CD4+ T cells producing IFN-γ and of cytotoxic CD8+ T cells (5–9). The key feature of this strategy is that injection of plasmid DNA encoding a specific Ag produces an allergen-specific protective immune response that should be reinforced by natural exposure to the allergen, thus conferring long-lasting protection (10, 11). Previous studies with DNA immunization strategies demonstrated its success in preventing the development of Ag-specific IgE synthesis and AHR (6, 12, 13). However, although the genetic vaccination approach has succeeded in preventing allergic diseases and has been effective in models of infectious disease (14–16), cancer (17–19), and autoimmune disease (20), the efficacy of DNA vaccination has varied widely, and successful reversal of ongoing AHR with DNA vaccination has not been reported. Thus, improvement of gene vaccination methodologies is required for successful clinical application of DNA vaccination to symptomatic patients with allergic asthma.

To enhance the effectiveness of DNA vaccination and potentially treat patients with ongoing AHR, we constructed a DNA vaccination plasmid containing cDNA for a prototypic allergen, OVA, fused to the cDNA of a potent immune modulating cytokine, IL-18. This approach is based on the fact that IL-18, a product of activated macrophages and Kupffer cells (21–25), is very powerful in driving the production of Th1 cytokine synthesis in naive and memory T cells (26, 27). Furthermore, the rationale for the approach of fusing IL-18 cDNA with OVA cDNA was based on our previous findings with protein-based vaccines (28). In those experiments, an OVA-IL-12 fusion protein increased the immunogenicity of OVA, focused the effects of IL-12 on Ag-specific immune cells, and minimized the Ag-nonspecific effects of IL-12. In this study, we examined the efficacy of the OVA-IL-18 DNA fusion construct vector in a murine model of asthma and compared its efficacy with that of OVA DNA, IL-18 DNA, or a mixture of...
OVA DNA and IL-18 DNA on separate plasmids. We found that the OVA-IL-18 cDNA construct was more potent in protecting against the development of AHR than the other constructs, and that the OVA-IL-18 cDNA construct was unique in its capacity among cDNA constructs to effectively reverse established AHR. These studies suggest that modification of vaccination plasmids with IL-18 cDNA can greatly enhance the immunogenicity of Ag cDNA constructs, and generate constructs that may be clinically effective in treating patients with established allergic pulmonary disease.

Materials and Methods

BALB/cByJ mice were obtained from The Jackson Laboratory (Bar Harbor, ME). Animals were used between 6 and 10 wk of age and were age and sex matched within each experiment. The Stanford University Committee on Animal Welfare approved all animal protocols.

mAbs and reagents

mAbs were purified from ascites fluid by ammonium sulfate precipitation and ion-exchange chromatography. We used the following hybridomas: R46A2 (anti-IFN-γ; obtained from American Type Culture Collection, Manassas, VA); XMG1.2 (anti-IFN-γ; provided by Dr. T. Mosmann, University of Alberta, Edmonton, Canada); BV4D-111 (anti-IL-4) and BV6D-24G2 (anti-IL-4); obtained from Dr. M. Howard, DNAX Research Institute, Palo Alto, CA); 53.6.7 (anti-CD8; provided by Irving Weissman, Stanford University); and EM95 (rat anti-mouse IgE; generated by Z. Eshhar, Weizman Institute, Rehovot, Israel and provided by Dr. R. Coffman, DNAX Research Institute). Anti-OVA mAbs and biotinylated anti-OVA mAb were produced as described previously (28).

DNA constructs

A series of plasmids expressing OVA fused to various cytokines was produced (9). One such plasmid, expressing OVA-IL-4, was digested with XhoI and BamHI to excise the IL-4 portion of the insert. The remainder of the plasmid was ligated to a similarly digested PCR product encoding mature murine IL-18 (Fig. 1A). This sequence was inserted by PCR amplification of cDNA produced from RNA of CHM mouse splenocytes activated with Con A. The forward PCR primer, which incorporated an XhoI site, was 5'-CATGCG GACTTGGCGGACTTICAC-3'. The reverse PCR primer, which incorporated a BamHI site, a stop codon, and a hexahistidine tag, was 5'-GTTAGATCTCTAATGGTTGATGTTGATGCTTTGATGTTAAGTACTGT-3'. The ligated plasmid (Fig. 1A) was electroporated into Escherichia coli and purified from a large-scale culture by alkaline lysis and CsCl density gradient centrifugation (29). This preparation was then sequenced to verify the correct insertion and correct sequence of the IL-18 fusion construct. Control plasmids, expressing either OVA alone or an irrelevant sequence (single-chain Fv), have also been described previously (9). Finally, a plasmid expressing IL-18 alone was produced for this study.

The IL-18 sequence was moved into another vector, pCTAE 5.3, by PCR amplification that added restriction sites DraIII (5') and HpaI (3'). From this vector, the insert was excised with DraIII and HpaI digestion. An OVA-IL-6 expressing plasmid, pOVA-IL-6 (9), was digested with DraIII and BamHI to remove the entire OVA-IL-6 insert. The IL-18 insert described above was then ligated into this vector backbone via DraIII; the remaining sticky ends were blunted by use of T4 polymerase, and joined by blunt-end ligation (29). The final three plasmids (OVA, IL-18, and OVA-IL-18) were fully sequenced and were found not to contain amino-acid altering mutations.

Immunization protocols

Prevention of AHR (Fig. 1D, top).

On day 0, BALB/c mice were injected i.m. in the quadriceps muscles with 100 μg of each plasmid DNA in a final volume of 100 μl 0.9% NaCl, divided bilaterally. On day 17, the mice were boosted i.m. with the same amount of plasmid DNA. The mice were then sensitized to OVA protein using an established protocol for the induction of AHR in BALB/c mice (30). OVA (50 μg) adsorbed to 2 mg aluminum potassium sulfate (alum) was administered i.p. on days 24 and 38, followed by 50 μg OVA in 50 μl PBS given intranasally (i.n.) on days 38, 49, 50, and 51. Control mice received i.p. injections of alum alone and i.n. PBS. One day after the last i.n. challenge (day 52), AHR was measured in conscious mice after inhalation of increasing concentrations of methacholine (see below). Within 5 days of the last challenge, blood was taken, mice were sacrificed, lungs were removed and fixed, and splenocytes were isolated for in vitro culture.

Ag specificity test. In experiments to determine whether the effects of the different DNA constructs on the immune response of BALB/c mice were antigen specific, mice were sensitized with the different OVA DNA constructs i.m. (see above). One week later, the mice were immunized in the footpads either with the relevant Ag, OVA (200 μg/mouse), or an irrelevant Ag, keyhole limpet hemocyanin (KLH, 100 μg/mouse), each emulsified in IFA. After 7 days the mice were sacrificed, and lymphocytes were isolated from the draining lymph nodes (LN) for in vitro culture.

Treatment of mice with anti-cytokine and depletion mAb. BALB/c mice were injected i.p. with 1 mg of mAb XMG1.2 (for IFN-γ depletion), 200 μg of rat anti-IL-4 (11B11) and 53.6.7 (for CD8 depletion), or 1 mg of mouse anti-mouse IgE (HNK1) every other day for 6 days, then every fifth day thereafter, starting 5 days before immunization with DNA. Ab injection was continued until the immunization protocol was finished. Blood was collected on the day of sacrifice and stained with anti-mouse CD8-PE and anti-mouse CD4-FITC mAb (PharMingen, San Diego, CA). FACS analysis revealed a <90% depletion of CD8+ cells in anti-CD8 mAb-treated mice in each of two replicate experiments.

Reversal of established AHR (Fig. 1D, bottom). To investigate whether DNA immunization can reverse established AHR rather than inhibit the development of AHR, BALB/c mice were first sensitized with OVA before vaccination with the DNA plasmids. OVA (50 μg) adsorbed to alum was administered i.p. once on day 0. OVA (50 μg) in 50 μl PBS was administered i.m. on days 8 and 9. On days 10 and 25 the different DNA constructs were injected i.m. in the quadriceps muscles (100 μg in 100 μl 0.9% NaCl). On day 39 the mice were boosted again with OVA i.n., and AHR was measured 1 day later (day 40). Mice were sacrificed, and bronchial LN cells were isolated for in vitro culture within 5 days of the last OVA challenge.

Measurement of airway responsiveness

Airway responsiveness was assessed by methacholine-induced airflow obstruction from conscious mice placed in a whole body plethysmograph (model PLY 3211; Buxco Electronics, Troy, NY). Pulmonary airflow obstruction was measured by P_{enh} using the following formula: P_{enh} = ((Te/RT - 1) × (PEF/PIF)), where P_{enh} = enhanced pause (dimensionless), Te = expiratory time, RT = relaxation time, PEF = peak expiratory flow (ml/s), and PIF = peak inspiratory flow (ml/s) (31). Enhanced pause (P_{enh}), minute volume, tidal volume, and breathing frequency were obtained from chamber pressure, measured with a transducer (model TRD5100 connected to preamplifier modules (model MAX2270), and analyzed by system XA software (model SFT 1810). Measurements of methacholine responsiveness were obtained by exposing mice for 2 min to aerosolized 0.9% NaCl produced by a sonicator (Portable Ultrasonic, 5500D; DeVilbiss Health Care, Somerset, PA), followed by incremental doses (0.5–20 mg/ml) of aerosolized methacholine. Results were normalized for each methacholine concentration as the percentage of baseline P_{enh} values after 0.9% NaCl exposure.

OVA-specific IgE assay

Mice were bled at the time of sacrifice, and OVA-specific IgE was determined using a modified Ag-specific ELISA. Plates were coated overnight with rat anti-mouse IgE mAb (EM95, 5.0 μg/ml). After washing and blocking, samples were applied and incubated overnight. Plates were again washed, and biotinylated OVA (10 μg/ml) was added. Two hours later, plates were washed and HRP-conjugated streptavidin (Southern Biotechnology Associates, Birmingham, AL) was added. Plates were developed with o-phenylenediamine substrate, and the OD was determined at 492 nm. Serum from mice hyperimmunized with OVA in alum was standardized for IgE levels against an anti-OVA IgE mAb provided by E. Gelfand (National Institute of Arthritis, Diabetes, and Digestive and Kidney Diseases, Bethesda, MD). Results were normalized for each methacholine concentration as the percentage of baseline P_{enh} values after 0.9% NaCl exposure.

Restimulation of spleen and LN cells in vitro

Spleens or bronchial LN cells were removed, depleted of resting B cells by adherence to goat anti-mouse Ig-coated plates (32), and 4 × 10^5 cells were restimulated in vitro with OVA (100 μg/ml) or KLH (10 μg/ml). Cells were cultured in 96-well microtiter plates in 150 μl medium. Supernatants were harvested after 4 days for determination of IL-4 and IFN-γ levels. Cytokine content in each sample was measured in triplicate by ELISA.
IL-18 assays

IL-18 activity was examined by ELISA and by bioassay. Plasmids expressing IL-18, OVA-IL-18 or, as a control, OVA-IL-4, were transfected into COS-7 cells using DEAE-dextran in a standard method (29). Supernatants from the transfected cells were harvested after 3 days and stored at 4°C. IL-18 ELISA was performed using reagents and protocols from Pharmingen. To determine IL-18 bioactivity of the OVA-IL-18 fusion construct, the recombinant protein was tested for induction of IFN-γ production by a murine Th1 cell line, DOH2. The murine Th1 cell line, DOH2, was produced and maintained as described previously (33). DOH2 cells were resuspended at 5 × 10^6 per ml in DMEM with 10% FBS. Cell suspension (100 μl per well of a microtiter plate) was plated, along with 100 μl of media or COS-7 supernatant at dilutions of 1:2, 1:4, 1:8, or 1:16. The cells were incubated at 37°C for 48 h, then supernatants were harvested from each well and tested for IFN-γ production by ELISA as described (9).

Cytokine ELISA

ELISA for IL-4 and IFN-γ were performed as previously described (32). The mAb pairs used were as follows, listed by capture/biotinylated detection mAb: IFN-γ, R4-6A2/XMG1.2; IL-4, 11B11/BVD6-24G2. A standard curve using recombinant cytokine in 1:2 dilutions from 20 to 0.156 ng/ml for IFN-γ, or from 500 to 7.5 pg/ml for IL-4, was used for quantitation.

Collection of bronchoalveolar lavage (BAL) fluid

Animals were sacrificed by CO₂ asphyxiation. The trachea was cannulated, and the lungs were lavaged four times with 300 μl of 1% BSA in 1 × PBS. Cells in the lavage fluid were then counted using a hemocytometer, and BAL cell differentials were determined on slide preparations stained with Hanel stain (Lide Laboratories, Florissant, MO). At least 200 cells were differentiated by light microscopy based on conventional morphogenetic criteria.

Results

IL-18 bioactivity of fusion construct

To test the bioactivity of the OVA-IL-18 and the IL-18 plasmids, COS-7 cells were transiently transfected with plasmid DNA, and the cells were cultured for 4 d. We then examined the supernatants from these cell cultures for IL-18 bioactivity, via the ability to induce IFN-γ production in a Th1 cell line, and for IL-18 protein content by ELISA. Fig. 1B shows that supernatant from OVA-IL-18-transfected COS-7 cells induced IFN-γ production from the established Th1 cell line, DOH2, whereas medium or supernatant from control OVA-IL-4-transfected cells did not, indicating that protein produced from the IL-18 plasmid had biological activity. The COS-7 supernatants generated with both the IL-18 and OVA-IL-18 plasmids had comparable IL-18 activity (ranges of 0.3–6.1 ng/ml in independent transfection experiments). In addition, ELISA of the COS-7 supernatants indicated that both the IL-18 and the OVA-IL-18 constructs induced the production of IL-18 protein (Fig. 1C).

Inhibition of AHR by vaccination with different DNA vectors

Having established that the IL-18 and OVA-IL-18 fusion constructs had significant IL-18 bioactivity, the plasmids were next tested in vivo for their ability to inhibit AHR in a murine asthma model. BALB/c mice were vaccinated i.m. with irrelevant DNA, OVA DNA, IL-18 DNA, or the OVA-IL-18 DNA fusion construct. The mice were then sensitized for AHR with i.p. and i.n. administrations of OVA before immunization with OVA significantly reduced the level of OVA-specific IgE in BALB/c mice (Fig. 2A). Vaccination with the different DNA vectors that received either OVA DNA or IL-18 DNA alone, and was slightly higher after injection of the mixture of OVA DNA and IL-18 DNA. Although vaccination with OVA DNA, IL-18 DNA, or a mixture of OVA DNA and IL-18 DNA also induced IL-4 production, the OVA-IL-18 DNA fusion construct did not significantly reduce IL-4 levels in splenic T cells from OVA-immunized mice (data not shown). (Bronchial LN T cells were examined for cytokine production in subsequent experiments, see Fig. 5C.) Irrelevant DNA had no significant effect on IFN-γ or IL-4 production.

Inhibition of IgE synthesis by DNA vaccination

We also analyzed the levels of anti-OVA IgE Ab responses in serum collected from these mice. OVA-specific IgE was very high in OVA-immunized BALB/c mice (Fig. 2C). Vaccination with the different DNA vectors before immunization with OVA significantly reduced the level of OVA-specific IgE. The inhibitory effect on IgE production was strongest with the OVA-IL-18 fusion construct and did not differ significantly between OVA DNA, IL-18 DNA, or the mixture of OVA DNA and IL-18 DNA. In contrast, irrelevant DNA had little effect on IgE production.

Specificity of DNA vaccination

To test whether the effects of immunization with OVA-IL-18 DNA were Ag specific, we boosted DNA-vaccinated mice after 1 wk with either the relevant protein (OVA) or with an irrelevant protein, KLH. After 7 days, spleens were removed and splenocytes were cultured with the Ag used for boosting. Fig. 3, left, shows that in OVA protein-boosted mice, the increase in IFN-γ was most notable in the group that received the OVA-IL-18 DNA fusion construct. In contrast, in mice boosted with the irrelevant Ag KLH, IFN-γ production was not increased by vaccination with OVA-IL-18 DNA, and was similar in all groups receiving the various OVA DNA constructs (Fig. 3, right). These results indicated that vaccination with the OVA-IL-18
DNA was dependent upon both IFN-\(^\gamma\) effect on AHR (data not shown). Thus, inhibition of AHR by OVA-IL-18 ELISA. Ab to CD8\(^+\) with CD8 depletion. Treatment of mice sensitized and challenged with largely restored AHR in the OVA-IL-18 DNA-immunized animals. Anti-inhibition of AHR by OVA-IL-18 DNAs in the presence of control mAb (Fig. 4). Treatment with anti-CD8 mAb also restored AHR, although to a lesser extent than that seen with the anti-CD8 mAb had no significant effect on AHR (data not shown). Thus, inhibition of AHR by OVA-IL-18 DNA was dependent upon both IFN-\(^\gamma\) production and the presence of CD8\(^+\) cells.

Reversal of AHR by DNA vaccination

To determine whether DNA vaccination could reverse established AHR in addition to inhibiting the development of AHR in mice, mice were first sensitized with OVA protein by administering OVA i.p. in alum, and OVA i.n. to establish AHR in these mice. The mice were then vaccinated either with OVA-IL-18 DNA, OVA DNA, IL-18 DNA, OVA DNA + IL-18 DNA, or irrelevant DNA (as indicated in Fig. 5A), and AHR was measured after a final i.n. OVA boost. Mice that received irrelevant DNA developed strong AHR. In contrast, vaccination of the mice with the OVA-IL-18 DNA construct greatly reduced AHR and was significantly more effective than OVA DNA + IL-18 DNA, IL-18 DNA alone, or OVA DNA alone. The reduction of AHR was consistent with the examination of BAL fluid, in which OVA-IL-18 DNA, but not OVA DNA, greatly reduced the percentage of eosinophils in BAL fluid (Fig. 5B). Eosinophils were still present in the lungs of mice treated with OVA-IL-18 DNA, perhaps consistent with the fact that some degree of AHR was present in these mice, and with the observation that IL-18 can recruit eosinophils into the airways (34). Nevertheless, these data demonstrate that 1) OVA-IL-18 cDNA but not OVA DNA reverses ongoing AHR in previously sensitized mice; and 2) the activity of OVA-IL-18 DNA is clearly superior to that of OVA DNA in such sensitized animals.

IL-4 and IFN-\(^\gamma\) measurements in OVA-immunized mice before and after DNA vaccination

Mice, vaccinated with DNA constructs after the establishment of OVA-induced AHR, were sacrificed and analyzed for cytokine production. Vaccination with OVA-IL-18 DNA resulted in a dramatic increase of IFN-\(^\gamma\) production in bronchial LN cells as compared with that of animals receiving irrelevant DNA or OVA DNA alone (Fig. 5C). Vaccination with OVA-IL-18 DNA also reduced OVA-specific IL-4 production compared with the other DNA constructs (Fig. 5C). In addition, the OVA-IL-18 plasmid was much more effective than the OVA plasmid in reducing OVA-specific IgE production (OVA plasmid-treated group, 5690 \(\pm\) 800; OVA-IL-18 plasmid treated group, 2968 \(\pm\) 81 ng/ml). These experiments demonstrated that OVA-IL-18 DNA, but not OVA DNA, could boost OVA-specific IFN-\(^\gamma\) production and reduce IL-4 and IgE production, even when given in the context of ongoing AHR.

Discussion

In this study, we demonstrated that an OVA-IL-18 fusion DNA construct was highly effective in preventing and reversing allergen-induced AHR in a murine asthma model. Previous studies have demonstrated the usefulness of allergen DNA immunization in the prevention of allergic diseases and AHR (6, 12, 13, 35, 36), but allergen DNA vaccination has not been previously reported to successfully reverse ongoing AHR, a cardinal feature of asthma. We now describe an OVA-IL-18 DNA construct that effectively corrected established AHR in an allergen-specific fashion when administered only twice. Although both the OVA-IL-18 and the OVA DNA constructs, when administered to naive mice, prevented the subsequent induction of AHR and reduced allergen-specific IgE production, the OVA-IL-18 DNA was unique among the cDNA constructs in its capacity to reverse established AHR. The protective effects of OVA-IL-18 appeared to be mediated by IFN-\(^\gamma\) and CD8 cells, and because the OVA plasmid was not capable of reversing established AHR, we conclude that the addition of IL-18 as a fusion construct greatly enhanced the immunogenicity and effectiveness of plasmid vaccination. These results indicate that the addition of IL-18 to allergen DNA constructs may substantially improve the immunogenicity and efficacy of allergen cDNA vaccines, and suggest that vaccination with allergen-IL-18 DNA constructs greatly enhanced IFN-\(^\gamma\) production, but the effect on IFN-\(^\gamma\) production was confined to the OVA-specific response.

Inhibition of AHR depends upon CD8\(^+\) T cells and IFN-\(^\gamma\)

To investigate the mechanisms by which vaccination with OVA-IL-18 affected OVA-specific responses, we administered blocking Ab to IFN-\(^\gamma\) or Ab to CD8\(^+\) T cells during the immunization protocol. As expected, mice that received irrelevant DNA and control mAb developed strong AHR, which was significantly reduced in mice vaccinated with OVA-IL-18 DNA in the presence of control mAb (Fig. 4). Treatment with anti-CD8 mAb largely restored AHR in the OVA-IL-18 DNA-immunized animals. Anti-IFN-\(^\gamma\) mAb also restored AHR, although to a lesser extent than that seen with CD8 depletion. Treatment of mice sensitized and challenged with OVA either with the anti-IFN-\(^\gamma\) or the anti-CD8 mAb had no significant effect on AHR (data not shown). Thus, inhibition of AHR by OVA-IL-18 DNA was dependent upon both IFN-\(^\gamma\) production and the presence of CD8\(^+\) cells.
IL-12 fusion proteins (28). IL-12, like IL-18, potently induces Th1-biased immune responses, but IL-12 has significant Ag-nonspecific effects when administered in vivo. For example, in vivo administration of IL-12 has been associated in clinical trials with substantial morbidity and mortality (37), has been ineffective in suppressing Th2 recall responses (38, 39), and, when administered in high doses to mice, paradoxically enhances IgE synthesis (40). In contrast, we previously demonstrated that administration of the IL-12 when fused to OVA protein was associated with minimal Ag-nonspecific IL-12 effects and with maximized induction of IFN-γ production in an Ag-specific fashion. In addition, the fusion of cytokine and Ag has been shown to be effective in other models, for example, with idiotypic Ag of B cell lymphoma conjugated to GM-CSF, which enhanced the allergy-suppressive effects of IL-18 because the plasmid mid contains CpG motifs that induce the production of IL-12, which up-regulates IL-18 receptors on T cells (43) and synergistically down-modulates airway inflammation (44). The effects of administration of OVA-IL-18 as a plasmid rather than as protein may have been further augmented by fusion of the OVA and IL-18 in a plasmid because the OVA-IL-18 plasmid up-regulated IL-18 receptors on T cells and macrophages (identificied morphologically) which up-regulated IL-18 and IL-12 together as proteins, did not (44). These cDNA may be clinically effective in the treatment of patients with ongoing chronic allergic asthma.

The potent inhibitory effects of OVA-IL-18 DNA vaccination on AHR and IgE production was dependent on the fusion of the cytokine and allergen. Thus, vaccination with the OVA plasmid alone or with the IL-18 plasmid alone was less effective than the OVA-IL-18 fusion plasmid in inducing IFN-γ production, reducing IgE production, and preventing the development of AHR. In addition codelivery of nonfused OVA DNA together with IL-18 DNA was much less effective compared with the fusion construct vector in reducing IgE production and preventing the development of AHR. This indicated that the presence of the IL-18 cDNA fused to the OVA cDNA was crucial for protection in this model, and was entirely consistent with our previous findings with OVA and IL-12 fusion proteins (28). IL-12, like IL-18, potently induces IFN-γ production and enhances Th1-biased immune responses, but IL-12 has significant Ag-nonspecific effects when administered in vivo. For example, in vivo administration of IL-12 has been associated in clinical trials with substantial morbidity and mortality (37), has been ineffective in suppressing Th2 recall responses (38, 39), and, when administered in high doses to mice, paradoxically enhances IgE synthesis (40). In contrast, we previously demonstrated that administration of the IL-12 when fused to OVA protein was associated with minimal Ag-nonspecific IL-12 effects and with maximized induction of IFN-γ production in an Ag-specific fashion. In addition, the fusion of cytokine and Ag has been shown to be effective in other models, for example, with idiotypic Ag of B cell lymphoma conjugated to GM-CSF, which enhanced the induction of protective immunity against a subsequent lethal tumor challenge (18, 19).

Our current studies suggest that the deleterious effects of IL-18 may be similarly minimized by fusion of IL-18 with OVA. Administration of high doses of IL-18 protein alone in vivo (7–20 μg/mouse, i.p.) appears to accentuate the undesirable effects of the cytokine, which include paradoxical increase in the recruitment of eosinophils into the airways (34), and enhanced allergic sensitization and IgE production (41). In contrast, we showed that vaccination with the fusion OVA-IL-18 cDNA construct, which more effectively reduced Th2-biased immune responses than did an OVA-IL-12 fusion cDNA construct (9), maximized the salutary IL-18 effects for asthma, presumably by focusing the activity of IL-18 onto OVA-specific T cells and B cells. These results, demonstrating protective effects of IL-18 on allergic inflammation, are consistent with the observation that IL-18 knockout mice developed increased allergen-induced eosinophilia (42). Moreover, administration of OVA-IL-18 as a plasmid rather than as protein may enhance the allergy-suppressive effects of IL-18 because the plasmid contains CpG motifs that induce the production of IL-12, which up-regulates IL-18 receptors on T cells (43) and synergistically down-modulates airway inflammation (44). The effects of IL-18 (and IL-12) may have been further augmented by fusion of the OVA and IL-18 in a plasmid because the OVA-IL-18 plasmid had the capacity to reverse established AHR, whereas administration of IL-18 and IL-12 together as proteins, did not (44). These
studies thus suggest that the strategy of delivering IL-18 conjugated with Ag as a plasmid vaccine may be applicable to treatment of allergic disease, particularly because the major allergens (and in many instances the major allergenic proteins) have been identified.

The inhibitory effect of OVA-IL-18 DNA on AHR was dependent on the presence of CD8+ T cells because the protective effects of OVA-IL-18 DNA could be almost completely reversed by depletion of CD8+ T cells. This observation supports other studies demonstrating the important role of CD8+ T cells in asthma. For example, Hsu et al. demonstrated that the protective effect of allergen DNA vaccination could be transferred with CD8+ T cells (12). Furthermore, animal experiments have revealed that CD8+ T cells regulate IgE production and allergen-induced AHR (45–48).

In our model, the induction of regulatory CD8 cells may have been enhanced by the potent capacity of IL-18 to induce CD8 T cells (49), and by the administration of OVA as cDNA, which may skew Ag presentation through an endogenous pathway. It is well established that peptides derived from intracellular Ags are generally presented to CD8+ T cells by MHC class I molecules (50), and this Ag presenting pathway may be important in the induction of regulatory CD8 cells when allergen cDNA is administered i.m. The inhibitory effect of OVA-IL-18 DNA on AHR was also partially dependent on IFN-γ activity because coadministration of anti-IFN-γ mAb partially prevented the effects of OVA-IL-18 DNA. Both IL-18 as well as CpG motifs present on the vector backbone effectively induce IFN-γ production, which has been shown in studies with direct mucosal IFN-γ gene transfer to inhibit both the induction of Ag- and Th2-cell-induced pulmonary eosinophilia and AHR (51). In addition, CpG motifs induce IL-12 production, important not only in enhancing the induction of IFN-γ, but also in promoting the expression of IL-18 receptors on T cells, and in inhibiting Ag-induced airway eosinophilia and bronchial hyperreactivity in a murine model (52). Whether other regulatory cytokines or other cell types are involved in suppression of allergen-induced AHR by OVA-IL-18 is not yet clear.

In our studies, only two injections of OVA-IL-18 DNA were sufficient to reverse established AHR, suggesting that such an approach might be clinically useful for the treatment of chronic allergic disease and asthma. Currently, conventional allergen immunotherapy, performed by s.c. injection of increasing doses of allergen, is used to treat patients with allergic disease. However, such therapy is inefficient, requiring nearly 100 injections over a period of 3–5 years, and it is associated with frequent allergic reactions, including anaphylaxis (53). Nevertheless, conventional allergen immunotherapy is the only currently available therapy that, when successful, alters the underlying pathologic allergen-specific Th2 driven responses, resulting in clinical tolerance to subsequent allergen exposure (54, 55). DNA vaccination may be a safer form of allergen immunotherapy, particularly because DNA-based immunization provides prolonged, endogenous expression of Ag (56). Plasmids have been found to persist episomally in muscle cells, and gene expression in the skeletal muscle and persistent immunity to the Ag can be detected for more than a year after injection (10, 57, 58). Moreover, our studies, demonstrating that OVA-cytokine fusion constructs have much greater immunogenicity than allergen-only cDNA constructs, suggest that allergen-IL-18 DNA constructs may provide rapid, effective, and potentially curative therapy for allergic disease and asthma. However, rigorous studies of DNA-based immunization with respect to mechanism of action, safety, and delivery will be crucial before its ultimate application in human atopic disease.

Acknowledgments
We thank Dr. Carmen Wong for cloning IL-18 into the TCAE 5.3 vector.

References
19. Hakim, I. S., S. Levy, and R. Levy. 1996. A nine-amino acid peptide from IFN-γ gene transfer to inhibit both the induction of Ag- and Th2-cell-induced pulmonary eosinophilia and AHR (51). In addition, CpG motifs induce IL-12 production, important not only in enhancing the induction of IFN-γ, but also in promoting the expression of IL-18 receptors on T cells, and in inhibiting Ag-induced airway eosinophilia and bronchial hyperreactivity in a murine model (52). Whether other regulatory cytokines or other cell types are involved in suppression of allergen-induced AHR by OVA-IL-18 is not yet clear.

In our studies, only two injections of OVA-IL-18 DNA were sufficient to reverse established AHR, suggesting that such an approach might be clinically useful for the treatment of chronic allergic disease and asthma. Currently, conventional allergen immunotherapy, performed by s.c. injection of increasing doses of allergen, is used to treat patients with allergic disease. However, such therapy is inefficient, requiring nearly 100 injections over a period of 3–5 years, and it is associated with frequent allergic reactions, including anaphylaxis (53). Nevertheless, conventional allergen immunotherapy is the only currently available therapy that, when successful, alters the underlying pathologic allergen-specific Th2 driven responses, resulting in clinical tolerance to subsequent allergen exposure (54, 55). DNA vaccination may be a safer form of allergen immunotherapy, particularly because DNA-based immunization provides prolonged, endogenous expression of Ag (56). Plasmids have been found to persist episomally in muscle cells, and gene expression in the skeletal muscle and persistent immunity to the Ag can be detected for more than a year after injection (10, 57, 58). Moreover, our studies, demonstrating that OVA-cytokine fusion constructs have much greater immunogenicity than allergen-only cDNA constructs, suggest that allergen-IL-18 DNA constructs may provide rapid, effective, and potentially curative therapy for allergic disease and asthma. However, rigorous studies of DNA-based immunization with respect to mechanism of action, safety, and delivery will be crucial before its ultimate application in human atopic disease.

Acknowledgments
We thank Dr. Carmen Wong for cloning IL-18 into the TCAE 5.3 vector.


