Local Blockade of Allergic Airway Hyperreactivity and Inflammation by the Poxvirus-Derived Pan-CC-Chemokine Inhibitor vCCI

Karim Dabbagh, Yun Xiao, Craig Smith, Pamela Stepick-Biek, Sung G. Kim, Wayne J. E. Lamm, Denny H. Liggett and David B. Lewis

J Immunol 2000; 165:3418-3422; doi: 10.4049/jimmunol.165.6.3418

http://www.jimmunol.org/content/165/6/3418

Why The JI?

- **Rapid Reviews! 30 days** from submission to initial decision
- **No Triage!** Every submission reviewed by practicing scientists
- **Speedy Publication!** 4 weeks from acceptance to publication

*average

References This article cites 28 articles, 12 of which you can access for free at:
http://www.jimmunol.org/content/165/6/3418.full#ref-list-1

Subscription Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Local Blockade of Allergic Airway Hyperreactivity and Inflammation by the Poxvirus-Derived Pan-CC-Chemokine Inhibitor vCCI

Karim Dabbagh, Yun Xiao, Craig Smith, Pamela Stepick-Biek, Sung G. Kim, Wayne J. E. Lamm, Denny H. Liggitt, and David B. Lewis

Allergen-induced asthma is characterized by chronic pulmonary inflammation, reversible bronchoconstriction, and airway hyperreactivity to provocative stimuli. Multiple CC-chemokines, which are produced by pulmonary tissue in response to local allergen challenge of asthmatic patients or experimentally sensitized rodents, chemoattract leukocytes from the circulation into the lung parenchyma and airway, and may also modify nonchemotactic function. To determine the therapeutic potential of local intrapulmonary CC-chemokine blockade to modify asthma, a recombinant poxvirus-derived viral CC-chemokine inhibitor protein (vCCI), which binds with high affinity to rodent and human CC-chemokines in vitro and neutralizes their biological activity, was administered by the intranasal route. Administration of vCCI to the respiratory tract resulted in dramatically improved pulmonary physiological function and decreased inflammation of the airway and the lung parenchyma. In contrast, vCCI had no significant effect on the circulating levels of total or allergen-specific IgE, allergen-specific cytokine production by peripheral lymph node T cells, or peritonsilolar inflammation after local allergen challenge, indicating that vCCI did not alter systemic Ag-specific immunity or chemotraction at extrapulmonary sites. Together, these findings emphasize the importance of intrapulmonary CC-chemokines in the pathogenesis of asthma, and the therapeutic potential of generic and local CC-chemokine blockade for this and other chronic diseases in which CC-chemokines are locally produced. The Journal of Immunology, 2000, 165: 3418–3422.
particular CC-chemokine in asthma may be influenced by the context of provocation of acute attacks. For example, because respiratory syncytial virus infection of airway epithelial cells induces their production of CC-chemokines, such as RANTES (17, 18), it is possible that RANTES might play a more important role in asthmatic airway hyperreactivity and inflammation triggered by respiratory viral infection than by allergen alone.

Viral-derived CC-chemokine inhibitor (vCCI) is a 35-kDa secreted virulence protein encoded in the genome of pox viruses that enhances their evasion of host immune responses. It is the only CC-chemokine inhibitor known to bind specifically and generally to CC-chemokines (human and rodent) with high affinity and to completely inhibit their biological activity; the mechanism is one of competitive inhibition of CC-chemokine receptors (19). The dissociation constant of vCCI is in the subnanomolar range for all 15 different CC-chemokines that have been tested, and the affinity of CC-chemokines for vCCI is often higher than that for their native CCRs (19), arguing for an unusually effective inhibition. Although vCCI has no apparent amino acid or structural homology to known mammalian or other eukaryotic proteins, including CCRs (20), its broad high-affinity CC-chemokine binding suggested that it might be particularly useful dissecting the biological role of CC-chemokines in inflammatory diseases and as a clinical anti-inflammatory agent. To examine the potential for local and generic blockade of CC-chemokines to treat asthma, we determined the effect of the intranasal (i.n.) administration of a vCCI to the respiratory tract in a murine model of allergen-induced asthma.

Materials and Methods
vCCI protein
The entire coding region of the 32-kDa vCCI protein from the cowpoxvirus genome was fused to a segment encoding the Fc region of human IgG1, expressed and purified as previously reported (19).

Allergen-induced pulmonary and peritoneal disease
Female BALB/cJ mice, 8–12 wk of age, were purchased from The Jackson Laboratory (Bar Harbor, ME) and were maintained under specific pathogen-free conditions. The dose of crystalline OVA (Pierce, Rockland, IL) given was 100 μg unless specified. In the standard protocol, OVA-treated mice received single i.p. injections of alum-precipitated OVA on days 1 and 14, and i.n. OVA in normal saline on days 14, 24, and 25 (21). Two hours before each i.n. dose of OVA, mice were briefly anesthetized by i.p. injection with a mixture of OVA and KLH (50 μg each) in alum instead of OVA alone, and were then treated as described above. For experiments evaluating the effect of i.n. vCCI treatment on extrapulmonary inflammation, mice were treated with OVA according to the standard protocol on days 1, 14, and 24, and on day 25 were treated with either 50 μg of vCCI or purified human IgG1 (Sigma, St. Louis, MO) in 50 μl of normal saline by the i.n. route. Unsensitized mice, which were treated in parallel, received alum alone for the two i.p. injections and normal saline for all four i.n. administrations (21). In certain experiments, as indicated, mice were sensitized on day 14 by i.p. injection with a mixture of OVA and KLH (50 μg each) in alum instead of OVA alone, and were then treated as described above. For experiments evaluating the effect of i.n. vCCI treatment on extrapulmonary inflammation, mice were treated with OVA according to the standard protocol on days 1, 14, and 24, and on day 25 were treated with either 50 μg of vCCI or hIgG1. One hour later, mice were challenged by i.p. injection with either 100 μg of OVA in PBS (pH 7.4) or with PBS alone; mice in both of these groups received a final i.n. challenge dose of OVA concurrently.

Bronchoalveolar and peritoneal lavage
Lavage was performed following the euthanization of mice on day 26. Bronchoalveolar lavage (BAL) of the right lung for leukocytes was performed as previously described (21). Peritoneal lavage was performed with 5 ml of PBS, 0.1% BSA, 0.5 mM EDTA. Microscope slides of cells obtained by BAL or peritoneal lavage were prepared by cyt centrifugation and stained with Diff-Quik (Fisher Scientific, Pittsburgh, PA). Differential cell counts were performed by counting a least 300 cells per slide.

Lung histology
Lung tissue from euthanized mice was fixed in 10% neutral-buffered formalin, embedded in paraffin, sectioned, and stained with hematoxylin and eosin. Slides were coded and evaluated by a morphologist (D.H.L.) who was blinded to the treatment groups.

Pulmonary function testing
Mice were anesthetized with pentobarbital 24 h after the final dose of i.n. OVA, and then were mechanically ventilated in a plethysmograph to determine resistance (R) and dynamic compliance (Cdyn) (21). For each animal, pulmonary function was determined basally and following i.v. injection of 120 μg/kg of acetyl-β-methacholine (Mch; Sigma, St. Louis, MO) in normal saline. This dose results in an ~40–60% reduction in dynamic compliance and a 300–450% increase in resistance in OVA-sensitized/challenged BALB/c mice (21). The methods used were similar to those previously described (21), except that the chest was not opened and a commercial plethysmograph, transducer, and amplifier system was used for data collection (Buxco, Sharon, CT). Enhanced pause (Penh) was assessed by whole body plethysmography (Buxco) of conscious, unrestrained mice (22).

OVA-specific IgE, KLH-specific IgG1 and total IgE ELISAs
OVA-specific and total IgE determinations were performed as previously described using TMB substrate (Kierkegaard & Perry, Gaithersburg, MD) for development (23). Pooled plasma from BALB/c mice immunized twice with alum-precipitated OVA was used as an internal standard, and was arbitrarily assigned an OVA-specific IgE titer of 10 U/ml. KLH-specific IgG1 ELISAs were performed as for OVA-specific IgE ELISA, except that KLH (Pierce) was used to coat wells and the IgG mAb was replaced by peroxidase-conjugated goat anti-mouse IgG1 Ab (Southern Biotechnology Associates, Birmingham, AL).

OVA-specific T cell responses in vitro
Bronchial lymph node cells were isolated and cultured as previously described (24) with medium alone or with OVA (100 μg/ml) for 96 h (24). IL-4, IL-5, and IFN-γ content in cell culture supernatants was determined by ELISA (PharMingen, San Diego, CA).

Statistical analysis
Statistical significance was determined using either the one-way ANOVA or the two-tailed, unequal Student’s t test as appropriate. Differences between means were considered significant when p values were less than 0.05.

Results and Discussion
Selective blockade of airway inflammation by respiratory tract administration of vCCI
A murine asthma model was used in which the combination of OVA administered twice i.p. and three times i.n. results in disease that faithfully mimics cardinal features of human allergen-induced asthma, with intense eosinophilic and mononuclear inflammation of the lung, marked airway hyperreactivity, high levels of circulating IgE, and expression of Th2 cytokines by lung-associated lymph node cells (21, 23). A similar murine OVA-induced asthma model induces the pulmonary expression of a number of CC-chemokines, including eotaxin, RANTES MCP-1, MCP-5, and MIP-1α (5). To evaluate the effect of the blockade of local intrapulmonary chemokines on experimental allergen-induced asthma, vCCI in the form of a dimeric fusion protein with the human IgG1 Fc domain, or an equivalent amount of purified human IgG1 (hIgG1), was administered i.n. 2 h before each of three i.n. doses of OVA on days 14, 24, and 25. vCCI treatment significantly reduced the number of total leukocytes and eosinophils in BAL fluid obtained on day 26 compared with mice that received an equivalent amount of hIgG1 (Fig. 1A). The noneosinophil leukocytes of the vCCI-treated and hIgG1-treated groups were >95% lymphocytes and mononuclear phagocytes (data not shown), in agreement with previous results (21). In contrast, OVA sensitization/challenge resulted in intense inflammation of the lung parenchyma in mice that received hIgG1, including in the perivascular and peribronchial regions (Fig. 2B), in agreement with previous results (21). vCCI administration dramatically reduced this inflammation, particularly in the peribronchial region (Fig. 2A), which had a histological appearance similar to that of tissue from unsensitized mice (Fig. 2C).
A single dose of vCCI given i.n. was highly effective at blocking the recruitment of inflammatory cells into the lung (Fig. 1B). In contrast, it did not affect the recruitment of lymphocytes, eosinophils and monocytes into the peritoneal cavity of mice subsequently challenged with OVA i.p. (Fig. 1C). Together, these results indicated that the vCCI-mediated inhibition of CC-chemokine function by i.n. administration was...
Highly effective for the local blockade of eosinophil and mononuclear phagocyte lung inflammation, while sparing effects on inflammatory reactions in the peritoneum.

Blockade of airway hyperreactivity by vCCI

Asthma is characterized by airway hyperreactivity, in which there is an exaggerated increase in airway resistance (R), a measure of the amount of pressure to achieve a given airflow, and a decrease in dynamic compliance (Cdyn), a measure of how distensible the lungs are at end-expiration, in response to provocative stimuli, such as Mch (21, 25). We found that local intrapulmonary administration of vCCI was strikingly effective in preventing the increased airway hyperreactivity characteristic of the late phase response (21). In mice receiving vCCI there was both lower R (Fig. 3, A and B) and higher Cdyn (Fig. 3, C and D) after Mch provocation than in mice that received hlgG1. The effect on R was particularly striking in that vCCI treatment almost completely reduced the level of this physiologic parameter to the normal values of unsensitized mice. vCCI treatment also increased basal Cdyn, a measure of how distensible the lungs are at end-expiration, in response to provocative stimuli, such as smooth muscle cells (11), but the importance of such expression may have a minimal effect on normal pulmonary physiological function, at least in the short term. Finally, vCCI abrogated by ~50% the increases in Peth, a physiological measurement that correlates with airflow obstruction and increased R (22), in sensitized mice in response to Mch challenge compared with mice treated with hlgG1 (data not shown). This indicated that these beneficial effects on pulmonary function applied to conscious, spontaneously breathing animals.

The cellular and molecular mechanisms underlying late phase pathology in allergen-induced asthma and its relationship with the early phase response are complex and only partly understood (4). It is likely that decreased airway hyperreactivity resulting from vCCI treatment is due, at least in part, to blockade of the influx of inflammatory cells, such as eosinophils, which produce a number of potent bronchoconstrictive mediators (2). vCCI might also locally inhibit the function of pulmonary inflammatory cells, because in vitro and in vivo studies have shown that CC chemokines can directly activate leukocytes, such as eosinophils (26) and mast cells (14). However, our results do not exclude the possibility that CC-chemokines may, at least in part, directly regulate airway caliber and function independently of effects on leukocytes. For example, functional CCRs are expressed by a number of nonhematopoietic cell types that are involved in bronchoconstriction, such as smooth muscle cells (11), but the importance of such expression for bronchoconstriction remains to be established. The fact that vCCI treatment resulted in nearly normal pulmonary function, whereas only partially inhibiting airway inflammation, also suggests that CC-chemokine-dependent, leukocyte-independent mechanisms regulating airway hyperreactivity are plausible.

Respiratory tract administration of vCCI does not influence systemic immune responses

Previous studies have found that CC-chemokines, in addition to their chemoattract effects, can augment in vitro lymphocyte functions that are critical for allergic disease, such as the production of IgE by B cells (9) and the production of IL-4 by T cells (8). To determine whether vCCI administration by the i.n. route altered in vivo Ag-specific responses involved in allergic disease, we analyzed the circulating levels of total and OVA-specific IgE at day 26.
of the standard protocol. Mice that received alum-precipitated OVA by the i.p. route had an ∼25-fold increase in total IgE levels compared with sham immunized mice in agreement with previous results (21, 23) and vCCI administration had no influence on this increase (Fig. 4A). In addition, the levels of KLH-specific IgG1 in hlgG1-treated mice (43 ± 11 U/ml; mean ± SEM, n = 6) were not significantly different (p = 0.1 by Student’s t test) from those in vCCI-treated mice (125 ± 42 U/ml, n = 6) following KLH given with OVA i.p. on day 14. Because >90% of protein allergen-specific IgE production by B cells and their plasma cell derivatives is dependent on IL-4 production by CD4 T cells (27), these results also suggest that vCCI treatment did not inhibit CD4 T cell activation, expansion, or Th2 differentiation in vivo. This was supported by studies demonstrating that OVA-stimulated bronchial lymph node T cells from vCCI-treated mice produced similar amounts of IL-4, IL-5, and IFN-γ (Fig. 4B) and proliferated equally, based on the incorporation of [3H]thymidine (data not shown), as cells from hlgG1-treated mice. Thus, vCCI treatment did not alter T cell-dependent immune responses in vivo, including those associated with the local lymphoid tissue draining the lung, and appeared to act locally within the airway and adjacent parenchymal tissue to inhibit asthmatic inflammation and airway hyperreactivity. Taken together, these results indicate that local intrapulmonary inhibition of CC-chemokines by vCCI appears to be highly effective in blocking both the inflammatory and airway physiological consequences of allergen-induced asthma in vivo, without significantly altering systemic Ag-specific immunity. Such a therapeutic approach for asthma would be expected to have certain major advantages over local or systemic glucocorticoid therapy, such as significantly altering systemic Ag-specific immunity. Such a therapeutic approach for asthma would be expected to have certain major advantages over local or systemic glucocorticoid therapy, such as avoiding inhibition of neutrophil migration to the lung and airways, and the systemic negative effects on bone homeostasis (2). The results of our study, taken with the recent reports of the clinical efficacy of systemic administration of a soluble TNF receptor protein for advanced rheumatoid arthritis (28), suggest that high-affinity binding proteins that disrupt specific cytokine/receptor interactions have general promise for the treatment of immunologically mediated diseases. Our results also raise the intriguing possibility that the vCCI protein, or nonimmunogenic small molecule mimetics of vCCI, might also be useful for the treatment of other disease states in which excessive, local elaboration of CC-chemokines and tissue-specific influx of eosinophils and/or mononuclear leukocytes are hallmarks. Chronic autoimmune diseases and allograft rejection are clear examples.

Acknowledgments

We thank Dr. Li-Sheng Lu for technical advice and Dr. Richard Albert for his critique of the manuscript.

References