The Phagocytosis-Associated Respiratory Burst in Human Monocytes Is Associated with Increased Uptake of Glutathione

J Immunol 2000; 165:3333-3340; doi: 10.4049/jimmunol.165.6.3333
http://www.jimmunol.org/content/165/6/3333

References
This article cites 54 articles, 34 of which you can access for free at:
http://www.jimmunol.org/content/165/6/3333.full#ref-list-1

Subscription
Information about subscribing to The Journal of Immunology is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
The Phagocytosis-Associated Respiratory Burst in Human Monocytes Is Associated with Increased Uptake of Glutathione

Tamas Seres,* Roy G. Knickelbein,* Joseph B. Warshaw,* and Richard B. Johnston, Jr. 2*†

During the phagocytic respiratory burst, oxygen is converted to potent cytotoxic oxidants. Monocytes and macrophages are potentially long-lived, and we have hypothesized that protective mechanisms against oxidant stress are varied and fully expressed in these cells. We report here that the respiratory burst in monocytes is accompanied by an increase in the uptake of [35S]glutathione ([35S]GSH) after 20–30 min to levels up to 10-fold greater than those at baseline. By 30 min, 49% of the cell-associated radioactivity was in the cytosol, 41% was in membrane, and 10% was associated with the nuclear fraction. GSH uptake was inhibited by catalase, which removes hydrogen peroxide (H2O2), and micromolar H2O2 stimulated GSH uptake effectively in monocytes and also lymphocytes. Oxidation of GSH to glutathione disulfide with H2O2 and glutathione peroxidase prevented uptake. Acivicin, which inhibits GSH breakdown by γ-glutamyl transpeptidase (GGT), had no effect on the enhanced uptake seen during the respiratory burst. Uptake of cysteine or cystine, possible products of GGT activity, stayed the same or decreased during the respiratory burst. These results suggest that a GGT-independent mechanism is responsible for the enhanced GSH uptake seen during the respiratory burst. We describe here a sodium-independent, methionine-inhibitable transport system with a Km (8.5 μM) for GSH approximating the plasma GSH concentration. These results suggest that monocytes have a specific GSH transporter that is triggered by the release of H2O2 during the respiratory burst and that induces the uptake of GSH into the cell. Such a mechanism has the potential to protect the phagocyte against oxidant damage.

The Journal of Immunology, 2000, 165: 3333–3340.

Elimination of invading micro-organisms by neutrophils, monocytes, and macrophages depends heavily on the generation of reactive oxygen species during the phagocytosis-associated respiratory burst. The NADPH oxidase that mediates this process assembles in the plasma membrane, and toxic oxidants are released to the inside and outside of the cell (1). Thus, the oxidants created in this process, particularly superoxide anion (O2•−), hydrogen peroxide (H2O2), hypochlorous acid, and hydroxyl radical, carry the potential to damage the phagocytes themselves as well as other cells at sites of inflammation (2).

The intracellular reducing potential supplied by the thiol tripeptide glutathione (L-γ-glutamyl-L-cysteinylglycine (GSH)3) is believed to play an essential role in protecting cells against oxidant damage (3). We have published data indicating that GSH also serves as the key component in the respiratory burst-driven formation of cellular protein-mixed disulfides, a process termed S-thiolation (4–7). This reversible process can modify enzyme function and could protect protein sulfhydryl groups from irreversible oxidative damage (4, 5). The importance of GSH to cell integrity is emphasized by experiments in which inhibition of GSH synthesis by L-buthionine-(S,R)-sulfoximine in adult mice or newborn rats led to mitochondrial degeneration, multiorgan failure, and death (3, 8).

Most cell types can metabolize extracellular GSH by an ectoenzyme, γ-glutamyl transpeptidase (GGT), which transfers glutamate to an amino acid acceptor. Cysteinylglycine is then hydrolyzed, and the amino acids are internalized independently (9, 10). The rate of transport and the intracellular availability of cysteine/cystine appear to control the rate of GSH synthesis (9–12). Transport of these amino acids is accomplished by well-characterized amino acid transporters (13, 14). More recently, distinct transport systems for GSH have been described on the canalicular and sinusoidal membranes of rat and human liver, and analysis of cell lines and tissues suggests that a transport mechanism also exists on certain other cell types (15–18).

The studies reported here were framed on the hypothesis that stimulation of the phagocytic respiratory burst induces increased uptake of cysteine, cystine, or GSH, individually or in combination. The results indicate that activation of the respiratory burst in human monocytes or exposure of the cells to H2O2 decreases the uptake of cysteine, does not affect cystine uptake, and induces a prominent increase in uptake of GSH.

Materials and Methods

Preparation of monocytes and lymphocytes

Mononuclear leukocytes were separated from heparinized blood of normal donors using lymphocyte separation medium (Organon Teknika, Durham, NC). Monocytes were washed and resuspended in DMEM (Life Technologies, Grand Island, NY), and 4 × 10⁶ cells were added to each 35-mm-diameter tissue culture dish. The cells were allowed to adhere for 2 h at 37°C in a humidified chamber containing 5% CO2 (4). The adherent cell population contained at least 82–89% monocytes by microscopic examination after staining with Wright-Giemsa or esterase stains (Sigma, St. Louis, MO); other cells appeared to be lymphocytes. More than 98% of the

Copyright © 2000 by The American Association of Immunologists

0022-1767/00/$02.00
cells were viable as determined by trypan blue exclusion. Lymphocyte separation medium, DMEM, and other incubation solutions were free of bacterial LPS (<0.01 ng/ml), as tested by the Limulus amebocyte lysate assay (Endotox, Sigma).

To isolate lymphocytes, cells nonadherent following 2-h incubation in DMEM were transferred to new dishes and allowed to adhere during a second 2-h incubation. The final nonadherent cell population contained >95% lymphocytes by microscopic examination of Wright-Giemsa-stained smears. PMA-stimulated supernoxo anion release by these lymphocyte preparations was negligible.

Amino acid and GSH uptake

Immediately before uptake studies, the plates were removed from the CO2 incubator, and DMEM was replaced with Na+-HEPES buffer containing 130 mM NaCl, 4.7 mM KCl, 1.0 mM MgSO4, 1.2 mM KH2PO4, 20 mM HEPES, and 1.0 mM glucose, pH 7.4. For Na+-free conditions, NaCl was replaced with an equal concentration of choline chloride. (In this paper we refer to the choline buffer as Na+-free HEPES buffer.) Uptake was initiated by replacing the above solution with 1.0 ml of Na+-HEPES buffer containing 0.9 μM of t-[35]S-cystine (0.8 nM) with 1 μM cold cystine, 0.9 μM t-[35]S-cysteine (0.8 nM) with 1 μM cold cysteine in the presence of 1 nM GSH as a reducing agent, or 0.9 μM t-[35]S-GSH (2.1 μM) in the presence of 1 μM cold GSH, as we previously described (14). The radioactivity of the mixture of radioactive and cold thiols was measured using a liquid scintillation counter. Radioactivity released into the extracellular medium and that remaining associated with the washed adherent cell was subtracted from the cell-associated radioactivity measured at 37°C. The radioactivity of the mixture of radioactive and cold thiols was measured by liquid scintillation counting and the specific activity of the thiols was calculated as counts per minute per pico-mole. PMA (500 ng/ml) or oponized zymosan (OZ, 1 mg/ml) was added to the cells.

The cell-associated radioactivity measured in these experiments might be a combination of uptake, extracellular binding, and association with any nonwashable extracellular fluid volume. Therefore, control experiments were performed at 4°C to inhibit cell-associated radioactivity at 4°C, consisting of extracellular binding and trapping, which was negligible, was subtracted from the cell-associated radioactivity measured at 37°C. In this paper we refer to the accumulation of cell-associated thiol as uptake, except when classic transport methodology was used.

Avidin was lyzed by adding 1 ml of a solution of 0.1 N NaOH, 2% Na2CO3, and 0.02% sodium-potassium tartrate. After incubation for 3 h, aliquots were taken for protein analysis (Lowry method) and determination of radioactivity using a liquid scintillation counter. Cell-associated thiol (picomoles per milligram of protein) was calculated on the basis of the radioactivity (counts per minute in the cells, the specific activity of the thiol (counts per minute per pico-mole of thiol), and the protein content of the reaction mixture (milligrams). The cell-associated radioactivity measured in these experiments might be a combination of uptake, extracellular binding, and association with any nonwashable extracellular fluid volume. Therefore, control experiments were performed at 4°C to inhibit cell-associated radioactivity at 4°C, consisting of extracellular binding and trapping, which was negligible, was subtracted from the cell-associated radioactivity measured at 37°C. In this paper we refer to the accumulation of cell-associated thiol as uptake, except when classic transport methodology was used.

Avidin was lyzed by adding 1 ml of a solution of 0.1 N NaOH, 2% Na2CO3, and 0.02% sodium-potassium tartrate. After incubation for 3 h, aliquots were taken for protein analysis (Lowry method) and determination of radioactivity using a liquid scintillation counter. Cell-associated thiol (picomoles per milligram of protein) was calculated on the basis of the radioactivity (counts per minute in the cells, the specific activity of the thiol (counts per minute per pico-mole of thiol), and the protein content of the reaction mixture (milligrams). The cell-associated radioactivity measured in these experiments might be a combination of uptake, extracellular binding, and association with any nonwashable extracellular fluid volume. Therefore, control experiments were performed at 4°C to inhibit cell-associated radioactivity at 4°C, consisting of extracellular binding and trapping, which was negligible, was subtracted from the cell-associated radioactivity measured at 37°C. In this paper we refer to the accumulation of cell-associated thiol as uptake, except when classic transport methodology was used.

Release of O2

Release of O2 from monocytes was measured as superoxide dismutase (SOD)-inhibitable reduction of ferricytochrome c, corrected for the protein content (4, 20). The cells were stimulated by PMA (500 ng/ml) or OZ (1 mg/ml). Values in the absence of stimulus were subtracted from those obtained after stimulation. Study of the respiratory burst and of amino acid transport were performed in parallel using cells from the same preparation. In other experiments PMA-stimulated release of O2 and uptake of t-[35]S-GSH were studied in the presence of 50 μg/ml SOD or 2000 U/ml catalase.

In control experiments we studied the effect on GSH uptake of inhibiting the PMA-stimulated respiratory burst with diphenyleneiodonium (DPI) (21, 22). DPI (ICN, Costa Mesa, CA) dissolved in DMSO (21) was added in a volume of 2 μl to a final concentration of 0.1–2 μM. After preincubation with the cells in Na+-HEPES buffer for 10 min, PMA (500 ng/ml) was added for an additional 10 min (O2 release) or 30 min (GSH uptake). DMSO alone (2 μl) had no effect on GSH uptake or O2 release. Monocyte viability (methylene blue exclusion) was 99% in buffer and 98% after incubation for 30 min in 2 μM DPI.

Subcellular localization of cell-associated radioactivity

We studied the subcellular localization of the respiratory burst-stimulated cell-associated 35S-labeled thiol by separating the cells into membrane, nuclear, and cytosolic fractions. After incubation of the cells with t-[35]S-GSH and stimulation with PMA as described, the monocytes were scraped from the dishes and sonicated for 60 s (six 10-s bursts) on ice. An aliquot was taken to determine total counts per minute. Cell debris and nuclear material were removed by using an Eppendorf centrifuge at 1,000 × g for 10 min. The supernatant was saved, and the pellet was further fractionated using Opti Prep, as described in the manufacturer’s booklet (Nynomed Pharma, Oslo, Norway). To isolate nuclei, the 1,000 × g pellet was homogenized in diluent A (8% (w/v) sucrose, 25 mM KCl, 5 mM MgCl2, and 20 mM Tris, pH 7.8), and a second centrifugation was performed at 1000 × g for 10 min. The pellet was layered on the 25/30/35% (W/v) discontinuous gradient of Opti Prep and centrifuged at 100,000 × g for 30 min. The supernatant formed a distinct band at the 30/35% interface. The initial supernatant, saved after the first centrifugation at 1,000 × g, was centrifuged at 100,000 × g for 30 min, and the radioactivity of the membrane fraction (pellet) was measured by directly resuspending it in scintillation fluid.

The radioactivity remaining in the supernatant represented the membrane-bound cysteolic thiol. This supernatant was treated with 10% (final concentration) TCA, the supernatant centrifuged at 10,000 × g for 10 min, and the protein-bound thiol radioactivity in the TCA supernatant represented free thiol.

Each cell fraction was studied to verify the success of the separation procedure. We found 93% (mean; n = 3) of the total activity of GGT in the membrane fraction, consistent with the known localization of this enzyme (19, 23). In contrast, 99% (mean; n = 3) of the total activity of glucose-6-phosphate dehydrogenase (19) was located in the cytosolic fraction.

Release of radioactivity from monocytes

Monocytes were incubated with L-[35]S-labeled GSH with or without stimulation with PMA for 30 min as described above. The reaction was stopped by removing the medium and washing the cells four times. The cells were then incubated for 10 min at 37°C in HEPES buffer with or without 1 mM dithioerythritol (DTE) to release plasma membrane protein-bound radioactivity by reducing disulfide bonds. Radioactivity released into the extracellular medium and that which remained associated with the washed adherent cells was determined. The uptake and release of GSH was presented as picomoles per milligram of protein, as described above.

FIGURE 1. Cystine (Cys2), cysteine (Cys) and GSH uptake in human monocytes during the respiratory burst. Uptake of 35S-labeled Cys2, Cys, or GSH was determined over 30 min in the presence of Na+-HEPES buffer with and without PMA as a stimulus for the respiratory burst. When Cys uptake was studied, 1 mM GSH was added to the reaction mixture to prevent auto-oxidation. Data points represent the mean ± SEM of duplicate measurements in each of three separate cell preparations (n = 3). PMA induced a significant reduction in uptake of Cys (p < 0.01) and an increase in uptake of GSH (p < 0.002).
Total thiol uptake decreased during the respiratory burst because of their substrate and inhibitor specificity and whether Na\(^{+}\)-dependent mechanisms have been described for cystine, cysteine, and GSH uptake. To explore these mechanisms in monocytes, uptake was measured in HEPES buffer in which sodium chloride was replaced with choline chloride. The effect of stimulating the respiratory burst with PMA was similar to the effect in Na\(^{+}\)-HEPES buffer; there was a decrease in uptake of cysteine (44%), a minimal effect on cystine uptake, and a stimulation of GSH uptake by 4.9-fold during the respiratory burst. Almost all (93%) the GSH uptake was sodium independent (Fig. 3, compared with Fig. 1). Under basal (unstimulated) conditions, about 60% of GSH uptake was Na\(^{+}\)-independent.

Transporters for cysteine, cystine, or both can be differentiated by their substrate and inhibitor specificity and whether Na\(^{+}\) is necessary for transport activity. We explored cystine and cysteine uptake (5 min, 37°C) in monocytes under basal culture conditions by determining transport in the presence of these selective inhibitors (14). Cystine transport was predominantly (72%) Na\(^{+}\) independent (Figs. 1 and 3). This transport was inhibited 43 ± 13% (mean ± SEM; n = 4) by quisqualate, a specific inhibitor of system x\(_{c}\), a glutamate/cystine exchanger. Sodium-dependent cystine uptake was increased 3.1-fold (Fig. 1).

Results

Thiol uptake in human monocytes during the respiratory burst

Under basal culture conditions, in Na\(^{+}\)-HEPES buffer there was stimulation of cystine uptake by 4.9-fold during the respiratory burst. Almost all (93%) the GSH uptake was sodium independent (Fig. 3, compared with Fig. 1). Under basal (unstimulated) conditions, about 60% of GSH uptake was Na\(^{+}\)-independent.

Data presentation

All data shown are the mean ± SEM of n experiments, each performed in duplicate or triplicate. Statistical significance was determined using Student’s t test unless otherwise specified.

FIGURE 2. Relationship between the release of superoxide anion and uptake of GSH during the respiratory burst. A, Monocytes cultured in Na\(^{-}\)-HEPES buffer were stimulated with PMA, and the uptake of \({}^{35}\)S-labeled GSH and release of O\(_{2}\)\(^{-}\) were measured at the indicated times after addition of PMA. B, Rate of the release of O\(_{2}\)\(^{-}\) and rate of GSH uptake expressed as a function of the time after addition of PMA. C, Effect of preincubation for 10 min with varying concentrations of DPI on PMA-stimulated release of O\(_{2}\)\(^{-}\) and uptake of GSH. Data points in A, B, and C represent the mean ± SEM (n = 3).

FIGURE 3. Cystine (Cys\(_{2}\)), cysteine (Cys), and GSH uptake in human monocytes during the respiratory burst in sodium-free buffer. Uptake of \({}^{35}\)S-labeled Cys\(_{2}\), Cys, or GSH was determined over 30 min in Na\(^{-}\)-free HEPES buffer with and without PMA. When Cys uptake was studied, 1 mM GSH was added to the reaction mixture to prevent auto-oxidation. Data points represent the mean ± SEM (n = 3). PMA induced a significant reduction in the uptake of Cys (p < 0.04) and a significant increase in the uptake of GSH (p < 0.001); the reduction in Cys\(_{2}\) uptake was not significant.
transport was inhibited 83 ± 12% (n = 4) by L-aspartic acid-β-hydroxamate, a specific inhibitor of system X_AG, which also transports aspartate and glutamate. Cysteine transport was only 24% Na^+-independent (Figs. 1 and 3). Most (82 ± 2%; n = 4) of the Na^+-dependent transport was inhibited by serine, implicating system ASC. The Na^+-independent cysteine transport was inhibited by 2-aminobicyclo-[2.2.1]-heptane-2-carboxylic acid (46 ± 3%), indicating the participation of system L, a transporter that carries a number of amino acids, including cysteine (14).

Characterization of Na^+-independent GSH uptake

The effect of the respiratory burst on uptake of GSH in Na^+-free buffer was studied during phagocytosis of a serum-opsonized particle (OZ) (20). The relationship between the OZ-stimulated respiratory burst and GSH uptake as a function of time (Fig. 4) was similar to that shown with PMA as stimulus in Na^+-HEPES buffer (Fig. 2A). The characteristically slower rate of O_2 release with OZ compared with that using PMA (20) was associated with a longer interval before decline in GSH uptake (30 min with OZ, Fig. 4; 20 min with PMA, Fig. 2A). In these experiments GSH uptake during the respiratory burst was 10.2 times higher than uptake under basal conditions (control).

During the respiratory burst, superoxide anion is converted to the more stable and membrane-permeable oxidant, H_2O_2. Uptake of GSH during the PMA-induced respiratory burst was consistently (but not statistically significantly) further enhanced by SOD, which accelerates H_2O_2 production (Fig. 5). In contrast, catalase, which removes H_2O_2, reduced GSH transport during the respiratory burst almost to the level of the control (no PMA).

These results suggested that among the oxygen derivatives of the respiratory burst, H_2O_2 plays a particularly important role in inducing GSH uptake. In support of this conclusion, H_2O_2 in micromolar concentrations induced a concentration-dependent enhancement of GSH transport to levels over 7 times greater than those at baseline (Fig. 6). In experiments not shown the time course of this effect was similar to that seen with the PMA-induced respiratory burst, with GSH uptake reaching a maximum after 15 min of exposure, then decreasing slowly (by ~15%) by 30 min (n = 3). The highly reactive H_2O_2 derivative sodium hypochlorite (NaOCl; Sigma; 0.05 mM) did not enhance GSH uptake significantly during a 30-min incubation: NaOCl, 35.1 ± 6.5 pmol/mg; 0.05 mM H_2O_2, 214 ± 28 pmol/mg; control, 27.5 ± 6.6 pmol/mg (n = 3).

Because the GSH used for uptake studies was radiolabeled on the cysteinyl moiety, it was necessary to demonstrate that we were measuring the uptake of intact GSH and not cysteinylglycine or cysteinylglutamate.
cysteine released by the action of GGT, then dipeptidase. Therefore, cells were preincubated for 10 min with acivicin, an irreversible inhibitor of GGT, before exposure to PMA. As shown in Fig. 7, acivicin preincubation resulted in a modest (14%) decrease in GSH uptake in unstimulated cells, but no change in the enhancement associated with the respiratory burst, suggesting that GSH is being transported in intact form, and that GGT is not involved in the increased GSH uptake seen during the respiratory burst.

We explored the possibility that H_2O_2 stimulated GSH uptake by oxidizing GSH to GSSG, which, in turn, was taken up preferentially. When uptake was studied in the presence of glutathione peroxidase (1 U/ml) and H_2O_2 (10 μM; 30 min) to convert GSH to GSSG, uptake of [35S]GSH was less than uptake at baseline (no stimulus or H_2O_2 added; 9 ± 1 pmol/mg protein vs baseline, 20 ± 3 pmol/mg; mean ± SEM; n = 3). In these experiments, H_2O_2 alone enhanced uptake of GSH, as shown in Fig. 6, and glutathione peroxidase alone had no appreciable effect. A similar effect (mean 70% reduction below baseline; n = 3) was noted when the GSH was preincubated with the strong oxidant diamide (50 μM).

Distribution of GSH taken up by human monocytes during oxidant stress

We explored the cellular distribution of radioactivity in monocytes after a 30-min incubation in Na+-free HEPES buffer with [35S]GSH under basal conditions or stimulated with PMA (Fig. 8).

<table>
<thead>
<tr>
<th>Thiol Content (pmol/mg)</th>
<th>Unstimulated</th>
<th>PMA stimulated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Buffer</td>
<td>DTE</td>
</tr>
<tr>
<td>GSH</td>
<td>3.8 ± 1.8</td>
<td>42 ± 9.0</td>
</tr>
<tr>
<td>GSSG</td>
<td>111.8 ± 45.5</td>
<td>53.6 ± 12.3</td>
</tr>
<tr>
<td>Methionine</td>
<td>–</td>
<td>18.5 ± 4.5</td>
</tr>
<tr>
<td>BSP</td>
<td>–</td>
<td>77.5 ± 1.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>H_2O_2 (-)</th>
<th>H_2O_2 (+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Km (μM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSH</td>
<td>6.1 ± 0.3</td>
<td>8.5 ± 2.8</td>
</tr>
<tr>
<td>Vmax (pmol/mg/min)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSH</td>
<td>3.8 ± 1.8</td>
<td>42 ± 9.0</td>
</tr>
<tr>
<td>GSSG</td>
<td>111.8 ± 45.5</td>
<td>53.6 ± 12.3</td>
</tr>
<tr>
<td>Methionine</td>
<td>–</td>
<td>18.5 ± 4.5</td>
</tr>
<tr>
<td>BSP</td>
<td>–</td>
<td>77.5 ± 1.5</td>
</tr>
</tbody>
</table>

* Results are means ± SEM for transport studied at least three different monocyte preparations. Uptake of GSH was studied in the absence of Na+. Uptake was determined at least five different substrate concentrations. Km was calculated from Lineweaver-Burk plots, and Vmax was calculated by using the Dixon plot. BSP, Bromsulfophthalein.
The role of H₂O₂ or the respiratory burst induced by PMA in GSH uptake in lymphocytes

GSH uptake in lymphocytes

The role of H₂O₂ or the respiratory burst induced by PMA in GSH uptake was compared in human monocytes and lymphocytes (Fig. 9). PMA did not induce superoxide anion release in our lymphocyte preparations; therefore, the direct effect of PMA on GSH uptake could be evaluated. Hydrogen peroxide caused a significant increase in GSH uptake in both purified monocytes (p < 0.002) and purified lymphocytes (p < 0.02). In contrast, the respiratory burst induced by PMA caused a 4-fold increase in GSH uptake in monocytes, but PMA had no effect on GSH uptake by lymphocytes.

Discussion

During the process of phagocytosis professional phagocytes undergo a vigorous respiratory burst in which they consume oxygen and convert it enzymatically to O₂⁻, which interacts to form H₂O₂, then hypochlorous acid, hydroxyl radical, and other potent oxidants. It has been recognized that this process is accompanied by activation of the hexose monophosphate shunt and oxidation of GSH to GSSG through the action of GSH peroxidase and H₂O₂ (26). GSSG is cycled back to GSH by glutathione reductase. Data from a variety of experimental systems indicate that the redox cycling of GSH plays an important role in protecting the cell against oxidant damage (26, 27). We report here that the respiratory burst in human monocytes is also accompanied by increased uptake of GSH into the cell, up to 10-fold over baseline.

Virtually all animal cells synthesize GSH (3). Most of the body’s GSH is intracellular, >99% remaining in the reduced form in the absence of oxidant stress, in concentrations of 0.5–10 mM (3, 28). Total GSH in plasma has been reported to be 6–33 μM (15, 24, 25), 60% as reduced GSH (28). Synthesis is achieved using the constituent amino acids (Glu, Cys, and Gly) supplied in part by the breakdown of plasma GSH by the ectoenzymes GGT and dipeptidase (9, 19). The key sulfhydryl amino acid cysteine and, in greater concentration, its oxidized form cystine also appear in plasma and are available for transport (24, 25). Cysteine and cystine transport has been shown to be essential for GSH synthesis in lymphocytes, macrophages, and other cells (29, 30).

We report here that under basal conditions human monocytes take up cysteine primarily by a Na⁺-dependent system (Fig. 1 vs Fig. 3). This system appears to be system ASC, based on the defining inhibition studies (9, 14) as used by us previously with alveolar type II cells (14). System L appeared to play a lesser role in monocyte uptake of cysteine. In contrast, transport of cystine was predominantly (72%) Na⁺ independent and mediated at least in part by system Xₐ𝑐. In the presence of Na⁺, cystine was transported primarily by system Xₐ𝑐. This finding supports the conclusion of Rimaniol et al. (31) that human mononuclear phagocytes possess a system Xₐ𝑐 cystine/glutamate transporter. They have proposed that this transporter might clear neuroexcitatory glutamate in the brain. The changes induced by the respiratory burst in uptake of all three thiols were similar in the presence and the absence of Na⁺ (Figs. 1 and 3).

Our data suggest that the respiratory burst- and H₂O₂-induced increase seen in uptake of GSH, which was 35S-radiolabeled in the Cys moiety, was due primarily to transport of intact GSH. Preincubation of the cells with acivicin, which inhibits GSH breakdown by γ-glutamyl transpeptidase (19), had no effect on the H₂O₂-induced GSH uptake (Fig. 7). Uptake of GSH was time-dependent and reached maximal levels in 15 min. SOD, which removes O₂⁻, decreased or did not appreciably change during the respiratory burst (Figs. 1 and 3). Oxidation of [35S]GSH to [35S]GSSG by preincubation with H₂O₂/J GSH peroxidase or diamide reduced uptake of the thiol to 30–50% of the baseline (no H₂O₂) value, in agreement with the higher Kᵣ for GSSG than for GSH found on kinetic analysis (Table II). In these experiments we cannot rule out a direct effect of the diamide on the cell, but the facts that [35S]GSH uptake was inhibited by the strong oxidant diamide and was not increased by hypochlorous acid oxidant support the conclusion that the H₂O₂-induced cell-associated radioactivity is due primarily to uptake, not oxidant-stimulated mixed disulfide formation with plasma membrane ectoproteins. In addition, incubation of the PMA-stimulated cells with DTE, which would release externally bound thiols, elicited only a few more counts per minute than did buffer alone (Table I).

Uptake of GSH against a concentration gradient would be expected to require active transport. The data reported here support the existence of a Na⁺-independent GSH transporter on human monocytes. A transport mechanism for GSH has been described in several cell types, including human platelets and canalicular and sinusoidal membranes of rat and human liver (15–18, 32–35). GSH transport in various mammalian cell lines can be bidirectional, at least under certain conditions (33, 35). The Na⁺-independent activity, redox regulation, and inhibition by methionine and bromsulfophthalein that we found with monocyte GSH transport are characteristic of the liver sinusoidal GSH transporter (32, 35, 36), but the Kᵣ of this hepatic transporter is in the millimolar range, as would be appropriate for its mediating GSH efflux from the liver into the bloodstream. We found monocytes to have a transport mechanism with a considerably higher affinity for GSH (Kᵣ = 6–9 μM), which was close to the GSH concentration in plasma. A high affinity transporter for GSH has also been described in human platelets (34).

The rate of the respiratory burst-associated uptake of GSH closely approximated the rate of O₂⁻ release; both peaked at 5 min (Fig. 2B); accumulated GSH uptake after addition of H₂O₂ peaked at 15 min. SOD, which removes O₂⁻ by catalyzing its dismutation into H₂O₂, increased GSH uptake slightly, whereas catalase reduced the stimulatory effect of PMA by >80% (Fig. 5). H₂O₂, which can cross cell plasma membranes relatively efficiently (37),
stimulated rapid and vigorous GSH uptake when added to the outside of the cells in micromolar concentrations. Added hypochlorous acid had a negligible stimulatory effect. Thus, respiratory burst-associated GSH uptake appears to be driven primarily by H₂O₂.

Small amounts of radiolabeled GSH probably entered in PMA-induced pinocytic vesicles and OZ-induced phagocytic vacuoles, but most of the GSH uptake induced by PMA was inhibited by catalase, which removes H₂O₂ (Fig. 5), and by DPI, which inhibits the respiratory burst (Fig. 2C). DPI did not inhibit the increased GSH uptake induced by H₂O₂. In addition, PMA stimulated selective uptake of GSH, not cysteine, cystine, or GSSG.

The mechanism by which H₂O₂ drives such a profound and rapid uptake of GSH remains to be defined. Rapid modulation of signal transduction is a likely explanation. The phagocytic respiratory burst and other systems of oxidant stress have been related to modification of signaling in a variety of systems (38–44). H₂O₂ has also been reported to influence the activation of transcription factors, including NF-κB and AP-1 in mammalian cells (42, 45) and OxyR in Escherichia coli (46), and to activate RBC KCl cotransport (47).

It is not clear what survival advantage might be offered by this rapid uptake of GSH and by the shift from uptake primarily of cysteine/cystine to uptake of GSH. We reported previously that rapid uptake of GSH remains to be defined. Rapid modulation of signaling in a variety of systems (38–44). H₂O₂ has also been reported to influence the activation of transcription factors, including NF-κB and AP-1 in mammalian cells (42, 45) and OxyR in Escherichia coli (46), and to activate RBC KCl cotransport (47).

In addition to protecting against oxidant damage, GSH has been shown to play a central role in regulating a large number of cellular proteins and GSH, a process that we have demonstrated with human neutrophils and monocytes and mouse macrophages (4–7).

In addition to protecting against oxidant damage, GSH has been reported to play a central role in regulating a large number of cellular proteins and GSH, a process that we have demonstrated with human neutrophils and monocytes and mouse macrophages (4–7).

H₂O₂ has also been reported to influence the activation of transcription factors, including NF-κB and AP-1 in mammalian cells (42, 45) and OxyR in Escherichia coli (46), and to activate RBC KCl cotransport (47).

H₂O₂ has also been reported to influence the activation of transcription factors, including NF-κB and AP-1 in mammalian cells (42, 45) and OxyR in Escherichia coli (46), and to activate RBC KCl cotransport (47).

H₂O₂ has also been reported to influence the activation of transcription factors, including NF-κB and AP-1 in mammalian cells (42, 45) and OxyR in Escherichia coli (46), and to activate RBC KCl cotransport (47).

H₂O₂ has also been reported to influence the activation of transcription factors, including NF-κB and AP-1 in mammalian cells (42, 45) and OxyR in Escherichia coli (46), and to activate RBC KCl cotransport (47).

H₂O₂ has also been reported to influence the activation of transcription factors, including NF-κB and AP-1 in mammalian cells (42, 45) and OxyR in Escherichia coli (46), and to activate RBC KCl cotransport (47).

References

