CD1d-Specific NK1.1+ T Cells with a Transgenic Variant TCR

Markus Sköld, Nurun N. Faizunnessa, Chyung-Ru Wang and Susanna Cardell

J Immunol 2000; 165:168-174; doi: 10.4049/jimmunol.165.1.168
http://www.jimmunol.org/content/165/1/168

References

This article cites 55 articles, 40 of which you can access for free at:
http://www.jimmunol.org/content/165/1/168.full#ref-list-1

Subscription

Information about subscribing to The Journal of Immunology is online at:
http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
CD1d-Specific NK1.1⁺ T Cells with a Transgenic Variant TCR

Markus Sköld,* Nurun N. Faizunnessa,* Chyung-Ru Wang,† and Susanna Cardell²*

The majority of T lymphocytes carrying the NK cell marker NK1.1 (NKT cells) depend on the CD1d molecule for their development and are distinguished by their potent capacity to rapidly secrete cytokines upon activation. A substantial fraction of NKT cells express a restricted TCR repertoire using an invariant TCR Vα14-Jα281 rearrangement and a limited set of TCR Vβ segments, implying recognition of a limited set of CD1d-associated ligands. A second group of CD1d-reactive T cells use diverse TCR potentially recognizing a larger diversity of ligands presented on CD1d. In TCR-transgenic mice carrying rearranged TCR genes from a CD1d-reactive T cell with the diverse type receptor (using Vα3.2/Vβ9 rearrangements), the majority of T cells expressing the transgenic TCR had the typical phenotype of NKT cells. They expressed NK1.1, CD122, intermediate TCR levels, and markers indicating previous activation and were CD4/CD8 double negative or CD4⁺. Upon activation in vitro, the cells secreted large amounts of IL-4 and IFN-γ, a characteristic of NKT cells. In mice lacking CD1d, TCR-transgenic cells with the NKT phenotype were absent. This demonstrates that a CD1d-reactive TCR of the “non-Vα14” diverse type can, in a ligand-dependent way, direct development of NK1.1⁺ T cells expressing expected functional and cell-surface phenotype characteristics. The Journal of Immunology, 2000, 165: 168–174.

Members of the CD1 family are MHC class I-like Ag-presenting molecules, found in several species including man and mouse (1). The CD1 molecules, unlike conventional MHC molecules, present lipids and glycolipids (1–3), as well as peptides (4, 5), to T lymphocytes. In the mouse, different types of TCRαβ⁺ T cells have been described that recognize CD1d in the absence of added Ag (6–10). Some of these CD1d-reactive T cells express the NK1.1 marker (6). NK1.1 was first described as a NK cell marker and is present on NK cells and a subpopulation of T cells (termed NKT cells) in some mouse strains, like C57BL/6 (B6) mice (11). To date the described CD1d-reactive T cells known to derive from the NK1.1⁺ population had an invariant TCR α-chain consisting of a particular Vα14-Jα281 rearrangement and used TCR β-chains having primarily Vβ8.2, Vβ7, or Vβ2 segments with diverse rearrangements (12). The use of this semivariant TCR for CD1d recognition has been conserved through evolution (13–17). A very similar human TCR, with an invariant TCR α-chain and using the corresponding human TCR Vβ segments, recognizes the human homologue CD1d, and there is cross-recognition between the murine and human system (15). Others described murine CD1d-reactive T cells used diverse TCR α- and β-chains (7–10). These cells appear to share some of the characteristic features of the NK1.1⁺ T cells of B6 mice (7, 9, 18), but whether these cells belong to the NK1.1⁺ T cell subset is not clear.

The role of NKT cells, or CD1d-reactive T cells, in the immune system is not well understood, although their potent functional capacities, like rapid production of large amounts of IL-4 and IFN-γ upon in vivo stimulation (19), have been described. Their absence or aberrant function in certain murine and human autoimmune disorders indicate that they might be involved in the regulation of harmful autoimmune reactions (20–25). There is also evidence for a role of NKT cells during bacterial infections (26, 27), in IL-12-dependent rejection of tumors (28), and as helper T cells for IgG production (3).

To analyze further the function and differentiation of CD1d-reactive T cells, we have established a TCR-transgenic system expressing as transgene-rearranged TCR genes from a CD1d-autoreactive T cell hybridoma with the diverse-type TCR. Hybridoma VIII24 had been derived from the CD4⁺ population in MHC class II-deficient mice, used Vα3.2 and Vβ9 TCR rearrangements, and was reactive to endogenous CD1d on splenocytes and different CD1d-transfected cell lines (7). This report describes the phenotype and functional capacity of the TCR-transgenic T cells, their appearance in the thymus, and demonstrates their dependence on the ligand CD1d.

Materials and Methods

TCR-transgenic mice

The variable regions of the TCR genes from the VIII24 hybridoma were first cloned and sequenced from mRNA as previously detailed (29). Using appropriate oligo nucleotides, genomic DNA fragments containing the rearranged variable genes, Vα3.2/Jα20 and Vβ9/Jβ1.4, were amplified by PCR from the hybridoma and cloned into TCR expression cassette vectors as described in detail (30). Linearized DNA constructs from the TCRα and TCRβ cassette vectors, with prokaryotic sequences eliminated, were injected into fertilized (B6 × SJL)F1 embryos. Transgenic founders were screened for by Southern blot hybridization of tail DNA, and progeny of

*Immunology Section, Department of Cell and Molecular Biology, Lund University, Lund, Sweden; and ‡Gwen Knapp Center for Lupus and Immunology Research, Committee on Immunology and Department of Pathology, University of Chicago, Chicago, IL 60637.

Received for publication April 23, 1999. Accepted for publication April 20, 2000.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 This work was supported by a Swedish-French exchange fellowship from the Swedish Medical Research Council and grants from the Swedish Natural Science Research Council, Kungliga Fysiografiska Sällskapet, Rheumatikerförbundet, and the following foundations: Greta och Johan Kock, Alfred Österlund, Magnus Bergwall, Åke Wiberg, Crafoord and Anna-Greta Crafoord (to S.C.). M.S. was supported by stipends indicating previous activation and were CD4/CD8 double negative or CD4⁺.

2 Address correspondence and reprint requests to Dr. Susanna Cardell, Immunology Section, Department of Cell and Molecular Biology, Lund University, Sölvegatan 21, 223 62 Lund, Sweden, E-mail address: Susanna.Cardell@immuno.lu.se.

3 Abbreviations used in this paper: NKT cell(s), T cell(s) expressing the NK1.1 marker (6), NK1.1 was first described as a NK cell marker and is present on NK cells and a subpopulation of T cells (termed NKT cells) in some mouse strains, like C57BL/6 (B6) mice (11). To date the described CD1d-reactive T cells known to derive from the NK1.1⁺ population had an invariant TCR α-chain consisting of a particular Vα14-Jα281 rearrangement and used TCR β-chains having primarily Vβ8.2, Vβ7, or Vβ2 segments with diverse rearrangements (12). The use of this semivariant TCR for CD1d recognition has been conserved through evolution (13–17). A very similar human TCR, with an invariant TCR α-chain and using the corresponding human TCR Vβ segments, recognizes the human homologue CD1d, and there is cross-recognition between the murine and human system (15). Others described murine CD1d-reactive T cells used diverse TCR α- and β-chains (7–10). These cells appear to share some of the characteristic features of the NK1.1⁺ T cells of B6 mice (7, 9, 18), but whether these cells belong to the NK1.1⁺ T cell subset is not clear.

The role of NKT cells, or CD1d-reactive T cells, in the immune system is not well understood, although their potent functional capacities, like rapid production of large amounts of IL-4 and IFN-γ upon in vivo stimulation (19), have been described. Their absence or aberrant function in certain murine and human autoimmune disorders indicate that they might be involved in the regulation of harmful autoimmune reactions (20–25). There is also evidence for a role of NKT cells during bacterial infections (26, 27), in IL-12-dependent rejection of tumors (28), and as helper T cells for IgG production (3).

To analyze further the function and differentiation of CD1d-reactive T cells, we have established a TCR-transgenic system expressing as transgene-rearranged TCR genes from a CD1d-autoreactive T cell hybridoma with the diverse-type TCR. Hybridoma VIII24 had been derived from the CD4⁺ population in MHC class II-deficient mice, used Vα3.2 and Vβ9 TCR rearrangements, and was reactive to endogenous CD1d on splenocytes and different CD1d-transfected cell lines (7). This report describes the phenotype and functional capacity of the TCR-transgenic T cells, their appearance in the thymus, and demonstrates their dependence on the ligand CD1d.

Materials and Methods

TCR-transgenic mice

The variable regions of the TCR genes from the VIII24 hybridoma were first cloned and sequenced from mRNA as previously detailed (29). Using appropriate oligo nucleotides, genomic DNA fragments containing the rearranged variable genes, Vα3.2/Jα20 and Vβ9/Jβ1.4, were amplified by PCR from the hybridoma and cloned into TCR expression cassette vectors as described in detail (30). Linearized DNA constructs from the TCRα and TCRβ cassette vectors, with prokaryotic sequences eliminated, were injected into fertilized (B6 × SJL)F1 embryos. Transgenic founders were screened for by Southern blot hybridization of tail DNA, and progeny of
positive founders typed by flow cytometry for transgene expression on PBLs. Transgene-carrying founder mice were backcrossed to B6 mice. Mice were 5 wk to 6 mo of age unless otherwise stated, and from the first to fifth backcross generation. The NK1.1 Ag is present in both SJL and B6 mice (11). For some experiments, the 24β transgenic line was backcrossed with mice lacking CD1d (31), backcrossed five generations to the B6 genetic background.

Flow cytometry

Cells were stained with conjugates and Abs of the following specificities: Vβ9-PE, CD3-FTC, TCRαβ-PE, CD44-PE, IL-2Rα-PE (CD122 - PE), NK1.1-PE, NK1.1-biotin, TCRαβ-biotin, Vα3.2-biotin, CD4-allophycocyanin, CD8- allophycocyanin (PharMingen, San Diego, CA), TCRαβ-FTC, CD4-PE, CD8-PE, streptavidin-tricolor (Catag, San Francisco, CA), and streptavidin-PE (Southern Biotechnology Associates, Birmingham, AL). Abs to CD4 (GK1.5), CD8α (YTS169.4), CD24 (M1/69), CD62L (Mel-14), Vβ9 (MR10.2), Vα3.2 (RR3.16), and B220 (RA3.6B2) had been purified and conjugated to FITC or biotin using standard procedures or to Cy5 according to the manufacturers instructions (Amer sham Life Sciences, Little Chalfont, U.K.). The samples were analyzed using FACSort or FACScan flow cytometers (Becton Dickinson, Mountain View, CA) and CellQuest software. Fluorescence is displayed on a log10 scale.

T cell activation

Spleen or lymph node cells were stimulated in vitro at 10^6 cells/well in 96-well plates complete RPMI 1640 medium (supplemented with 1 mM t-glutamine, 50 μM 2-ME, 1 mM sodium pyruvate, penicillin-streptomycin, and 10% heat-inactivated FCS) in the presence of 2.5% of supernatant from the X63Ag8 cells transfected to produce IL-2. The plates (nontissue culture grade) had been precoated with KT3 (anti-CD3ε) Abs at 10 μg/ml. Supernatants were harvested at different times and analyzed as described below. For activation of NK cells in vivo (19), mice were injected i.v. with a single dose of 1.5 μg of anti-CD3ε Ab (2C11) in HBSS or only HBSS. After 90 min, mice were sacrificed, spleens were removed, and single-cell suspensions were prepared. A total of 5 x 10^6 spleen cells/ml well of 24-well plates were cultured in complete RPMI 1640 medium for 90 min without further stimulation before supernatants were harvested and analyzed for IL-4 and IFN-γ.

Detection of secreted cytokines by ELISA

Supernatants were collected as indicated and frozen at −70°C until the day of the assay. Briefly, ELISA plates were coated with 11B11 (anti-IL-4) or R4-6A2 (anti-IFN-γ) Abs, incubated with several dilutions of each supernatant or recombinant cytokine standards (ImmuNoKontact, Bioggio, Switzerland), followed by biotinylated AN18 (anti-IFN-γ) or BVd6 (anti-IL-4, ImmuNoKontact) Abs and streptavidin-alkaline phosphatase (Sigma, St. Louis, MO) and revealed with the enzyme substrate.

Serum Ig isotypes

Standard sandwich ELISA were used to determine serum levels of Igs. For the detection of total IgG, plates were coated with goat anti-mouse IgG (Southern Biotechnology Associates), incubated with dilutions of serum, and revealed with a HRP-conjugated rabbit anti-mouse Ig antigens (Dako, Glostrup, Denmark). IgG2a was assayed using monoclonal anti-IgG2a reagents from Serotec (Oxford, U.K.) and an IgE standard from PharMingen. IgG1 and IgG2a were analyzed using the mouse monoclonal isotyping reagents ISO-2 (Sigma).

Results

Mice expressing a transgenic CD1d-reactive Vβ9/Vα3.2+ TCR

For the construction of mice carrying a transgenic CD1d-reactive TCR, we selected a well-characterized CD4+ T cell hybridoma, VIII24 (7), as donor of rearranged TCR genes. VIII24 belongs to a set of CD1d-reactive hybridomas generated from CD4+ T cells from MHC class II-deficient mice, which were shown to respond to CD1d in the absence of added Ags (7). The Reactivity of VIII24 was dependent on the expression by the APC of β2-microglobulin (β2m), but not the TAP molecule (7), consistent with the requirements for CD1d expression (32–34). Stimulation could be inhibited by Abs to CD1d, or to either of the TCR V-segments, Vα3.2 or Vβ9 (S. Cardell, unpublished data). Rearranged genomic variable region fragments from the VIII24 hybridoma were cloned into expression cassette vectors containing natural promoter and enhancer regions (30). Separate lines were established for the transgenic TCR α-chain and the TCR β-chain constructs, respectively, and the two were crossed to obtain transgenic mice expressing the full CD1d-reactive TCRαβ (Fig. 1). The two single transgenic lines are referred to as 24α and 24β, and the double transgenic mice as 24αβ.

Transgene-expressing T cells were visualized by flow cytometry with Abs to TCR Vβ9 and Vα3.2. Either transgenic TCR chain expressed alone resulted in an increased proportion of CD8- vs CD4+ T cells in the spleen (Fig. 1a). In contrast, in 24αβ mice the CD8- population was severely reduced, and there was a decrease in the frequencies of splenic CD4+ cells. Among CD8- cells, <10% expressed both transgenes at high levels (Fig. 1b), while total TCRαβ levels were homogenous (Fig. 1c), indicating a pronounced expression of endogenous both TCR α- and β-chains. Also in the CD4+ population, there was a marked expression of endogenous TCR α- and β-chains (Fig. 1b). Cells expressing both TCR transgenes were primarily found in a population of CD4/CD8 double negative (DN) T cells, with no signs within this subset of endogenous TCR chains on the surface (Fig. 1b), and demonstrated by costaining for CD3 and transgenic TCR chains, data not shown). The TCR levels were slightly reduced on both CD4+ and

FIGURE 1. Expression of transgenic TCR chains. Spleen cells from single and double transgenic mice, and negative littermate mice, were stained for CD4 and CD8 (a). In b, 24αβ and WT spleen cells had been depleted of Ig-positive cells by panning before staining for CD4, CD8, Vα3.2, and Vβ9. CD4-, CD8-, and DN cells were gated as shown in the left panels and were displayed for expression of Vα3.2 and Vβ9 as indicated. Numbers refer to percentages of cells within the gates. c. Histogram overlays show TCRαβ levels on the indicated populations gated as in b for cells from WT (thick line) and 24αβ-transgenic (thin line) mice. In the last panel, WT NKT cells (TCRαβiso-2 NK1.1+) had been gated essentially as in Fig. 2 below.
CD8⁺ 24αβ T cells compared with cells from single transgenic and transgene-negative littermate mice, suggesting an influence of low levels of the transgenic CD1d-reactive TCR also on these cells. The TCR levels on the DN population were even lower and similar to those of NKT cells from wild-type (WT) mice (Fig. 1c).

Transgene-expressing T cells exhibited a surface phenotype of NKT cells

In 24αβ mice, the NK1.1⁺ TCRαβ⁺ population increased 5- to 10-fold compared with WT or B6 mice (Fig. 2a), both in frequencies and absolute numbers. NKT cells made up 12.6% (±3.1, n = 7) of total spleen cells and 35.6% (±12.5, n = 5) of the TCRαβ⁺ population. In B6 or WT mice, 1.9% (±0.5) of splenocytes were NK1.1⁺ TCRαβ⁺. In mice expressing only one of the transgenic TCR chains, the frequency of NK1.1⁺ TCRαβ⁺ cells was similar or slightly lower than in control mice. In 24αβ mice, the majority of transgene-expressing cells (Vα3.2⁺ Vβ9⁺ cells in gate R2 in the first upper panel of Fig. 2b) were DN, although a substantial population, somewhat variable between mice, expressed graded levels of CD4 (Fig. 2b). A heterogeneous CD4 expression was seen also on NK1.1⁺ T cells from WT mice. This can be directly compared between WT and 24αβ CD4⁺ cells in Fig. 1 and the TCRαβ⁺ NK1.1⁺ population displayed in Fig. 2b (in Fig. 2b an additional gate has been added for CD4⁺ cells, while the upper gate is the same as that in Fig. 1). The majority of transgene-expressing cells (R2 gate) were CD4⁺CD8⁻CD62L⁺, and positive for the NK1.1 marker and CD122 (IL-2R β-chain) (Fig. 2b), a surface phenotype similar to that of NKT cells of normal mice (gate R3 in the lower panel), although they expressed only low levels of CD69 while NKT cells of B6 mice were positive (not shown). Thus, 24α⁺ β⁺ T cells present in the periphery of the 24αβ-transgenic mice possess a surface marker phenotype very similar to NKT cells from normal B6 mice.

Functional characteristics of transgenic T cells

NKT cells have been shown to display a particular profile of cytokines when stimulated in vitro (12, 18, 35) and further to rapidly secrete high amounts of cytokines upon in vivo induction (19). To analyze the potential of transgenic T cells to produce cytokines, lymph node or spleen cells were polyclonally stimulated in vitro. T cells in the 24αβ-transgenic mice responded well to TCR ligation in vitro by proliferation (not shown) and secretion of large amounts of IL-4 and IFN-γ (a 15- and 2-fold increase, respectively, compared with WT, Fig. 3a), while single transgenic controls were similar to WT.

To investigate the typical NKT cell function in vivo (19), 24αβ and control (single transgenic and B6) mice were injected with anti-CD3 Ab. Ninety minutes after anti-CD3 injection, spleen cells were prepared and cultured in medium for 90 min in vitro before supernatants were harvested and analyzed for IL-4 and IFN-γ. Each circle and box represents the value from one mouse.

Transgene-expressing cells in the thymus

Thymi of 24αβ mice contained 5–10% the number of cells compared with WT, 24α thymi contained around 20%, and 24β thymi were similar to WT (not shown). The CD4/CD8 double positive (DP) population was greatly reduced in 24αβ thymi but the CD4/CD8 DN subset enlarged (Fig. 5), generally also in absolute numbers (up to 2.5-fold). A population of DN thymocytes (Fig. 5)
expressing the transgenic TCR α-chain, but lacking the NKT phenotype (not shown), was present in 24α mice. DN T cell populations have been found in some other TCR-transgenic systems and have been proposed to contain cells of the γδ lineage (37, 38). Twenty-five to 50% of the TCR1 cells in 24α thymi were NK1.1 (Fig. 5), corresponding to an ∼2.5-fold increase in numbers compared with WT, while either of the two transgenic chains alone rather decreased the number of NK1.1 TCR1 thymocytes. The great majority of cells in the 24α DN population, 65–75%, expressed both TCR transgenes (Fig. 6a), with very few cells expressing endogenous TCR on the surface as determined by costaining for CD3 expression and transgenic TCR chains (not shown). In the 24α DP population, low levels of the transgenic TCR could be detected on some of the cells. There was a prominent expression of endogenous TCR α- and β-chains in the thymic CD4+ and CD8+ single positive (SP) subsets, just like in the peripheral SP subsets.

Among 24α DN thymocytes, most TCRαβ+ cells were CD122+, and around 40% of the DN TCRαβ+ population was CD24- (heat shock Ag) (Fig. 6b). NK1.1 expression was found on a subset of TCRαβ1 DN thymocytes, mostly within the CD24- fraction (Fig. 6c), and their level of TCRαβ was slightly lower than that of the major DN TCRαβ+ population (Fig. 6b). CD122-
Like in adult mice, thymi of 1-wk-old 24ab cells Early appearance of the NKT phenotype on TCR-transgenic transgenic TCR chains and NK1.1 on splenocytes from 1-wk-old mice. Numbers refer to percentages of cells within the gates and quadrants. In the periphery at 1 wk of age, 6% of splenocytes expressed b 7. In the absence of expression of TCR a, b1 expressing cells were very rare, and NK1.1 1 cells were dependent on the CD1d ligand, 24ab mice were crossed with mice lacking CD1d (CD1d° mice) (31). In the absence of CD1d, TCRαβ+ T cells expressing the NK1.1 marker were typically absent both in the thymus and spleen (Fig. 8a). Transgene-positive T cells were present in CD1d° mice (Fig. 8b), but they had a phenotype very different from that of transgenic T cells on the control CD1d+° background, as well as higher TCR levels (note the position of the population within the gates of the first dotplots in Fig. 8b). The 24αβCD1d° cells were preferentially DN, resembling the DN population in 24αααα-transgenic mice (37, 38), or CD8°, negative for the CD122 and NK1.1 markers, and had a naive phenotype (CD62Llow, CD44high, Fig. 8b). Thus, 24αβ-transgenic T cells with the typical NKT phenotype appeared in the thymus and periphery only in the presence of the CD1d ligand.

Discussion

In 24αβ mice expressing a transgenic CD1d-reactive TCR using Vα3.2 and Vβ9, the majority of peripheral 24αβ T cells, and a high proportion of 24αβ T thymocytes, expressed the NK1.1 marker. Peripheral 24αβ T cells shared characteristic features with NKT cells, including a phenotype of previous activation (CD44high, CD62Llow), expression of CD122/IL-2R, intermediate levels of the TCR, and synthesis of high amounts of cytokines, IL-4 and IFN-γ, upon activation (12, 18, 35). The appearance of 24αβ T cells of the typical NKT phenotype required the presence of CD1d and the expression of both chains of the CD1d-reactive TCR. Further, in contrast to what was reported for mice transgenic for the Vα14-type NKT TCR chain (36), 24αβ NKT cells did not respond to activation in vivo with rapid production of high amounts of cytokines, and serum IgE levels in 24αβ mice were close to normal despite the capacity of 24αβ NKT cells to produce IL-4 upon activation in vitro. The latter may be due to the high production of IFN-γ by the same population, as IL-4 and IFN-γ have diverse effects on Ig isotype switch in B cells (39). Alternatively, recognition of different CD1i-associated ligands, presented on different APC or in distinct locations, by the 24αβ- and Vα14-type TCR, may result in dissimilar behavior of the cells in...
vivo. Regardless of some functional discrepancy, our results demonstrate that CD1d-reactive T cells with diverse TCR (TCR^{div}) may be contained within the NK1.1⁺ TCR^{αβ} population and potentially share at least some immune functions with CD1d-reactive TCR^{V_{α14}} T cells.

Although α-galactosylceramide has been shown to be a common ligand for TCR^{Vα14} cells (2), the broad TCR repertoire of TCR^{div} CD1d-reactive T cells may reflect a potential to recognize a variety of ligands presented on CD1d. In line with this, recent reports have described ligand-specific reactivity to several distinct GPI molecules by NKT cells (3) and reactivity to cellular phospholipids (40), demonstrating the existence of a diversity of ligands recognized by CD1-restricted T cells. The 24αβ TCR recognizes a putative unknown CD1-bound ligand not requiring endosomal loading (41) and distinct from the ceramide-based ligands activating the Vα14₁-type T cells (2, 40, 42, 56).

The major 24αβ⁺ TCR-positive T cell population in the thymus and periphery of transgenic mice was DN, and a minor subset (5–10%) of WT, and the DP population was severely reduced. In fact, it has been demonstrated both that the CD4 molecule can be up-regulated on DN (36, 46), further effecting the TCR specificity. In fact, it has been demonstrated that IL-4 production upon stimulation was found preferentially on DN, but not CD4⁺ T cells. Although CD4⁺ and DN NKT populations may harbor shared TCR specificities, there may be important differences between the two cell types. In normal mice, we have demonstrated that, but not CD4⁺, NKT cells of spleen and liver express inhibitory NK markers of the Ly-49 type, and it has been reported that IL-4 production upon stimulation was found preferentially in the CD4⁺ subset (Ref. 12 and M. Sköld and S. Cardell, manuscript in preparation).

Current views hold that NKT cells can develop both in the thymus (12) and extrathymically (45). The majority of thymocytes expressing the transgenic TCR were found in the DN subset, and a substantial fraction of these cells were immature (CD24⁺), suggesting that the thymus was a site of maturation for 24αβ transgenic T cells. In 24αβ mice, the size of the transgenic thymus was 5–10% of WT, and the DP population was severely reduced. In TCR^{Vα14}-transgenic mice, a reduction in thymocyte numbers was also seen (36, 46). The number of thymocytes was reconstituted in the absence of the ligand CD1d, compatible with a deletion of cells during thymic selection due to CD1d autoreactivity of the transgenic TCR (47). The finding that 24αβ⁺ CD8⁺ cells were extremely rare suggests a deletion of 24αβ⁺ cells expressing a CD8 coreceptor increasing the avidity of interaction with CD1d, as proposed for NKT cells (34). But, the low number of DP cells may also be the result of killing of CD1d⁺ DP cells by mature CD1d-reactive 24αβ⁺ thymocytes (48).

The majority of TCRα⁺ β[−] DN thymocytes expressed CD122. This marker is induced on conventional MHC class I-restricted TCRαβ⁺ cells during thymic selection by high-affinity TCR- ligand interaction (49). CD122 expression on 24αβ⁺ thymocytes was thus not surprising considering the apparent autoreactive nature of the 24αβ TCR (7) and suggests that the majority of DN TCR^{αβ} thymocytes had undergone TCR selection events. Also, the NK1.1⁺ phenotype appears to correlate with high-affinity TCR-ligand interaction (50, 51). Not all of the DN CD122⁺ cells expressed the NK1.1 marker. Part of the NKT phenotype (display of CD122/IL-2Rβ⁺) appears to be a result of the selection process, while expression of the NK1.1 marker itself may result from an independent event taking place at a later time. Findings from various mutant mice suggest a division of NKT development into a first step of CD1d-dependent selection (31, 52, 53), leading to the CD1d⁺ phenotype, and a second, cytokine-dependent step resulting in final maturation of NKT cells characterized by the expression of NK1.1 (54, 55). Further, some of the 24αβ⁺ CD122⁺ NK1.1⁺ cells may have lost expression of the NK1.1 marker during activation (44).

We demonstrate in the 24αβ TCR-transgenic system that a CD1d-reactive TCR of the diverse type can direct development of NKT cells expressing most of the expected functional and surface phenotype characteristics. Thus, the TCR^{div} (represented by the 24αβ NKT cells) and TCR^{Vα14} NKT cells have many similarities: the reactivity to CD1d in the absence of exogenous ligands, the activated cell surface phenotype, and the profile of cytokines secreted upon activation. But there are also important distinctions, such as the recognition of distinct CD1d-bound ligands and, in the case of 24αβ NKT cells, the lack of rapid cytokine secretion in response to TCR stimulation in vivo. This implies that the TCR^{div} NKT cells may have the capacity to perform the same immune regulatory functions as suggested for the TCR^{Vα14} NKT cells, but possibly that they are induced in different situations. Identification of the endogenous ligands activating NKT cells in vivo will shed some light on this issue, as well as further analysis of the precise functions of NKT cell subsets during the immune responses in which their importance has been implied.

Acknowledgments

We thank Diane Mathis and Christophe Benoist for discussions and providing facilities during the construction of the TCR-transgenic mice, and Marianne LeMeur and the transgenic facility at the Institut de Génétique et de Biologie Moléculaire et Cellulaire (Strasbourg, France). We are grateful to Fredrik Ivars for critically reading the manuscript.

References

