Calcitonin Gene-Related Peptide Induces IL-8 Synthesis in Human Corneal Epithelial Cells

Mau T. Tran, Mary H. Ritchie, Robert N. Lausch and John E. Oakes

http://www.jimmunol.org/content/164/8/4307

References
This article cites 41 articles, 21 of which you can access for free at:
http://www.jimmunol.org/content/164/8/4307.full#ref-list-1

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts

The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc.,
1451 Rockville Pike, Suite 650, Rockville, MD 20852
Copyright © 2000 by The American Association of Immunologists All rights reserved.
Print ISSN: 0022-1767 Online ISSN: 1550-6606.
Calcitonin Gene-Related Peptide Induces IL-8 Synthesis in Human Corneal Epithelial Cells

Mau T. Tran, Mary H. Ritchie, Robert N. Lausch, and John E. Oakes

Calcitonin gene-related peptide (CGRP), a neuropeptide with proinflammatory activities, is released from termini of corneal sensory neurons in response to pain stimuli. Because neutrophil infiltration of the clear corneal surface is a hallmark of corneal inflammation in the human eye, we determined whether CGRP can bind to human corneal epithelial cells (HCEC) and induce expression of the neutrophil chemotactic protein IL-8. It was found that HCEC specifically bound CGRP in a saturable manner with a K_d of 2.0×10^{-9} M. Exposure of HCEC to CGRP induced a significant increase in intracellular cAMP levels and enhanced IL-8 synthesis nearly 4-fold. The capacity of CGRP to stimulate cAMP and IL-8 synthesis was abrogated in the presence of the CGRP receptor antagonist CGRP$_{8-37}$. CGRP stimulation had no effect on the half-life of IL-8 mRNA while increasing IL-8 pre-mRNA synthesis >2-fold. In contrast to IL-8, CGRP did not induce monocyte chemotactic protein-1 or RANTES synthesis, nor did the neuropeptide enhance detectable increases in steady state levels of mRNA specific for these two β-chemokines. The results suggest that HCEC possess CGRP receptors capable of initiating a signal transduction cascade that differentially activates expression of the IL-8 gene but not the genes for monocyte chemotactic protein-1 or RANTES. The capacity of CGRP to stimulate IL-8 synthesis in HCEC suggests that sensory neurons are involved in induction of acute inflammation at the eye surface. The Journal of Immunology, 2000, 164: 4307–4312.

The cornea is a specialized transparent epidermal tissue that covers the eye surface. Although corneal clarity can be diminished by inflammatory reactions, inflammation characterized by an infiltration of neutrophils can be generated within diseased or damaged corneal tissues (1–3). The mechanisms by which neutrophils are recruited to the eye surface from blood vessels surrounding the clear cornea surface are not clear. It has been shown that IL-1α can induce corneal epithelia to synthesize neutrophil chemotactic chemokines such as IL-8 (4, 5). Because abundant quantities of IL-1α are stored within epithelial cells (6–8), release of IL-1α from these cells may be an important inducer of chemokine synthesis at the eye surface. However, certain pathogens infecting corneal surfaces initiate inflammatory responses and neutrophil infiltration even though they do not induce release of IL-1α (8). This suggests that there may be other mechanisms for inducing the synthesis of chemokines involved in corneal inflammation.

Pain sensations are transmitted from peripheral tissues to the CNS by sensory neurons. CGRP1 is a 37-aa neuropeptide released from C-type sensory nerve fibers by the same kinds of irritants that initiate sensory impulses (9, 10). In vascularized tissues, CGRP plays a role in inflammatory responses by dilating blood vessels and stimulating leukocyte extravasation (11–13). In addition to regulating vascular function, CGRP can also influence immune responses. For example, CGRP can induce synthesis of several cytokines as well as interact with lymphocytes, Langerhans cells, and macrophages to modulate their immunological functions (14–18). Within the skin epidermis, release of CGRP from sensory nerves can inhibit Ag presentation by Langerhans cells as well as impair contact hypersensitivity by triggering mast cell release of TNF-α (18, 19).

The human cornea is densely innervated with CGRP-containing C-type sensory neurons (20, 21). Because CGRP has known proinflammatory properties, this study was initiated to investigate the possibility that CGRP plays a role in corneal inflammation by specifically binding to epithelial cells and inducing expression of proinflammatory chemokines (22). It was found that HCEC have functional receptors for CGRP and that activation of these receptors by CGRP differentially induces expression of the neutrophil chemotactic chemokine IL-8, but not the monocyte chemotactic chemokine MCP-1 or the lymphocyte chemotactic chemokine RANTES. The role that sensory neurons within the human cornea may play in induction of acute inflammation after injury to the corneal epithelium is discussed.

Materials and Methods

Preparation of HCEC

Human corneas were obtained from the National Disease Research Interchange (Philadelphia, PA). Pure cultures of HCEC were established within 48 h of enucleation as previously described (5, 23). IL-8 levels in cell cultures exposed to adenovirulin, CGRP, or CGRP receptor antagonist (CGRP$_{8-37}$, purity >97%) (Sigma, St. Louis, MO) were quantitated with ELISA kits purchased from R&D Systems (Minneapolis, MN). cAMP was quantitated with a cAMP enzyme immunoassay kit purchased from Stratagene (La Jolla, CA). The significance in chemokine or cAMP levels between unstimulated and stimulated cells was determined by using small sample paired t statistics. $p < 0.05$ was considered significant.

CGRP receptor binding assay

Confluent cultures of HCEC were exposed to 1×10^{-16} M to 1×10^{-9} M 125I-CGRP (Amersham, Arlington Heights, IL) with a specific activity of >2000 Ci/mmol in a final volume of 200 μL for 3 h on ice. A duplicate set of experiments was conducted in which 1 μL unlabeled CGRP was added.
to the binding buffer to determine nonspecific binding. Duplicate unlabeled wells were used to count cell numbers. After incubation with label, the supernatants were removed from the cultures, and the monolayers were washed twice with 200 μl PBS and then lysed using 200 μl 0.6% SDS in 10 nM Tris-EDTA buffer for 10 min. The lysates and supernatants were mixed with a scintillation cocktail and counted in a Beckman LX500CE scintillation counter (Beckman, Fullerton, CA) to determine levels of bound and unbound ligand. Nonspecific binding was found to be <15%. Scatchard analysis of the equilibrium saturation binding data was performed with the GraphPad Prism program (GraphPad, Harvard University, Cambridge, MA).

Analysis of mRNA and pre-mRNA levels by RT-PCR

RT-PCR products were generated from total cellular RNA with a GeneAmp RT-PCR kit (Perkin-Elmer, Norwalk, CT) according to the manufacturer’s instructions. In mRNA stability assays, 10 μg/ml actinomycin D were added to cell cultures 1 h after stimulation with 1 nM CGRP. At selected times post-actinomycin D treatment, total RNA was harvested and specific RNA molecules were amplified by RT-PCR. All RT-PCR amplifications used thermostable 30 s at 95°C, 30 s at 65°C and 2 min at 72°C. PCR products were analyzed on a 1.5% agarose gel stained with 1 μg/ml ethidium bromide and photographed with a Kodak Digital Science SP700 camera (Kodak Scientific Imaging Systems, New Haven, CT). The digitized images of the PCR products were quantitated using Kodak Digital Science Software (Kodak Scientific Imaging Systems, New Haven, CT).

Results

HCEC express receptors for CGRP

The CRLR gene product has been identified as the CGRP-binding component of the CGRP receptor (26). In preliminary experiments, it was found that a RT-PCR product complementary to the mRNA of the human CRLR protein could be amplified from HCEC RNA samples (Fig. 1, Inset A). These results suggest, therefore, that HCEC express a CGRP-binding protein. Equilibrium-binding experiments with 125I-CGRP were then performed to determine whether HCEC specifically bind this neuropeptide. Analysis of the binding data showed that HCEC bound CGRP in a specific and saturable manner (Fig. 1, A). A Scatchard plot revealed ~500 binding sites per cell with a K_s of 2.0 × 10^{-9} M (Fig. 1, inset B). This dissociation constant is consistent with K_s values for CGRP receptors found on other cell types (27–29).

CGRP stimulates IL-8 gene expression

To determine whether CGRP induces IL-8 gene expression in HCEC, a dose-response experiment was performed. HCEC from individual corneal donors were stimulated with 10^{-3}–10 nM CGRP for 3 h. Media were then removed from stimulated cells and assayed for IL-8. As noted in earlier studies (5), unstimulated HCEC produced constitutive levels of IL-8 (Fig. 2A). However, exposure of HCEC to increasing concentrations of CGRP resulted in a dose-dependent increase in IL-8 synthesis resulting in significant IL-8 production in the presence of both 0.01 and 0.1 nM CGRP (p < 0.05). The C-terminal fragment of CGRP (CGRP 8–37) is a specific CGRP receptor antagonist (27–30). When corneal epithelial cell cultures were exposed to CGRP in the presence of 1
mCGRP, the amount of IL-8 secreted was not significantly enhanced ($p > 0.05$) (Fig. 2B). Thus, specific inhibition of the binding of CGRP to HCEC blocked induction of IL-8 synthesis.

In addition to its interaction with CGRP, the CRLR gene product can be modified by receptor-activity-modifying proteins to interact with adrenomedullin, a neuropeptide related to CGRP (26). To determine whether adrenomedullin can also function as a stimulator of IL-8 synthesis, we compared IL-8 synthesis in HCEC stimulated with adrenomedullin with its synthesis in cells stimulated with CGRP. In contrast to CGRP, it was found that adrenomedullin had no effect on IL-8 synthesis (Fig. 3). These results suggest, therefore, that adrenomedullin does not function as a physiological inducer of IL-8 synthesis in HCEC.

CGRP induces cAMP synthesis

CGRP receptors are G-linked proteins that initiate signal transduction by activating adenyl cyclase to catalyze formation of the intracellular second messenger cAMP (10). To test the hypothesis that increased IL-8 production in CGRP-stimulated cells is accompanied by increased intracellular cAMP levels, cell lysates were harvested at selected times after CGRP stimulation, and intracellular concentrations of cAMP were determined by an enzyme immunoassay. CGRP stimulation nearly doubled the concentration of intracellular cAMP (Fig. 4). This increase in cAMP levels was highly significant ($p < 0.05$). The dependence of cAMP formation on activation of the CGRP receptor was confirmed by demonstrating that CGRP did not stimulate cAMP synthesis in the presence of the receptor antagonist mCGRP$_{8–37}$ (Fig. 3). These results suggest, therefore, that CGRP receptors expressed on HCEC stimulate cAMP synthesis.

CGRP stimulates IL-8 gene expression by enhancing IL-8-specific RNA synthesis

IL-8 gene expression in CGRP-stimulated cells could potentially be induced at either the level of IL-8-specific RNA synthesis or at the level of IL-8 mRNA stability (31–34). To determine whether increases in specific RNA synthesis contribute to the enhanced IL-8 production observed in CGRP-stimulated cells, IL-8 pre-mRNA levels were measured by RT-PCR. It was found that CGRP stimulation more than doubled the amounts of IL-8 pre-mRNA expressed as compared with levels expressed in unstimulated cells (Fig. 5). To determine whether IL-8 mRNA stability is increased in CGRP-stimulated cells, 10μg/ml actinomycin D was added to cell cultures 1 h after the addition of CGRP. At selected times post-actinomycin D treatment, the levels of both IL-8 pre-mRNA and mRNA were measured by RT-PCR. After actinomycin D treatment, the half-life of IL-8 mRNA was ~ 1.5 h in both CGRP-stimulated and unstimulated cells (Fig. 6). It was clear that actinomycin D inhibited IL-8 transcription in these experiments.

FIGURE 3. Effect of adrenomedullin (Adm) on IL-8 synthesis in HCEC. Confluent cultures of HCEC were stimulated with either CGRP or adrenomedullin. At 3 h poststimulation, culture medium was harvested and assayed for IL-8. The results represent the mean ± SEM from four independent experiments.

FIGURE 4. Induction of intracellular cAMP levels in CGRP-stimulated cells. Confluent monolayers of HCEC were exposed to medium, CGRP, or CGRP plus 1μM CGRP receptor antagonist mCGRP$_{8–37}$. At selected times postexposure, cell lysates were assayed for cAMP. Results are the mean concentration of cAMP generated from three different donors.

FIGURE 5. Effects of CGRP on steady state levels of intracellular IL-8 pre-mRNA. Confluent monolayers of HCEC were stimulated with either CGRP or medium alone. At selected times poststimulation, total RNA was isolated and IL-8 pre-mRNA molecules were amplified by RT-PCR. The RNA products were then quantitated by scanning the gels on an imager and normalizing with respect to the GAPDH (GAPD) pre-mRNA internal standard. The relative density represents the fold increase in the density of pre-mRNA amplified from stimulated cells over that of pre-mRNA amplified from unstimulated cells. RT-PCR products were not detected in parallel samples that did not contain either RNA or reverse transcriptase. Identical experiments were conducted with two additional donors and gave similar results.
and MCP-1 are not up-regulated in HCEC in response to CGRP. Therefore, that in contrast to the IL-8 gene, the genes for RANTES or MCP-1 transcripts (data not shown). The cells were metabolically active in these experiments because CGRP induced MCP-1 or RANTES production. In addition, CGRP stimulation HCEC to CGRP did not stimulate significant increases in either MCP-1 or RANTES (Fig. 7). It was found that exposure of HCEC to CGRP had no effect on the half-life of IL-8 mRNA while increasing levels of nuclear IL-8 pre-RNA by >2-fold. These results would be expected if CGRP up-regulated the IL-8 gene by enhancing its transcription. It was also found that CGRP readily enhanced intracellular cAMP levels in stimulated cells. The transcriptional factor AP-2 has been reported to mediate signal transduction in response to cAMP (35). Because the IL-8 promoter possesses an AP-2-binding site, this factor could be involved in linking CGRP receptors to IL-8 gene expression (36).

The IL-8 promoter also possesses a consensus binding site for the transcriptional factor AP-1 (36). In some cells, AP-1 is activated by stimulation of G-linked cell surface receptors through a mitogen-activated protein kinase cascade (37). Thus, it is possible that CGRP receptors to activate IL-8 gene expression may be that these receptors need to be occupied for the neuropeptide to produce significant biological responses. This finding is not unique to CGRP receptors given that it has been reported that the peptide hormone insulin can also produce maximal responses in its target tissues when only a fraction of cell surface receptors are occupied (38, 39). A contributing factor in the capacity of small numbers of CGRP receptors to activate IL-8 gene expression may be that these receptors are linked to the IL-8 gene promoter through more than one signal transduction pathway, providing opportunities to dramatically amplify signals initiated by receptor occupancy (35, 37).

It was interesting that exposure of HCEC to CGRP did not enhance either MCP-1 or RANTES synthesis because it was found in earlier experiments that potent chemokine inducers such as IL-1α because IL-8-specific pre-mRNA synthesis was undetectable 1 h after actinomycin D treatment. These two experiments suggest, therefore, that CGRP stimulation increases levels of nuclear IL-8 pre-mRNA without significantly enhancing the stability of IL-8 mRNA.

CGRP does not stimulate MCP-1 or RANTES gene expression

Even though potent chemokine inducers such as IL-1α and TNF-α stimulate IL-8 synthesis in HCEC, they do not enhance synthesis of chemokines such as MCP-1 or RANTES (25). Therefore, we were curious to know whether CGRP-stimulated HCEC produce a similar pattern of chemokine expression. To test this possibility, medium was removed from CGRP-stimulated cultures and assayed for MCP-1 and RANTES (Fig. 7). It was found that exposure of HCEC to CGRP did not stimulate significant increases in either MCP-1 or RANTES production. In addition, CGRP stimulation did not result in detectable increases in steady state levels of either RANTES or MCP-1 transcripts (data not shown). The cells were metabolically active in these experiments because CGRP induced the synthesis of significant levels of IL-8. These results suggest, therefore, that in contrast to the IL-8 gene, the genes for RANTES and MCP-1 are not up-regulated in HCEC in response to CGRP.

Discussion

Even though the CRLR gene product has been identified as the CGRP receptor (26), little is known about the precise signal transduction pathways initiated by this protein. However, it is likely that the receptor stimulates IL-8 synthesis in HCEC by enhancing transcription of the IL-8 gene. This conclusion is supported by the fact that exposure of HCEC to CGRP had no effect on the half-life of IL-8 mRNA while increasing levels of nuclear IL-8 pre-RNA by >2-fold. These results would be expected if CGRP up-regulated the IL-8 gene by enhancing its transcription. It was also found that CGRP readily enhanced intracellular cAMP levels in stimulated cells. The transcriptional factor AP-2 has been reported to mediate signal transduction in response to cAMP (35). Because the IL-8 promoter possesses an AP-2-binding site, this factor could be involved in linking CGRP receptors to IL-8 gene expression (36). The IL-8 promoter also possesses a consensus binding site for the transcriptional factor AP-1 (36). In some cells, AP-1 is activated by stimulation of G-linked cell surface receptors through a mitogen-activated protein kinase cascade (37). Thus, it is possible that IL-8 gene expression was activated in CGRP-treated cells through the capacity of CGRP receptors to initiate a G-linked biochemical cascade that resulted in AP-1 activation.

In our study, it was found that the concentration of CGRP responsible for stimulating maximum levels of IL-8 synthesis was ~20-fold less than the Kᵯ of its receptor. A similar situation has been found in lymphocytes where CGRP concentrations involved in stimulating these cells is also significantly less than the Kᵯ (16). These results suggest that only a fraction of the cell surface CGRP receptors need to be occupied for the neuropeptide to produce significant biological responses. This finding is not unique to CGRP receptors given that it has been reported that the peptide hormone insulin can also produce maximal responses in its target tissues when only a fraction of cell surface receptors are occupied (38, 39). A contributing factor in the capacity of small numbers of CGRP receptors to activate IL-8 gene expression may be that these receptors are linked to the IL-8 gene promoter through more than one signal transduction pathway, providing opportunities to dramatically amplify signals initiated by receptor occupancy (35, 37).

![Figure 6](http://www.jimmunol.org/)

FIGURE 6. Stability of IL-8 mRNA in corneal epithelial cells after stimulation with CGRP. Confluent monolayers of HCEC were stimulated with either CGRP or with fresh medium. One hour poststimulation, 10 µg/ml actinomycin D were added to the cultures. At selected times after actinomycin D treatment, intracellular IL-8 pre-mRNA and mRNA molecules were amplified by RT-PCR. The levels of IL-8-specific mRNA were then quantitated by scanning gels on an imager and normalizing with respect to the GAPDH (GAPD) internal standard. The relative densities were then plotted against time. Arrows, Times post-actinomycin D treatment in which approximately one-half of the mRNA was degraded. A, Unstimulated cells; B, CGRP-stimulated cells. Insets, Agarose gels containing the IL-8 mRNA and pre-mRNA RT-PCR products. Identical experiments were done with two additional donors and gave similar results.

![Figure 7](http://www.jimmunol.org/)

FIGURE 7. Effects of CGRP on production of MCP-1 and RANTES. HCEC were stimulated with CGRP. At selected times poststimulation, culture media were assayed for IL-8, MCP-1, and RANTES by ELISA. Results represent the mean ± SEM from three different donors.

![Image](http://www.jimmunol.org/)

FIGURE 7. Effects of CGRP on production of MCP-1 and RANTES. HCEC were stimulated with CGRP. At selected times poststimulation, culture media were assayed for IL-8, MCP-1, and RANTES by ELISA. Results represent the mean ± SEM from three different donors.
and TNF-α also failed to stimulate production of these two chemokines (25). The assemblage of transcriptional factor consensus binding elements within the IL-8 promoter is considerably different from those found within promoters of the MCP-1 and RANTES genes (33, 40, 41). Therefore, we can speculate that these two chemokine genes are unresponsive to stimulation in these experiments either because one or more of the specific transcriptional factors needed to induce MCP-1 and RANTES genes are missing in HCEC or because transcriptional factors needed to up-regulate the two genes are not activated by the same stimuli responsible for IL-8 gene activation.

Recruitment of neutrophils to the eye surface is an important host defense mechanism against infectious agents that impinge on the corneal epithelium (3). IL-8 plays a crucial role in this process because it is the major chemotactic protein made by corneal epithelial cells (4, 5). Previous studies have identified IL-1α and TNF-α as major inducers of IL-8 synthesis in inflamed corneal tissues (4, 7). Data in this report suggest that release of CGRP from sensory neurons represents a third mechanism for induction of IL-8 synthesis at the eye surface. An explanation for this finding may be that HCEC have evolved the capacity to express active sensory neurons represents a third mechanism for induction of IL-8 gene expression.

In summary, the accumulation of neutrophils within the cornea can alter the structure of this sensitive tissue, leading to vision loss. IL-8 plays an important role in inducing neutrophil infiltration onto the eye surface because it is the major chemotactic protein made by corneal epithelium. In this study, CGRP receptors were found on HCEC with the capacity to stimulate IL-8 synthesis. These findings represent a novel mechanism for stimulating IL-8 gene expression within this ocular tissue. Future studies need to be directed at the identification of signal transduction pathways by which CGRP activates IL-8 gene expression and to determine whether antagonists of CGRP can be used as therapeutic agents to dampen corneal inflammatory responses.

Acknowledgments

We thank Dr. David R. Poyner and Dr. Jonathan Scammel for their many helpful discussions and Patricia Couling for the careful preparation of the manuscript.

References

8. Tran, M. T., D. A. Dean, R. N. Lausch, and J. E. Oakes. 1998. Membranes of herpes simplex virus type-1-infected human corneal epithelial cells are not permeabilized to macromolecules and therefore do not release IL-1α. Virology 244:71-79.

