Granulocyte-Macrophage Colony-Stimulating Factor in the Innate Immune Response to Pneumocystis carinii Pneumonia in Mice

Robert Paine III, Angela M. Preston, Steven Wilcoxen, Hong Jin, Brian B. Siu, Susan B. Morris, Jacquelyn A. Reed, Gary Ross, Jeffrey A. Whitsett and James M. Beck

J Immunol 2000; 164:2602-2609; doi: 10.4049/jimmunol.164.5.2602

http://www.jimmunol.org/content/164/5/2602

Why The JI?

• Rapid Reviews! 30 days* from submission to initial decision
• No Triage! Every submission reviewed by practicing scientists
• Speedy Publication! 4 weeks from acceptance to publication

*average

References

This article cites 52 articles, 15 of which you can access for free at:
http://www.jimmunol.org/content/164/5/2602.full#ref-list-1

Subscription

Information about subscribing to The Journal of Immunology is online at:
http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Granulocyte-Macrophage Colony-Stimulating Factor in the Innate Immune Response to Pneumocystis carinii Pneumonia in Mice

Robert Paine III,*‡ Angela M. Preston,* Steven Wilcoxen,* Hong Jin,* Brian B. Siu,* Susan B. Morris,* Jacquelyn A. Reed,‡ Gary Ross,‡ Jeffrey A. Whitsett,‡ and James M. Beck*†

Innate immunity plays an important role in pulmonary host defense against Pneumocystis carinii, an important pathogen in individuals with impaired cell-mediated immunity. We investigated the role of GM-CSF in host defense in a model of P. carinii pneumonia induced by intratracheal inoculation of CD4-depleted mice. Lung GM-CSF levels increased progressively during the infection and were significantly greater than those in uninfected controls 3, 4, and 5 wk after inoculation. When GM-CSF gene-targeted mice (GM−/−) depleted of CD4+ cells were inoculated with P. carinii, the intensities of infection and inflammation were increased significantly compared with those in CD4-depleted wild-type mice. In contrast, transgenic expression of GM-CSF directed solely in the lungs of GM−/− mice (using the surfactant protein C promoter) dramatically decreased the intensity of infection and inflammation 4 wk after inoculation. The concentrations of surfactant proteins A and D were greater in both uninfected and infected GM−/− mice compared with those in wild-type controls, suggesting that this component of the innate response was preserved in the GM−/− mice. However, alveolar macrophages (AM) from GM−/− mice demonstrated impaired phagocytosis of purified murine P. carinii organisms in vitro compared with AM from wild-type mice. Similarly, AM production of TNF-α in response to P. carinii in vitro was totally absent in AM from GM−/− mice, while GM-CSF-replete mice produced abundant TNF in this setting. Thus, GM-CSF plays a critical role in the inflammatory response to P. carinii in the setting of impaired cell-mediated immunity through effects on AM activation. The Journal of Immunology, 2000, 164: 2602–2609.

Pneumonia caused by Pneumocystis carinii remains an important cause of morbidity and mortality in patients infected with HIV and in other immunocompromised individuals. Despite the aggressive use of prophylactic antibiotics, individuals with AIDS often come to medical attention heavily infected with this organism. Extensive information from patients (1–3) and animal models (4, 5) has made it clear that abnormalities in cell-mediated immunity, especially diminished numbers of CD4+ T cells, are major factors increasing susceptibility to P. carinii pneumonia. However, it is also evident that innate immunity plays an important role in the host response to this infection. Alveolar macrophages (AM) bind and internalize P. carinii organisms (6, 7). AM also release inflammatory mediators in response to P. carinii, including TNF (8, 9), IL-8 (10, 11), and arachidonic acid metabolites (12). In a rat model of P. carinii pneumonia, depletion of AM results in impaired early clearance of organisms (6, 13), further supporting the importance of inflammatory cells and innate immunity within the alveolar space for defense against P. carinii.

A likely candidate molecule to modulate this innate immune response is GM-CSF, a cytokine expressed by a variety of pulmonary cells, including activated T cells, macrophages, fibroblasts, and epithelial cells (14). GM-CSF has potent effects on mononuclear cells. Specifically, GM-CSF is mitogenic (15, 16) and chemotactic (17) for alveolar macrophages and inhibits macrophage apoptosis (15). In addition to this ability to influence the number of macrophages at a site in the lung, GM-CSF activates macrophages for enhanced activity against bacterial and fungal pathogens (18–20). In the context of HIV infection, in vitro treatment of inflammatory cells with GM-CSF corrects the defect in Fc receptor-mediated phagocytosis by monocyte-derived macrophages (21) and restores the respiratory burst in response to P. carinii in neutrophils (22). Furthermore, GM-CSF is centrally involved in the regulation of levels of surfactant proteins A and D (SP-A and SP-D) in the lung. Both SP-A and SP-D can mediate binding of AM to P. carinii and influence the rate of phagocytosis of the organism (23–26). Taken together, these attributes have suggested that GM-CSF might be of therapeutic benefit for HIV-infected individuals with P. carinii pneumonia, improving pulmonary host defense against this opportunistic pathogen. In fact, systemic administration of recombinant GM-CSF to mice with established P. carinii pneumonia increases clearance of the organism, although the mechanisms remain unclear (27). However, the potential role of endogenous GM-CSF in the lung for host defense against P. carinii has not been investigated.
We hypothesized that GM-CSF would be expressed in the lung in a murine model of \textit{P. carinii} pneumonia, and that endogenous pulmonary GM-CSF would play an important role in controlling the progression of this infection. We determined that pulmonary GM-CSF was induced during \textit{P. carinii} pneumonia in CD4-deficient mice. Transgenic mice lacking GM-CSF (GM$^{-/-}$) developed \textit{P. carinii} pneumonia more rapidly and with more severe inflammation than wild-type control mice. Murine AM harvested from GM$^{-/-}$ mice were less efficient in the phagocytosis of \textit{P. carinii} in vitro and produced far less TNF in response to P. carinii than AM from wild-type controls. When the GM-CSF gene (under control of the surfactant protein C (SP-C) promoter) was reinserted into the lungs of GM$^{-/-}$ mice, the mice were dramatically more resistant to \textit{P. carinii} infection. Expression of GM-CSF in the alveolar space alone restored TNF production by AM exposed to \textit{P. carinii} in vitro. Thus, these studies demonstrate a critical role for pulmo-

gary GM-CSF in the innate defense against \textit{P. carinii} in the lung and demonstrate two important mechanisms by which pulmonary GM-CSF controls host defense in the lung.

Materials and Methods

Animals

Athymic mice (nu/nu on a BALB/c background, used to passage \textit{P. carinii}) and BALB/c mice were obtained from Taconic Laboratories (Germantown, NY). C57BL/6 mice were obtained from The Jackson Laboratory (Bar Harbor, ME). GM$^{-/-}$ mice were generated by Dranoff et al. (28) by tar-
geted interruption of the GM-CSF gene and express no detectable GM-

CSF. These mice have been extensively back-crossed against C57BL/6 mice. SP-C-GM mice, in which GM-CSF is expressed only in the lungs, were generated from GM$^{-/-}$ mice by transgenic expression of a chimeric gene containing GM-CSF under the SP-C promoter (29). All mice were housed in microisolator cages under laminar flow hoods in an isolation room of the animal care facilities at the University of Michigan and the Ann Arbor Veterans Affairs Medical Center. Animals were anesthetized and exsanguinated, and the trachea was cannulated, and the lungs were lavaged with a total of 3 ml of PBS in 0.5-ml aliquots. The lavage aliquots for each animal were pooled, and the cell pellet was collected by centrifugation. Differential cell counts were performed on >200 cells/mouse stained with hematoxylin-eosin as described previously (4).

BAL fluid phospholipid and surfactant protein content

Mice were anesthetized and exsangulinated, and the trachea was cannu-
lated. Following lung lavage, total BAL fluid for each animal was pooled, volume was recorded, and aliquots were prepared for analyses of saturated phosphatidylcholine or proteins. The concentration of saturated phosphati-
dylcholine was determined for each sample as described previously (33). Aliquots containing 1 μg of saturated phosphatidylcholine were subjected to SDS-PAGE in the presence of 2-ME for analysis of SP-A and SP-D. Proteins were separated on 8–16% acrylamide gel with Tris-glycine buffer.

Isolation of \textit{P. carinii} organisms for in vitro study

\textit{P. carinii} organisms were isolated from the lungs of athymic mice using a modification of the method of Kaneshiro et al. (36). Athymic mice infected with \textit{P. carinii} were killed during pentobarbital anesthesia, and the lungs were perfused via the right ventricle with NaCaHEPES buffer (150 mM NaCl, 1.8 mM CaCl$_2$, and 25 mM HEPES, pH 7.4) containing 0.5% glucose and then were removed aseptically. Lungs were homogenized in a Stomacher lab blender (Tekmar, Cincinnati, OH). The lung homogenate was passed through a sterile 60-mesh sieve and centrifuged at 925 × g at 4°C for 10 min. The pellet was resuspended in NaCaHEPES, then centrifuged at 60 × g at 4°C for 10 min, and the supernatant was retained. After two additional cycles of low and high speed centrifugation, the preparation was passed through a 25-mm polycarbonate membrane with 8-µm pores (Poretics, Livermore, CA), followed by filtration through two membranes with 5-µm pores. The filtrate was adjusted to a final concentration of 500 µg of

\textit{P. carinii} organisms were labeled. The lung homogenate was determined using an ELISA kit (R&D Systems, Minneapolis, MN) according to the manufacturer’s recommendations using a Bio-Tek EL311 plate reader (Bio-Tek, Burlington, VT).

Histological determination of intensity of infection and inflammation

At serial time points after \textit{P. carinii} inoculation, mice were euthanized with pentobarbital, and the lungs were perfused via the right ventricle until the effluent was free of blood. The lungs were removed and inflated first with air, then with neutral buffered formalin. Paraffin-embedded tissue blocks were sectioned and stained with hematoxylin-eosin and Momori metha-
none silver stains. The extent of \textit{P. carinii} infection and of histologic inflammation was evaluated using scales previously described and vali-
dated (4, 31). Sections were scored by an observer blinded to the identity of the sections. Sections stained with Momori methamine silver stain, with a range from 0 (no alveoli) to + 4 (cysts throughout the alveoli in most regions with foamy extracellular alveolar exudate). Prior studies have demonstrated that grading of intensity of infection correlates strongly with organism counts per-

ferred to nitrocellulose (Schleicher & Schuell, Keene, NH). Immunoblot analysis was conducted with the following dilutions of antisera: SP-A, SP-D, and 1/10,000 dilutions. Immunoreactive bands were detected by chemiluminescence (ECL, Abersham, Arlington Heights, IL). The relative intensity of the signal was measured using the National Institutes of Health Image 1.52 software (Bethesda, MD).

Bronchoalveolar lavage (BAL) and differential cell counting

Mice were euthanized with pentobarbital, and the lungs were perfused via the right ventricle until the effluent was free of blood. The trachea was cannulated, and the lungs were lavaged with a total of 3 ml of PBS in 0.5-ml aliquots. The lavage aliquots for each animal were pooled, and the cell pellet was collected by centrifugation. Differential cell counts were performed on >200 cells/mouse stained with hematoxylin-eosin as described previously (4).

Induction of \textit{P. carinii} pneumonia

Mice were depleted of CD4$^+$ T cells by weekly i.p. injections of rat anti-
mouse mAb GK1.5 (4, 30). This hybridoma was obtained from American Type Culture Collection (Manassas, VA) and harvested as ascites from pristane-primed, uninfected scid mice. The adequacy of in vivo depletion was confirmed by flow cytometry in both BALB/c and C57BL/6 mice (4). Ab injections were continued for the duration of the experiments. Murine \textit{P. carinii} organisms were obtained from the lungs of infected athymic mice in which \textit{P. carinii} was passaged serially as previously described (4). To prepare the inoculum, infected athymic mice were euthanized and exan-

guinated. Lungs were removed aseptically, placed in sterile PBS, and fro-

zen at -20°C for 2 h. Touch preparations, stained with Gram’s stain, were used to exclude lungs with bacterial contamination. Frozen lungs were homogenized mechanically, filtered, and centrifuged at 500 × g for 10 min at 5°C. The pellet was resuspended in PBS, and smears were stained with modified Giemsa stain and Momori methamine silver stain to count or-

organisms. This preparation was used to inoculate experimental mice with organisms (1 × 103 cysts) via the trachea under direct visual-

ization. For each experiment, all recipients were inoculated with aliquots of the same preparation on the same day.
GM-CSF protein expression in the lungs of CD4-depleted mice increased progressively during 2, 3, and 4 wk of infection (Fig. 1). The expression of GM-CSF protein in lung homogenates in immunosuppressed mice became heavily infected 4 wk after inoculation (4, athymic mice. Previous work has shown that these immunosuppressed mice are more heavily infected than in the lungs of immunologically intact mice or CD4-carinii mice inoculated intratracheally with P. carinii (10^5 cysts/well) were added to wells. After 48 h incubation at 37°C, the wells were washed three times with PBS, then fixed with formalin for 8 min, and washed extensively. The cells were evaluated by the Mann-Whitney test (two groups) or the Kruskal-Wallis test (more than two groups) (38). Analyses were performed using an ELISA kit (R & D Systems), following the manufacturer’s recommendations. In each instance supernatants from quadruplicate wells were measured. Statistical methods: The experiments were designed to determine whether lung GM-CSF production is a component of innate defense against P. carinii pneumonia. BALB/c mice were depleted of CD4+ T-cells by treatment with a mAb (GK1.5), then were inoculated intratracheally with P. carinii from the lungs of infected athymic mice. Previous work has shown that these immunosuppressed mice become heavily infected 4 wk after inoculation (4, 39). The expression of GM-CSF protein in lung homogenates increased progressively during 2, 3, and 4 wk after inoculation with P. carinii than in the lungs of immunologically intact mice or CD4-depleted, uninfected mice. Thus, despite depletion of CD4+ T cells, lung GM-CSF expression was induced during P. carinii pneumonia.

Increased severity of P. carinii pneumonia in GM−/− mice: Having determined that GM-CSF expression was induced during P. carinii pneumonia, experiments were performed to determine whether this endogenous GM-CSF makes a biologically important contribution to host defense against this opportunistic pathogen.
GM2/2 mice developed more severe pneumonia with \textit{P. carinii} more rapidly than similarly depleted wild-type mice. This severe pneumonia involved both increased numbers of organisms in the lung and more intense inflammatory cell infiltration than in GM-CSF-replete mice.

Surfactant protein accumulation in GM2/2 mice infected with \textit{P. carinii}

In the absence of GM-CSF, surfactant phospholipid and protein accumulate due to impaired surfactant turnover (33). Because SP-A and SP-D bind to \textit{P. carinii} and may influence phagocytosis of these organisms by AM, we examined the concentrations of SP-A and SP-D in BAL fluid from CD4-depleted GM2/2 mice (Fig. 5). In wild-type mice infected with \textit{P. carinii} SP-A was decreased (50% by densitometry), while SP-D was increased (80% by densitometry), compared with that in uninfected controls. Similarly, in GM2/2 mice SP-A was decreased 15%, while SP-D was little changed following infection. Concentrations of SP-A and SP-D were markedly increased in uninfected GM2/2 mice compared with those in uninfected wild-type mice (by 95% and 75%, respectively).

Binding and phagocytosis of \textit{P. carinii} by GM2/2 AM in vitro

A possible mechanism for the increased intensity of \textit{P. carinii} infection in GM2/2 mice compared with wild-type mice is impaired activity of AM from the GM2/2 mice. To determine
whether the binding and phagocytic activity of AM for \(P. \) carinii were impaired in the absence of GM-CSF. AM from uninfected wild-type and \(GM^{-/-} \) mice were exposed in vitro to purified murine \(P. \) carinii labeled with FITC. The percentage of AM containing or closely associated with \(P. \) carinii was increased significantly in wild-type mice compared with that in \(GM^{-/-} \) mice (Fig. 6). Short term exposure of AM to recombinant GM-CSF in vitro enhanced the binding/phagocytosis of \(P. \) carinii by AM from both control and \(GM^{-/-} \) mice. In fact, incubation with a sufficient concentration of recombinant GM-CSF (8 ng/ml) restored the binding/phagocytic capacity of AM from \(GM^{-/-} \) mice to levels comparable to those of AM from wild-type mice.

Resistance to infection with \(P. \) carinii in SP-C-GM mice

To determine whether the increased severity of \(P. \) carinii pneumonia in \(GM^{-/-} \) mice was a consequence of inadequate mononuclear phagocyte maturation in the bone marrow, we examined the severity of infection in SP-C-GM mice. These mice were generated by insertion of the GM-CSF gene under control of the SP-C promoter, against the background of mutant mice deficient in GM-CSF. SP-C-GM mice express GM-CSF at supernormal levels in the lungs, but do not express GM-CSF in other tissues (40). \(GM^{-/-} \) mice and SP-C-GM mice were depleted of CD4\(^+\) cells and inoculated with \(P. \) carinii. The concentration of GM-CSF in BALF from \(P. \) carinii-inoculated SP-C-GM mice was 114.2 \(\pm \) 19.1 pg/ml, while GM-CSF was not detected in BAL fluid (in contrast to lung homogenates) of wild-type mice. The intensity of infection and inflammation were determined after 4 wk. \(GM^{-/-} \) mice were very heavily infected, consistent with previous experiments. In contrast, only rare organisms were present in the lungs of the SP-C-GM mice (Fig. 7A). In fact, organisms could be identified in only 25% of the SP-C-GM mice, but were readily identified in all \(GM^{-/-} \) mice. Similarly, the intensity of inflammation was greatly reduced in the SP-C-GM mice compared with that in the \(GM^{-/-} \) mice (Fig. 7B). Thus, overexpression of GM-CSF in the alveolar space alone, in the absence of GM-CSF at other sites, rendered the mice resistant to \(P. \) carinii.

Decreased TNF release by \(GM^{-/-} \) AM in response to \(P. \) carinii in vitro

Alveolar macrophages from wild-type, \(GM^{-/-} \), and SP-C-GM mice were placed in culture and exposed to purified murine \(P. \) carinii. After 18 h the culture supernatants were harvested, and TNF was measured by ELISA (Table I). AM from \(GM^{-/-} \) mice...
failed to produce detectable TNF in response to *P. carinii*. In contrast, AM from wild-type and SP-C-GM mice produced significant amounts of TNF in vitro following exposure to purified *P. carinii*. Thus, in the absence of GM-CSF, macrophage production of TNF was greatly impaired, while expression of GM-CSF in the alveolar space restored TNF expression in response to *P. carinii*.

Discussion

The current report provides the first information concerning the role of endogenous GM-CSF in host defense against *P. carinii*. GM-CSF protein expression was induced in the lung during *P. carinii* pneumonia. In experimental *P. carinii* pneumonia in CD4-depleted mice, GM-CSF-deficient mice were susceptible to severe *P. carinii* infection, developing more intense infection and increased inflammation compared with wild-type mice. Overexpression of GM-CSF within the lung greatly decreased the susceptibility of GM−/− mice to infection with *P. carinii*. Phagocytic activity of AM from GM−/− mice for purified *P. carinii* in vitro was impaired, but transient exposure of the AM to recombinant GM-CSF in vitro significantly enhanced the activity of AM from both groups of mice for the pathogen. In vitro expression of TNF in response to *P. carinii* organisms was absent in AM from GM−/−, but was restored in AM from deficient mice in which a GM-CSF transgene was expressed only in the lung. Taken together, these findings demonstrate an important role for GM-CSF in host defense against *P. carinii* in the lung and in the activity of alveolar macrophages against *P. carinii*.

We investigated three potential mechanisms by which endogenous GM-CSF might enhance host defense against *P. carinii*. AM bind and internalize *P. carinii* organisms (6, 7) and release TNF (8, 9) and other inflammatory mediators, such as IL-8 (10, 11) and arachidonic acid metabolites (12). In a rat model of *P. carinii* pneumonia, depletion of AM before inoculation with *P. carinii* resulted in impaired early clearance of organisms (6, 13). GM-CSF is a potent activator of AM. We found that AM obtained from GM−/− mice were less effective than AM from control mice in binding and phagocytosis of *P. carinii* in vitro. Interestingly, this effect may be specific for this pathogen; in contrast to the findings with *P. carinii*, macrophage phagocytosis of group B streptococci was not altered in the macrophages from the GM−/− mice compared with that in AM from control mice (20). Furthermore, we found that pulmonary GM-CSF protein expression was increased in *P. carinii*-infected mice, and that the exposure of AM to GM-CSF in vitro resulted in enhanced binding/phagocytic activity against *P. carinii*. These results support the hypothesis that pulmonary infection with *P. carinii* results in increased local expression of GM-CSF, which, in turn, leads to enhanced AM activity against the pathogen.

A second potential mechanism to explain more severe *P. carinii* infection in GM−/− mice is impaired TNF elaboration. AM from GM−/− mice failed to produce detectable TNF in response to *P. carinii* in vitro. TNF is a necessary component of the host response to *P. carinii* (8). When *scid* mice infected with *P. carinii* are reconstituted with normal splenocytes, the infection is cleared (41). However, if the mice receive neutralizing anti-TNF Ab, the infection persists unrestrained. Similarly, in studies in which TNF activity has been blocked by adenovirus-induced overexpression of a TNF inhibitor, *P. carinii* clearance by mice with intact CD4+ cells is delayed, while CD4-depleted mice develop worsening infection (42). Taken together, our in vitro studies indicate that endogenous GM-CSF plays a critical role in promoting both direct AM activity against *P. carinii* and the activity of AM as sentinel cells initiating the inflammatory cascade.

A third potential mechanism by which GM-CSF might influence host responses to *P. carinii* is through effects on the expression of SP-A and SP-D. SP-A and SP-D are members of the collectin family of polypeptides that probably contribute to innate immunity and the regulation of inflammation in the lung (23, 43, 44). Alveolar concentrations of SP-A and SP-D are markedly increased in the lungs of GM−/− mice (33, 45). SP-A and SP-D bind to and enhance opsonization of a variety of pathogens (23). Transgenic mice genetically deficient in these surfactant proteins display increased susceptibility to a number of bacterial species. The data concerning the potential role of SP-A and SP-D in host defense against *P. carinii* are complex. SP-A (26) and SP-D (24, 25) enhance binding of *P. carinii* to AM in vitro. Transgenic mice genetically deficient in SP-A or SP-D are more susceptible to *P. carinii* than wild-type controls, supporting the contention that SP-A plays a protective role in host defense against this pathogen (46). However, it has also been argued that SP-A actually could inhibit phagocytosis of *P. carinii* in the complex milieu in the lung (37). Not unexpectedly, we found that SP-A and SP-D levels were elevated in uninfected GM−/− mice compared with those in wild-type controls. During pulmonary infection with *P. carinii*, the BAL fluid SP-A concentration decreased, while SP-D increased, in both GM−/− mice and wild-type mice. Thus, increased SP-A and SP-D, by themselves, were not sufficient for protection of the GM−/− mice against *P. carinii* infection. However, these data leave open the possibility that excess SP-A could increase susceptibility to infection. Exogenous GM-CSF increased AM phagocytic activity for *P. carinii*, indicating that GM-CSF enhances AM function in a manner independent of SP-A and SP-D.

Although GM-CSF alters AM function, the effects of GM-CSF on the vulnerability of the host to *P. carinii* pneumonia also may be mediated by effects on alveolar epithelial cells. Rat type II epithelial cells express cell surface receptors for GM-CSF and pro- liferate in response to this growth factor (40). Furthermore, overexpression of GM-CSF in the peripheral lung in transgenic mice causes type II epithelial cell hyperplasia (40). Although there are no data available concerning the effects of GM-CSF during lung injury, in the skin, GM-CSF is mitogenic for keratinocytes. Injection of recombinant GM-CSF into the dermal lesions of patients with leprosy induces keratinocyte proliferation and regenerative differentiation (47). Type II alveolar epithelial cells function as stem cells for the alveolar epithelium, proliferating and subsequently differentiating to replace thin type I alveolar cells that are particularly susceptible to injury (48). It is plausible that the effects of GM-CSF on alveolar epithelial cells provide a measure of protection for the epithelium from acute injury.

There are several features of the model system used in these experiments that suggest that the results may be extrapolated to human disease. *P. carinii* organisms derived from different host species are pathogenic specifically for that species (49, 50). The mechanism for this specificity has not yet been defined, but may

Table I. AM from GM−/− mice do not secrete detectable TNF following exposure to *P. carinii* in vitro

<table>
<thead>
<tr>
<th>Group</th>
<th>TNF (pg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild type</td>
<td>1768.1 ± 177.4</td>
</tr>
<tr>
<td>GM−/−</td>
<td>None detected</td>
</tr>
<tr>
<td>SP-C-GM</td>
<td>1993.0 ± 515.7</td>
</tr>
</tbody>
</table>

* AM were isolated by BAL from uninfected wild-type, GM−/−, and SP-C-GM mice. The AM were exposed to purified murine *P. carinii* organisms (5 × 10⁵ cysts/well) for 18 h.

* TNF protein in the culture supernatants was measured by ELISA. The sensitivity of this ELISA is 23.4 pg/ml. Data are expressed as mean ± SEM for quadruplicate wells.
involve adhesive interactions between P. carinii and type I alveolar epithelial cells or details of immune surveillance. Thus, it is an important advantage that murine-derived organisms were used for inoculation of the experimental mice and for in vitro experiments. The use of transgenic technology to address the role of GM-CSF in the response to P. carinii avoids concerns about the adequacy of activity or penetration of neutralizing Abs, although it may under-

estimate the importance of that gene due to the development of redundant pathways. Although GM−/− mice eventually develop pulmonary pathology resembling human alveolar proteinosis (28, 51), this histological picture was not yet evident in mice of the age used in these studies. Finally, the immunosuppression produced by Ab depletion of CD4+ cells more closely resembles the immunological defect in patients with AIDS (the condition most closely associated with P. carinii pneumonia) than does pharmacological manipulation with steroids or cytotoxic agents. Thus, these studies investigated the role of GM-CSF in an immunologically relevant model of human disease.

Because P. carinii pneumonia is not seen in normal hosts with intact immune responses, we chose to conduct these studies in CD4-depleted mice rather than in CD4-replete mice. It is possible that early induction of GM-CSF may contribute to the resistance of immunologically intact mice to P. carinii pneumonia. Overexpression of GM-CSF in the lung alone in the SP-C-GM mice was sufficient to greatly increase resistance to P. carinii infection using our standard inoculum, even in mice depleted of CD4+ cells. However, it is important to note that the absence of GM-CSF alone in otherwise intact mice was not sufficient to render mice susceptible to establishment of P. carinii pneumonia using our standard inoculum of organisms. This observation makes it unlikely that the major contribution of CD4+ cells to resistance to P. carinii is production of GM-CSF.

The beneficial effect of endogenous GM-CSF induced in the lung during P. carinii pneumonia supports the concept that exogenous GM-CSF might be of therapeutic benefit in this infection. Indeed, systemic administration of recombinant GM-CSF to CD4-depleted mice infected with P. carinii leads to reduced infection scores and enhanced alveolar macrophage TNF production (27). However, there are potential difficulties with systemic administration of GM-CSF in individuals with AIDS, including systemic side effects and the possibility of increasing the burden of HIV (52). Thus, local therapy with GM-CSF in the lung, either by aerosol administration or via gene transfer, has considerable appeal as ad-

treatment of P. carinii pneumonia in individuals with AIDS, including systemic side effects and the possibility of increasing the burden of HIV (52). Therefore, these studies investigated the role of GM-CSF in an immunologically relevant model of human disease.

References
3. Phair, J., A. Muñoz, R. Detels, R. Kaslow, C. Rinaldo, A. Saah, and the Multi-

center AIDS Cohort Study Group. 1990. The risk of Pneumocystis carinii pneu-

cystis carinii in mice selectively depleted of helper T lymphocytes. Am. J. Respir.

Cell Mol. Biol. 5:186.

13. Limper, A. H., J. E. Standing, and J. S. Hoyte. 1996. The role of alveolar mac-

rophages in Pneumocystis carinii elimination from the lower respiratory tract. J. Eukaryotic Microbiol. 43:125.

20. Le Vine, A. M., J. A. Reed, K. E. Kurak, E. Gianciolo, and J. A. Whittier. 1995. GM-CSF-deficient mice are susceptible to pulmonary group B streptococcal in-

21. Taylor, M. B., and C. S. Easmon. 1991. The neutrophil chemiluminescence re-

