Schistosome Infection of Transgenic Mice Defines Distinct and Contrasting Pathogenic Roles for IL-4 and IL-13: IL-13 Is a Profibrotic Agent

Padraig G. Fallon, Emma J. Richardson, Grahame J. McKenzie and Andrew N. J. McKenzie

J Immunol 2000; 164:2585-2591;
doi: 10.4049/jimmunol.164.5.2585
http://www.jimmunol.org/content/164/5/2585

References
This article cites 43 articles, 19 of which you can access for free at:
http://www.jimmunol.org/content/164/5/2585.full#ref-list-1

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Schistosome Infection of Transgenic Mice Defines Distinct and Contrasting Pathogenic Roles for IL-4 and IL-13: IL-13 Is a Profibrotic Agent

Padraig G. Fallon, Emma J. Richardson, Grahame J. McKenzie, and Andrew N. J. McKenzie

Experimental Schistosoma mansoni infections of mice lead to a dynamic type 2 cytokine-mediated pathological process. We have used IL-4-deficient, IL-13-deficient, and IL-4/13-deficient mice to dissect the role of these cytokines in the development of immune response and pathology following S. mansoni infection. We demonstrate that while both of these cytokines are necessary to develop a robust Th2 cell-driven, eosinophil-rich granuloma response, they also perform disparate functions that identify novel sites for therapeutic intervention. IL-13-deficient mice demonstrated significantly enhanced survival following infection, which correlated with reduced hepatic fibrosis. In contrast, increased mortality was manifest in IL-4-deficient and IL-4/13-deficient mice, and this correlated with hepatocyte damage and intestinal pathology. Therefore, we demonstrate that during a dynamic type 2 cytokine disease process IL-13 is detrimental to survival following infection, whereas IL-4 is beneficial. The Journal of Immunology, 2000, 164: 2585–2591.
of endotoxemia; implicating IL-4 as a protective cytokine in schistosome infection. The combined removal of both IL-4 and IL-13 demonstrated that the positive effects resulting from the ablation of IL-13 were over-ridden by the detrimental pathology resulting from IL-4 removal. Moreover, combined cytokine deletion resulted in a phenotype that was considerably more severe and deleterious than that observed in the IL-4-deficient line. These data identify the potential benefits of targeting IL-13 removal, but also highlight the dangers of blocking both IL-13 and IL-4 concurrently.

Materials and Methods

Mice and parasitology

The preparation of IL-4 (26), IL-13 (13) and IL-4/13 (14) gene-targeted mice has been described. All animals had been back-crossed on a BALB/c background at least four times. Animals were housed under standard conditions in a specific pathogen free facility. A Puerto Rican strain of *S. mansoni* was used for all experiments. Six- to 8 wk-old female mice were perinatally infected with *S. mansoni* (27). In three separate experiments, mice were acutely infected (exposure to 100 cercariae) for 8 wk. In all acute infections, 6–12 mice were used per group. In separate studies, IL-13−/−, IL-4/13−/−, and homozygous (+/+) litter-mates on a 129 × C57BL/6 (F2) background were chronically infected (exposure to 25 cercariae) for 16 wk. For chronic infections, 14–15 mice were infected per group. Portal perfusion for worm counts, digestion of tissue for egg counts, and fecal egg counts were as described (27, 28).

Pathology studies

The methods used for measurement of pathological parameters have been described (29). In brief, liver or intestinal sections were stained with hematoxylin and eosin for granuloma diameter measurement, tissue collagen, micrograms of collagen per milligram of protein. To determine hepatocyte damage, plasma aspartate aminotransferase levels were assayed (Sigma, Dorset, U.K.). LPS was measured in plasma and blood were recovered. The spleen and mesenteric lymph nodes were removed. Single-cell suspensions were subjected to a chronic (exposure to 25 cercariae) infection (Fig. 1B). All IL-4/13-deficient mice (100% mortality) died by 80% expiration by day 56 (Fig. 1A).

Statistical analysis

Data from individual mice are presented as the mean ± SD or SEM, as indicated. Statistical differences between groups was determined using ANOVA, and post hoc comparisons were done with Dunnett’s test. Differences between survival of mice were analyzed by Kruskal-Wallis test of ranked survival times. Values of *p* < 0.05 were considered significant.

Results

IL-13 deficiency enhances survival, while IL-4 deficiency induces mortality during schistosome infection

Following acute infection with *S. mansoni* (exposure to 100 cercariae), significant mortality was observed in the IL-4−/− and IL-4/13-deficient mice, with >80% expiration by day 56 (Fig. 1A). Death was preceded by progressive weight loss and cachexia (data not shown). In marked contrast, there were considerably fewer mortalities in wild-type animals (13%) and no deaths in the IL-13−/− mice (Fig. 1A). In three separate acute infections, IL-13−/− mice had significantly lower mortalities than wild-type animals (*p* < 0.05). A similar mortality profile was observed when animals were subjected to a chronic (exposure to 25 cercariae) infection (Fig. 1B). All IL-4/13-deficient mice (100% mortality) died by
Hepatic pathology in IL-4-deficient, IL-13-deficient, IL-4/13-deficient, and wild-type mice during Schistosoma mansoni infection. Analysis by ANOVA and Dunnetts tests.

Table I. Parasitological data in *S. mansoni*-infected wild-type, IL-13-deficient, IL-4-deficient, and IL-4/13-deficient mice

<table>
<thead>
<tr>
<th>Group (no. of mice)</th>
<th>Worm Pairs</th>
<th>Fecundity (eggs/worm pair × 10^3)</th>
<th>Liver Eggs (× 10^-3)</th>
<th>Intestine Eggs (× 10^-3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild type (7)</td>
<td>15.1 ± 1.9</td>
<td>3.9 ± 0.4</td>
<td>21.5 ± 1.8</td>
<td>33.8 ± 3.4</td>
</tr>
<tr>
<td>IL-13^-/- (6)</td>
<td>15.4 ± 2.5</td>
<td>4.2 ± 0.5</td>
<td>21.2 ± 0.8</td>
<td>34.9 ± 2.8</td>
</tr>
<tr>
<td>IL-4^-/- (6)</td>
<td>14.9 ± 1.8</td>
<td>4.8 ± 0.4</td>
<td>20.1 ± 0.8</td>
<td>48.5 ± 4.8^b</td>
</tr>
<tr>
<td>IL-4/IL-13^-/- (7)</td>
<td>15.3 ± 1.3</td>
<td>4.7 ± 0.3</td>
<td>21.2 ± 1.1</td>
<td>51.5 ± 6.1^b</td>
</tr>
</tbody>
</table>

^a Data are presented as mean and SEM and are representative of three separate acute infections.

Significantly more eggs (p < 0.05) in the intestines of IL-4- and IL-4/13-deficient mice compared to wild-type and IL-13-deficient mice.

Granuloma formation and eosinophil infiltration are abrogated only in the combined absence of IL-4 and IL-13

During schistosome infection, the liver is the major organ affected, with eggs trapped in the liver parenchyma evoking type 2 cytokine-dependent granulomatous inflammation. This is characterized by the presence of numerous infiltrating eosinophils, but also by the deposition of collagen and a resultant fibrotic lesion. Histological analysis identified that while wild-type, IL-4^-/-, and IL-13^-/- mice had comparable hepatic granuloma formation, there was a striking reduction in granuloma development in the IL-4/13-deficient mice (Fig. 2A and Fig. 3A). Additionally, granulomas from the IL-4/13-deficient animals were virtually devoid of the characteristic eosinophil infiltration present in the granulomas of the other mouse lines (Fig. 3B). Instead, the limited granuloma response from the IL-4/13-deficient animals was comprised of macrophages (data not shown).

Fibrosis is significantly diminished in the absence of IL-13

Because hepatic fibrosis is a major clinical manifestation of schistosomiasis, we examined collagen deposition in the livers of infected mice. Histological analysis and collagen quantification identified that there was negligible hepatic fibrosis in the IL-13-deficient or IL-4/13-deficient mice when compared with wild-type or IL-4-deficient mice (Fig. 2B and Fig. 3C). Although schistosome-infected mice do not develop portal fibrosis to the same extent as schistosome-infected humans (34), it is noteworthy that IL-4/13-deficient mice also displayed reduced periportal fibrosis compared with the collagen deposition in wild-type animals (Fig. 2B).

IL-4 protects against liver damage

To determine whether the alterations in the liver pathology generated in the different mouse strains affected hepatocyte integrity, we measured plasma aspartate aminotransferase levels as an indicator of cell damage. IL-13-deficient mice had similar transaminase levels to wild-type mice (Fig. 3D). In contrast, although IL-4-deficient mice demonstrated normal granulomatous responses, these animals had ~5-fold greater levels of circulating transaminase than wild-type mice. Hepatocyte damage was even more markedly exacerbated in IL-4/13-deficient mice, with transaminase levels 10-fold higher than wild-type mice (Fig. 3D). Elevated plasma transaminase levels and impaired hepatic granuloma responses in schistosome-infected mice have been associated with steatohepatitis and extensive microvesicular steatosis (29, 35).

However, there was no microvesicular damage in IL-4/13-deficient mice surviving longer than wild-type animals. Consequently, deficiency in IL-4 results in increased mortality, suggesting that IL-4, or IL-4-dependent responses, have a protective role in infection.

FIGURE 2. Hepatic pathology in IL-4-deficient, IL-13-deficient, IL-4/13-deficient, and wild-type mice during *S. mansoni* infection. *a,* Haematoxylin-and eosin-stained sections of livers from infected mice showing the granulomatous response surrounding a parasite egg (arrow). Original magnifications, ×100. *b,* Martius Scarlet Blue staining of sections of livers demonstrates the absence of fibrosis (blue staining) in IL-4/13-deficient mice compared with wild-type mice. The large arrow identifies a single egg and the small arrow identifies deposition of collagen around portal tracts. Original magnifications, ×40.
mice, although there were sporadic polymorphonuclear leukocyte infiltrations (primarily neutrophils) and foci of necrosis throughout the hepatic parenchyma (data not shown).

IL-4 but not IL-13 has a distinct role in intestinal function during schistosome infection

Intestinal pathology is a feature of schistosome infections of humans and mice. During *S. mansoni* infection, the intestine is subject to the insult of eggs laid by the adult worms in the mesenteric venules. These eggs must then translocate across the intestinal wall to the gut lumen for excretion in the feces. Examination of the gastrointestinal tracts from the infected mice revealed marked dispersion and inflammation of the ileum, but not the colon, in the IL-4/13-deficient and IL-4-deficient mice (data not shown). In contrast, the intestines of IL-13−/− mice were comparable to wild-type animals. The intestinal inflammation observed in the IL-4/13-deficient and IL-4-deficient mice correlated with dramatically altered cytokine expression, with 10-fold increases in IFN-γ and NO production (Fig. 4, A and C). IL-4-deficient animals produced highly elevated production of IL-4 and NO in response to LPS (Fig. 4, A). Thus, as reported previously, IL-4 represents an important factor in the establishment of intestinal inflammation, and the increase in TNF-α and NO production (Fig. 4, B and C), indicating that IL-13 can also modify this immune response.

In many models of gastrointestinal inflammation, there is an alteration in the normal cytokine repertoire of the intestine (38). To examine the cytokine profile elicited in the intestines of the cytokine-deficient animals, ileum-derived CD4+ lamina propria T cells from infected mice were examined using intracellular cytokine staining. Schistosome-infected wild-type and IL-13−/− mice had 10–15% IL-5-positive CD4+ lamina propria T cells, with <5% of cells producing IFN-γ, indicative of a Th2-like phenotype in the intestines of infected mice (Fig. 4D). In contrast, CD4+ T cells from the lamina propria of both the IL-4−/− and IL-4/13-deficient mice had 3-fold higher frequencies of IFN-γ-producing cells, with no IL-5-positive CD4+ T cells detected (Fig. 4D), typical of a Th1-like response. The absence of Th2 cells in the lamina propria of IL-4−/− and IL-4/13-deficient mice was reflected by the virtual absence of eosinophils in the ileums of these mice (see above).

Systemic responses

To determine how the absence of IL-4, IL-13, or IL-4 and IL-13 together influenced the development of cytokine responses to infection, we isolated splenocytes from infected mice 45 days postinfection (before high mortality in the IL-4/13-deficient population) and assessed cytokine production following restimulation in vitro with soluble schistosome egg Ags. Wild-type animals exhibited a type 2 cytokine response with elevated IL-4, IL-5, IL-10, and IL-13 production and limited expression of IFN-γ (Fig. 5). A similar profile was observed in the analysis of IL-13-deficient mice, with the exception that IL-13 was not detected (Fig. 4). IL-4-deficient mice developed a diminished type 2 cytokine response, with limited IL-5, IL-10, and IL-13 being produced and a marginal (~2-fold) increase in IFN-γ production compared with wild-type animals (Fig. 5). In contrast to the single cytokine-deficient animals, IL-4/13-deficient mice developed a type 1 cytokine dominated response, with a 10-fold increase in the secretion of IFN-γ and negligible production of type 2 cytokines (Fig. 5).

While IL-13-deficient mice had normal IgE and IgG1 isotype responses to infection, IL-4−/− mice exhibited lower levels of IgE and IgG1 and increased IgG2a (data not shown). IL-4/13-deficient mice had undetectable levels of parasite Ag-specific IgE but highly elevated production of IgG2a (data not shown), in keeping with their enhanced expression of IFN-γ. Alterations in the physiological functions of the intestine may represent a pathological consequence of intestinal inflammation. In particular, the integrity of the gut as a barrier may become compromised leading to systemic leakage of intestinal contents and endotoxia. Analysis of LPS in the plasma of the infected mice demonstrated ~20-fold greater levels of LPS in the circulation of IL-4−/− and IL-4/13-deficient mice compared with levels in wild-type and IL-13−/− mice (Fig. 4B). The levels of systemic LPS in the IL-4−/− or IL-4/13-deficient mice are comparable to circulating endotoxin levels in mice suffering from acute endotoxia (36). In support of this conclusion, proliferation responses to cecal bacteria, by splenocytes or mesenteric lymph node cells derived from these mice, were substantially elevated (data not shown). Furthermore, splenocytes from IL-4-deficient and, even more markedly from IL-4/13-deficient mice, produced highly elevated levels of TNF-α and NO in response to LPS (Fig. 4C). Thus, as reported previously, IL-4 represents an important factor in the response to *S. mansoni* infection (37). However, the additional absence of IL-13 exacerbated the intestinal pathology, the associated elevation in systemic LPS leakage, and the increase in TNF-α and NO production (Fig. 4, A and B), indicating that IL-13 can also modify this immune response.

FIGURE 3. Quantification of hepatic pathology in IL-4-deficient, IL-13-deficient, IL-4/13-deficient, and wild-type mice during *S. mansoni* infection. Mice were acutely infected with 100 cercariae and terminated on day 45 after infection. A, Measurement of the volume of the granulomas surrounding individual eggs in the livers of infected mice. B, Enumeration of eosinophils, expressed as a percentage of total cells, within the granulomas. C, Analysis of the increase in hepatic collagen as a result of schistosome infection. D, Measurement of plasma levels of aspartate aminotransferase (AST) as an indicator of hepatocyte damage. All data were presented as group mean and SD. All pathological measurements were performed double-blind. Pathological parameters were measured in three separate acute infections (6 mice per group), with consistent results obtained between experiments.
Discussion

This study demonstrates clear differences in the functions of these closely related cytokines in mediating Th2 cell responses to *S. mansoni* infection. The enhanced survival exhibited by the IL-13-deficient mice indicates that removal of IL-13 function can produce a beneficial effect on the outcome of infection, while the absence of IL-4 is detrimental. The improved prognosis in the IL-13-deficient mice correlated with a reduction in the expression of collagen and a resultant decrease in hepatic fibrosis. These data demonstrate that IL-13 has a unique role in hepatic fibrosis. A profibrotic role for IL-13 has also been shown in mice with targeted pulmonary expression of IL-13 transgenes, with these animals developing subepithelial airway fibrosis (39). More recently, a direct role for IL-13 in hepatic fibrosis during murine schistosomiasis infection has also been demonstrated (25).

IL-4-deficient animals had normal levels of hepatic collagen deposition, whereas the doubly deficient mice exhibited a more profound reduction in collagen levels than the IL-13-deficient animals, indicating an additive effect of IL-13 and IL-4. The lower levels of hepatic collagen in IL-4/13−/− mice relative to IL-13−/− animals may reflect the elevated IFN-γ in double-deficient mice; IFN-γ has been shown to reduce hepatic fibrosis in murine schistosomiasis infection (40). However, it is evident that IL-13 is the primary cytokine responsible for fibrosis. These data clarify the results reported for schistosome infections of STAT6- and IL-4R-deficient animals in which collagen deposition was found to be

FIGURE 4. Intestinal pathology and systemic responses in IL-4-deficient, IL-13-deficient, IL-4/13-deficient, and wild-type mice during *S. mansoni* infection. Mice were acutely infected with 100 cercariae and terminated on day 45 after infection. A, Fecal samples were collected, and the number of eggs excreted (eggs per gram feces) was determined. Data are means and SD from six to eight mice per group. B, The state of endotoxemia was determined by measuring LPS levels in the plasma of infected mice. C, Splenocytes from mice that had been infected for 45 days were stimulated in vitro with LPS (1 μg/ml), and the production of TNF-α and NO was determined. Data are means and SD from triplicate cultures. Similar results were obtained in three separate experiments. D, Analysis of the frequencies (percentage) of CD4+ lamina propria cells that stained for IFN-γ or IL-5. Lamina propria cells from the ileums of two mice were pooled, and values are mean percentages plus SD obtained from three separate experiments.

FIGURE 5. Parasite egg Ag-specific production of IL-4, IL-5, IL-10, IL-13, and IFN-γ by spleen cells from IL-4-deficient, IL-13-deficient, IL-4/13-deficient, and wild-type mice infected with *S. mansoni*. Mice were acutely infected with 100 cercariae and terminated on day 45 after infection. Data are the mean levels and SD of cytokines detected in triplicate cultures. Comparable data were obtained from four separate experiments. ND, Not detected.
The role of type 2 responses is particularly apparent in the intestines of mice that are associated with diminished type 2 cytokine responses (29, 35). In T cell-depleted schistosome infection of wild type, IL-13-deficient, IL-4-deficient, and IL-4/13-deficient mice, there are marked mortalities during schistosome infection. In contrast, IL-4-deficient mice do produce type 2 cytokines during infection (23, 37, 41, 46). Because perportal fibrosis is a major cause of hepatic pathology in human schistosomiasis (42), regulation of IL-13 activity to limit collagen formation and deposition may have therapeutic implications. Furthermore, the evidence described here for IL-13 acting as a fibrogenic agent highlights the importance of assessing its role in other fibrotic pathologies associated with type 2 cytokine responses, in particular asthma.

Table II. Summary of the consequence of S. mansoni infection of wild type, IL-13-deficient, IL-4-deficient, and IL-4/13-deficient mice

<table>
<thead>
<tr>
<th>Liver</th>
<th>Intestine</th>
<th>Systemic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gr*</td>
<td>Eo*</td>
<td>Fibrosis</td>
</tr>
<tr>
<td>Wild type</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>IL-13−/−</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>IL-4−/−</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>IL-4/IL-13−/−</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

* Gr, Granulomatous inflammation.
* Eo, Tissue eosinophilia.

Mortalities are expressed as percentage (ranges) of mice dead by 56 days after an acute infection.

In this study, cytokine-deficient animals have enabled us to decipher the individual effects of IL-4 and IL-13 and to assess the result of combined IL-4/13 disruption on the pathology of infection. This combination allows us to decipher the individual effects of IL-4 and IL-13 and to assess the result of combined IL-4/13 disruption on the pathology of infection.

Acknowledgments

We thank Sarah Bell, David Matthews, Helen Jolin, and Michael Townsend for critical review of the manuscript. Barry Potter is thanked for performing histology. We are grateful to Fiona Culley for assistance with eosinophil peroxidase assays. Tony Fulford’s advice on statistical analysis is appreciated.

References

Reduced (22, 23) and IL-4-deficient animals in which collagen responses were normal (41). Because perportal fibrosis is a major cause of hepatic pathology in human schistosomiasis (42), regulation of IL-13 activity to limit collagen formation and deposition may have therapeutic implications. Furthermore, the evidence described here for IL-13 acting as a fibrogenic agent highlights the importance of assessing its role in other fibrotic pathologies associated with type 2 cytokine responses, in particular asthma.

13. McKenzie, G. J. C. L. Emson, S. E. Bell, S. Anderson, P. Fallon, R. Grencis, and

17. Yokota, T. T. Otsuka, T. Mosmann, J. Banchereau, T. DeFrance, D. Blanchard,

15. de Waal Malefyt, R., C. Figdor, R. Huijbens, S. Mohan-Peterson, B. Bennett,

17. Yokota, T. T. Otsuka, T. Mosmann, J. Banchereau, T. DeFrance, D. Blanchard,

15. de Waal Malefyt, R., C. Figdor, R. Huijbens, S. Mohan-Peterson, B. Bennett,

17. Yokota, T. T. Otsuka, T. Mosmann, J. Banchereau, T. DeFrance, D. Blanchard,

15. de Waal Malefyt, R., C. Figdor, R. Huijbens, S. Mohan-Peterson, B. Bennett,

17. Yokota, T. T. Otsuka, T. Mosmann, J. Banchereau, T. DeFrance, D. Blanchard,

15. de Waal Malefyt, R., C. Figdor, R. Huijbens, S. Mohan-Peterson, B. Bennett,

17. Yokota, T. T. Otsuka, T. Mosmann, J. Banchereau, T. DeFrance, D. Blanchard,

15. de Waal Malefyt, R., C. Figdor, R. Huijbens, S. Mohan-Peterson, B. Bennett,

17. Yokota, T. T. Otsuka, T. Mosmann, J. Banchereau, T. DeFrance, D. Blanchard,

15. de Waal Malefyt, R., C. Figdor, R. Huijbens, S. Mohan-Peterson, B. Bennett,

17. Yokota, T. T. Otsuka, T. Mosmann, J. Banchereau, T. DeFrance, D. Blanchard,

15. de Waal Malefyt, R., C. Figdor, R. Huijbens, S. Mohan-Peterson, B. Bennett,