Surfactant Protein D Binds to Mycobacterium tuberculosis Bacilli and Lipoarabinomannan via Carbohydrate-Lectin Interactions Resulting in Reduced Phagocytosis of the Bacteria by Macrophages

J. Scott Ferguson, Dennis R. Voelker, Francis X. McCormack and Larry S. Schlesinger

J Immunol 1999; 163:312-321;
http://www.jimmunol.org/content/163/1/312

References
This article cites 63 articles, 42 of which you can access for free at: http://www.jimmunol.org/content/163/1/312.full#ref-list-1

Subscription
Information about subscribing to *The Journal of Immunology* is online at: http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts
Surfactant Protein D Binds to Mycobacterium tuberculosis Bacilli and Lipoarabinomannan via Carbohydrate-Lectin Interactions Resulting in Reduced Phagocytosis of the Bacteria by Macrophages

J. Scott Ferguson,* Dennis R. Voelker,‡ Francis X. McCormack,§ and Larry S. Schlesinger2†

Surfactant protein-D (SP-D) is a collectin produced in the distal lung airspaces that is believed to play an important role in innate pulmonary immunity. Naive immunologic responses to Mycobacterium tuberculosis (M.tb) are especially important in the lung, since entry of this inhaled pathogen into the alveolar macrophage is a pivotal event in disease pathogenesis. Here we investigated SP-D binding to M.tb and the effect of this binding on the adherence of M.tb to human macrophages. These studies demonstrate specific binding of SP-D to M.tb that is saturable, calcium dependent, and carbohydrate inhabitable. In addition to purified SP-D, SP-D in bronchoalveolar lavage fluids from healthy donors and patients with alveolar proteinosis also binds to M.tb. Incubation of M.tb with SP-D results in agglutination of the bacteria. In contrast to its binding to M.tb, SP-D binds minimally to the avirulent Mycobacterium smegmatis. SP-D binds predominantly to lipoarabinomannan from the virulent Erdman strain of M.tb, but not the lipoarabinomannan from M. smegmatis. The binding of SP-D to Erdman lipoarabinomannan is mediated by the terminal mannosyl oligosaccharides of this lipoglycan. Incubation of M.tb with subagglutinating concentrations of SP-D leads to reduced adherence of the bacteria to macrophages (62.7% of control adherence ± 3.3% SEM, n = 8), whereas incubation of bacteria with surfactant protein A leads to significantly increased adherence to monocyte-derived macrophages. These data provide evidence for specific binding of SP-D to M. tuberculosis and indicate that SP-D and surfactant protein A serve different roles in the innate host response to this pathogen in the lung. The Journal of Immunology, 1999, 163: 312–321.

M. tuberculosis (M.tb)3 infects nearly one third of the world’s population and is the leading cause of mortality due to an infectious disease (1). Factors that affect the pathogenesis of tuberculosis are complex and not fully defined. M.tb on droplet nuclei is inhaled into the alveoli of the lung where macrophages and surfactant are located. M.tb enters and can survive in the macrophage, whereas many other pathogens ingested by these phagocytes are killed. It is likely that M.tb encounters pulmonary surfactant components before entry into the macrophage and that these surfactant components influence the M.tb—macrophage interaction.

Pulmonary surfactant is a heterogeneous multimolecular complex, composed of phospholipids and associated proteins, that lines the alveolar space. The collectin proteins of surfactant, surfactant protein-A (SP-A) and surfactant protein-D (SP-D), are produced and secreted by alveolar type II epithelial cells and nonciliated bronchiolar (Clara) cells (2, 3). These proteins are calcium-dependent carbohydrate-binding proteins that contain an N-terminus reactive oxygen intermediate formation and chemotaxis by macrophages (17, 18). Receptors for SP-A on macrophages have been described (19–21), one of which has been implicated in the effect of SP-A on the increased uptake of Mycobacterium bovis-bacillus Calmette Guérin into rat bone marrow-derived macrophages (22).

Received for publication September 25, 1998. Accepted for publication April 8, 1999.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

This work was supported in part by National Institutes of Health (NIH) Institutional Training Grant HL07638, a grant from the National Heart, Lung, and Blood Institute (NHLBI) (NIH HL03885–01), a grant from the American Lung Association of Iowa (J.S.F.); grants from NHLBI (NIH HL51990 to L.S.S., D.R.V., and F.X.M.; and NIH HL45286 and NIH HL29891 to D.R.V.), and a grant from the National Institute of Allergy and Infectious Diseases (NIH 33004 to L.S.S.).

Address correspondence and reprint requests to Dr. Larry S. Schlesinger, SW 54 GH, Division of Infectious Diseases, Department of Internal Medicine, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA 52242. E-mail address: larry-schlesinger@mail.int-med.uiowa.edu

Abbreviations used in this paper: M.tb, Mycobacterium tuberculosis; SP-A, surfactant protein A; SP-D, surfactant protein D; CRD, carbohydrate recognition domain; LAM, lipoarabinomannan; AraLM; LAM from Mycobacterium smegmatis; CHO, Chinese hamster ovary; ABTS substrate, 2,2’-azino-di-(3-ethylbenzthiazoline-6-sulfonic acid); GaRgG-HP, HRP-conjugated goat anti-rabbit IgG; BAL, bronchoalveolar lavage; CBAL, concentrated BAL; WLL, whole lung lavage; HSA, human serum albumin; MDM, monocyte-derived macrophages; Amax, absorbance at 405 nm; PPD, purified protein derivative; RPMI, RPMI 1640 medium with l-glutamine; AM, alveolar macrophage.
SP-A enhances the interaction between M.tb and macrophages (14, 23, 24). Previous work from our laboratory has demonstrated that SP-A, through a direct interaction with the macrophage, enhances macrophage phagocytosis of virulent M.tb potentially by up-regulating mannose receptor activity (14).

Mature monomeric SP-D is a 43-kDa polypeptide that oligomerizes to form four trimers that are covalently associated at their N termini. The resultant ~516-kDa dedecameric protein has a cruciform shape with the CRDs arranged peripherally at the end of long stalks (9). SP-D binds to carbohydrates such as maltose, glucose, and mannose but binds poorly to amino sugars (25). The role of SP-D in the microbe—host cell interaction is a growing area of interest. SP-D has been shown to bind to certain bacteria, influenza virus, Cryptococcus neoformans, Pneumocystis carinii, and Aspergillus fumigatus through lectin interactions (26–31). These interactions can result in aggregation of the microorganism (26, 27, 29, 31, 32) and altered interactions with host cells (26, 30, 31, 33).

Although SP-A and SP-D are members of the same protein family, they differ significantly in size and tertiary structure, and their recognition of microorganisms is not identical. Additionally, SP-A is ~10-fold more abundant and is more tightly associated with surfactant phospholipids than SP-D (34). Together, these differences suggest that SP-A and SP-D may have different roles in the innate immune response of the host, potentially at different sites in the lung.

The aim of the present study was to investigate the interaction between M.tb and SP-D and to determine the impact of this interaction on the adherence of M.tb to human macrophages. Our studies demonstrate that SP-D binds to M.tb, but not the avirulent Mycobacterium smeargatis, and that the M.tb cell wall lipoglycan lipooarabinomannan (LAM) serves as a major binding molecule for SP-D. The SP-D–M.tb interaction reduces the adherence of bacteria to human macrophages. Thus, these studies provide evidence for different roles of SP-A and SP-D in the innate immune response to M.tb in the lung.

Materials and Methods

Reagents

RPMI 1640 medium with 1-glutamine (RPMI) was purchased from Life Technologies (Grand Island, NY). Middlebrook 7H9 broth was purchased from BBL Microbiology Systems (Becton Dickinson, Cockeysville, MD). 7H11 agar was prepared with Bacto Middlebrook 7H10 agar (Difco Laboratories, Detroit, MI), oleic acid albumin dextrose catalase enrichment medium (Difco), 0.1% casein enzymatic hydrolysate (Sigma, St. Louis, MO), and glycerol (Difco), as described (35), and dispensed into 100 × 15-mm bacteriologic petri dishes. Auramine-rodhamine stain (Difco) was purchased. Formaldehyde solution 37% w/w and potassium permanganate 15-mm bacteriologic petri dishes. Auramine-rodhamine stain (Difco) was purchased. Formaldehyde solution 37% w/w and potassium permanganate were purchased from EM Science (Gibbstown, NJ). TranS-label was purchased from ICN (Costa Mesa, CA). Ficoll-sodium diatrizoate (Ficoll) was purchased from Pharmacia Fine Chemicals (Piscataway, NJ). Chromerges were purchased from Fisher Scientific (Pittsburgh, PA.). α-α-mannosidase (exomannosidase) was purchased from V-labs (Covington, LA). Maltose, mannose, glucose, N-acetyl-D-galactosamine and N-acetyl-D-glucosamine were purchased from EY Laboratories (San Mateo, CA). LPS from Escherichia coli 055:B5 strain was purchased from Sigma, suspended in endotoxin-free deionized water at 1 mg/ml, and stored frozen at −20°C.

Growth and preparation of bacteria

Lyophilized M.tb Erdman strain (ATCC 35801) was obtained from American Type Culture Collection (ATCC, Manassas, VA), reconstituted, and used as described (36). Briefly, for each experiment, aliquots of frozen stock in 7H9 broth were thawed. The bacteria were then cultured for 9–11 days on 7H11 agar, scraped from the culture plate into microfuge tubes containing buffer or medium and two 4-mm glass beads, pulse vortexed briefly (1–2 s), and allowed to settle over 30 min. The upper bacterial suspension was then removed to a second tube. After a second settling for 10 min, an aliquot from the second tube was transferred to a third tube and allowed to settle for an additional 10 min. The top portion of this aliquot was used in the experiments. The concentration of bacteria (1–2 × 10⁹ bacteria/ml) and the degree of clumping (≤10%) were determined by counting in a Petroff-Hauser chamber. M. smegmatis strain MCG6 was provided by Dr. Steven Clegg (Department of Microbiology, University of Iowa). M. smegmatis was prepared as above except that the bacteria were grown for a period of 3–4 days and then harvested. After counting in a Petroff-Hauser chamber, the M. smegmatis suspensions were diluted to a concentration of 1–1.5 × 10⁹ bacteria/ml and stored frozen at −70°C until the day of the experiment.

Collectin proteins, lipoglycans, and Abs

Recombinant rat SP-D, expressed in Chinese hamster ovary (CHO) cells, and recombinant rat SP-D deficient in hydroxylation of proline residues expressed in SP-D cells (SP-Dhyp) were prepared and characterized as described previously (37, 38). The experiments were performed using the CHO cell-expressed SP-D except where otherwise stated. SP-A was prepared from whole lung lavage fluid from a patient with alveolar proteinosis as described previously (39). The endotoxin concentration of the collectin preparations was determined by the Limulus amebocyte lysate assay (Bio-Whittaker, Walkersville, MD) and found to be 0.82 pg/ml for CHO cell-expressed SP-D, 40.8 pg/ng for SP-Dhyp and 1.5 pg/ng for SP-A. To produce anti-SP-D antiserum, a New Zealand White rabbit was immunized and boosted with 50 μg purified SP-Dhyp in IFA over a 3-wk interval. After 1 mo, serum was harvested. The anti-SP-D antiserum did not react with M.tb or with SP-A by ELISA (not shown) and reacted only with SP-D in alveolar lavage fluids, but not with purified SP-A or SP-A in alveolar lavage fluids by Western blotting (Fig. 1). Lipoarabinomannan (LAM), from the virulent Erdman strain of M.tb, and rabbit anti-LAM Ab were prepared and characterized as described (40). M. smegmatis-type LAM (AraLAM) was provided by Dr. Patrick Brennan and colleagues (Colorado State University, National Institute of Allergy and Infectious Diseases, National Institutes of Health contract NO1-AI-25147). 2,2’-Azino-di-(3-ethylbenzthiazoline-sulfonic acid) (ABTS substrate) and AHRP-conjugated goat anti-rabbit IgG (Goat IgG-HRP) were purchased from Bio-Rad (Hercules, CA).

Preparation of human bronchoalveolar lavage fluid

Normal human volunteers who were not cigarette smokers and were purified protein derivative (PPD) negative underwent bronchoalveolar lavage (BAL) with ~200 ml of saline using a previously described procedure (41) that has been approved by the University of Iowa Institutional Review Board for human subjects. After removing cellular material and passing through a 0.22-μm filter, the BAL was concentrated (CBAL) 10-fold using a Centriloc-10 concentrator (W.R. Grace, Danvers, MA). BAL, CBAL, and the low m.w. filtrate of the CBAL were stored in 1-ml aliquots at −70°C until the day of use. Whole lung lavage (WLL) fluid (the first 3...

FIGURE 1. SP-D antiserum is specific for SP-D. Purified recombinant SP-D, APP SP-A, or lavage fluids were resolved by 10% SDS-PAGE, transferred to nitrocellulose, blocked, then incubated with a 1:20,000 dilution of anti-SP-D antiserum followed by GoRlgG-HRP and developed using 4-chloronaphthal and H2O2. M.w. markers are shown on the left. Lane 1, 50 ng SP-D; lane 2, 12.5 ng SP-D; lane 3, 200 ng SP-A; lane 4, 50 μl normal BAL fluid; lane 5, 50 μl concentrated BAL fluid; lane 6, 50 μl alveolar proteinosis lavage fluid.
Isolation and preparation of human macrophages
Monolayers of monocyte-derived macrophages (MDM) were prepared from healthy PPD-negative human volunteers as described (42). Briefly, mononuclear cells were isolated from heparinized blood on Ficoll gradients and then were cultured in Teflon wells (Savillex, Minnetonka, MN) for 5 days in the presence of 20% autologous serum. On the day of each experiment, the cells were removed from the Teflon wells and washed, then resuspended in RPMI containing 10% autologous serum. The MDM were then plated onto Chromogene-cleaned glass coverslips or plastic coverslips in 24-well tissue culture plates (Falcon, Becton Dickinson Labware, Lincoln Park, NJ) for 2 h at 37°C (1 × 106 MDM/coverslip). The wells were washed with RPMI and then used in the experiments.

For experiments with human alveolar macrophages (AM), healthy PPD-negative donors underwent BAL as described above. The AM were collected by centrifugation and washed in RPMI (14). Cell viability (>93%) was assessed using Trypan blue exclusion, and the percentage of macrophages present (>90%) was determined using a differential cell stain (Leukostat, Fisher Scientific, Pittsburgh, PA). The cells were then resuspended in RPMI with 10% autologous serum and plated onto Chromogene-cleaned glass coverslips at 1 × 105 AM/coverslip. After 2 h at 37°C in 5% CO2 and air, the cells were fixed with 10% formaldehyde and then used in the experiments. Monolayer integrity and density were monitored by inverted phase-contrast microscopy throughout the experiments.

Radiolabeled SP-D-binding experiments
SP-D expressed in CHO cells was metabolically labeled with Tran35S-label (ICN) as described (38). M.tb was incubated in 50 mM tris- HCl, 150 mM NaCl (pH 7.5) (TB) and 1 mg/ml human serum albumin (HSA) in a block of microtiter plates (5% HSA in TB overnight at 4°C) with or without the presence and absence of Ca2+; excess unlabeled protein, EDTA, or competing carbohydrates for 30 min at 37°C. At the termination of the incubation period, the wells were washed three times with ice-cold TB containing 2 mM CaCl2 (TBS-C) and transferred to scintillation fluid for liquid scintillation counting in a beta counter (Beckman, Irvine, CA). The sp. act. of [35S]SP-D ranged from 50 to 1500 cpm/ng. The mean ± SD of the means for three experiments was calculated, and the amount in nanograms bound per 5 × 106 bacteria was determined by dividing the cpm bound per pellicle by the sp. act. of the protein. Counts obtained in the absence of M.tb or the presence of 10 mM EDTA were subtracted out in each experiment (±30 cpm).

Bacterial ELISA
In experiments designed to determine the phagocytic binding of SP-D to M. tuberculosis (M.tb), radiolabeled M. tuberculosis (5 × 106 bacteria in 0.1 ml TB) were dried in the wells of a microtiter plate (Dynatech, Chantilly, VA) (36), followed by exposure to ultraviolet light for 2 h to kill viable bacteria. After blocking with TB containing 3% BSA and 0.2% Triton X-100 overnight at 4°C, the wells were then incubated with increasing concentrations of SP-D in blocking buffer in the presence or absence of 100 mM EDTA for 30 min at 37°C. At the end of the incubation period, the pellicles were washed three times with TB containing 2 mM CaCl2 (TBS-C) and transferred to scintillation fluid for liquid scintillation counting in a beta counter (Beckman, Irvine, CA). The mean ± SD of the means for three experiments was calculated, and the amount in nanograms bound per 5 × 106 bacteria was determined by dividing the cpm bound per pellicle by the sp. act. of the protein. Counts obtained in the absence of M.tb or the presence of 10 mM EDTA were subtracted out in each experiment (±30 cpm).

M.tb adherence assay
M.tb was incubated in RPMI containing 20 mM HEPES, and 1 mg/ml HSA (pH 7.2) (RHI) in the presence or absence of SP-D or SP-A for 1 h at 37°C. Following the incubation period, the M.tb collectin mixture was added to MDM or AM monolayers on glass coverslips and incubated for 2 h at 37°C in 5% CO2 and air. After washing away nonadherent bacteria, the coverslips were fixed in 10% formaldehyde, and bacteria were stained with auramine-rhodamine. The macrophages were counterstained using 5% potassium permanganate, and the mean number ± SD of cell-associated bacteria per macrophage on three (three or nine in the case of AM) coverslips per condition was determined by counting ≥100 consecutive macrophages per coverslip using phase-contrast and fluorescence microscopy at 1250× magnification (42).

Additional adherence assays were conducted as above except that either the bacteria were washed before adding the mixture to coverslips, or the MDM monolayer was incubated with collectin, then washed before adding bacteria. Additionally, LPS was used in some experiments to determine the effect of the contaminating LPS of the collectins.

Radiolabeled SP-D-binding experiments
SP-D expressed in CHO cells was metabolically labeled with Tran[35S]-label (ICN) as described (38). M.tb was incubated in 50 mM tris- HCl, 150 mM NaCl (pH 7.5) (TB) and 1 mg/ml human serum albumin (HSA) in a block of microtiter plates (5% HSA in TB overnight at 4°C) with or without the presence and absence of Ca2+; excess unlabeled protein, EDTA, or competing carbohydrates for 30 min at 37°C. At the end of the incubation period, the pellicles were washed three times with ice-cold TB containing 2 mM CaCl2 (TBS-C) and transferred to scintillation fluid for liquid scintillation counting in a beta counter (Beckman, Irvine, CA). The sp. act. of [35S]SP-D ranged from 50 to 1500 cpm/ng. The mean ± SD of the means for three experiments was calculated, and the amount in nanograms bound per 5 × 106 bacteria was determined by dividing the cpm bound per pellicle by the sp. act. of the protein. Counts obtained in the absence of M.tb or the presence of 10 mM EDTA were subtracted out in each experiment (±30 cpm).

Bacterial ELISA
In experiments designed to determine the phagocytic binding of SP-D to M. tuberculosis (M.tb), radiolabeled M. tuberculosis (5 × 106 bacteria in 0.1 ml TB) were dried in the wells of a microtiter plate (Dynatech, Chantilly, VA) (36), followed by exposure to ultraviolet light for 2 h to kill viable bacteria. After blocking with TB containing 3% BSA and 0.2% Triton X-100 overnight at 4°C, the wells were then incubated with increasing concentrations of SP-D in blocking buffer in the presence or absence of 100 mM EDTA for 30 min at 37°C. At the end of the incubation period, the pellicles were washed three times with ice-cold TB containing 2 mM CaCl2 (TBS-C) and transferred to scintillation fluid for liquid scintillation counting in a beta counter (Beckman, Irvine, CA). The sp. act. of [35S]SP-D ranged from 50 to 1500 cpm/ng. The mean ± SD of the means for three experiments was calculated, and the amount in nanograms bound per 5 × 106 bacteria was determined by dividing the cpm bound per pellicle by the sp. act. of the protein. Counts obtained in the absence of M.tb or the presence of 10 mM EDTA were subtracted out in each experiment (±30 cpm).

M.tb adherence assay
M.tb was incubated in RPMI containing 20 mM HEPES, and 1 mg/ml HSA (pH 7.2) (RHI) in the presence or absence of SP-D or SP-A for 1 h at 37°C. Following the incubation period, the M.tb collectin mixture was added to MDM or AM monolayers on glass coverslips and incubated for 2 h at 37°C in 5% CO2 and air. After washing away nonadherent bacteria, the coverslips were fixed in 10% formaldehyde, and bacteria were stained with auramine-rhodamine. The macrophages were counterstained using 5% potassium permanganate, and the mean number ± SD of cell-associated bacteria per macrophage on three (three or nine in the case of AM) coverslips per condition was determined by counting ≥100 consecutive macrophages per coverslip using phase-contrast and fluorescence microscopy at 1250× magnification (42).

Additional adherence assays were conducted as above except that either the bacteria were washed before adding the mixture to coverslips, or the MDM monolayer was incubated with collectin, then washed before adding bacteria. Additionally, LPS was used in some experiments to determine the effect of the contaminating LPS of the collectins.

Bacterial ELISA
In experiments designed to determine the phagocytic binding of SP-D to M. tuberculosis (M.tb), radiolabeled M. tuberculosis (5 × 106 bacteria in 0.1 ml TB) were dried in the wells of a microtiter plate (Dynatech, Chantilly, VA) (36), followed by exposure to ultraviolet light for 2 h to kill viable bacteria. After blocking with TB containing 3% BSA and 0.2% Triton X-100 overnight at 4°C, the wells were then incubated with increasing concentrations of SP-D in blocking buffer in the presence or absence of 100 mM EDTA for 30 min at 37°C. At the end of the incubation period, the pellicles were washed three times with ice-cold TB containing 2 mM CaCl2 (TBS-C) and transferred to scintillation fluid for liquid scintillation counting in a beta counter (Beckman, Irvine, CA). The sp. act. of [35S]SP-D ranged from 50 to 1500 cpm/ng. The mean ± SD of the means for three experiments was calculated, and the amount in nanograms bound per 5 × 106 bacteria was determined by dividing the cpm bound per pellicle by the sp. act. of the protein. Counts obtained in the absence of M.tb or the presence of 10 mM EDTA were subtracted out in each experiment (±30 cpm).

M.tb adherence assay
M.tb was incubated in RPMI containing 20 mM HEPES, and 1 mg/ml HSA (pH 7.2) (RHI) in the presence or absence of SP-D or SP-A for 1 h at 37°C. Following the incubation period, the M.tb collectin mixture was added to MDM or AM monolayers on glass coverslips and incubated for 2 h at 37°C in 5% CO2 and air. After washing away nonadherent bacteria, the coverslips were fixed in 10% formaldehyde, and bacteria were stained with auramine-rhodamine. The macrophages were counterstained using 5% potassium permanganate, and the mean number ± SD of cell-associated bacteria per macrophage on three (three or nine in the case of AM) coverslips per condition was determined by counting ≥100 consecutive macrophages per coverslip using phase-contrast and fluorescence microscopy at 1250× magnification (42).

Additional adherence assays were conducted as above except that either the bacteria were washed before adding the mixture to coverslips, or the MDM monolayer was incubated with collectin, then washed before adding bacteria. Additionally, LPS was used in some experiments to determine the effect of the contaminating LPS of the collectins.
Statistical significance was defined as a p < 0.05.

Statistics

For each experiment, a ratio of experimental results to control (expressed as fold increase or percentage decrease) was obtained, and the mean ratio was then tested for a significant difference from 1 using t statistics. Statistical significance was defined as a p < 0.05.

Results

SP-D binds specifically to M.tb in a saturable, calcium-dependent, and carbohydrate-inhibitable manner

To determine the specific interaction between SP-D and M.tb, and to characterize this interaction, SP-D–M.tb-binding studies were conducted in the presence and absence of various inhibitors. SP-D bound to M.tb in a specific and saturable manner. Ten-fold excess unlabeled SP-D inhibited 2 μg/ml [35S]SP-D binding by 63% ± 8% (mean ± SEM, n = 3). [35S]SP-D binding to M.tb in suspension was concentration dependent and appeared to be saturable at low concentrations of SP-D; however, at higher concentrations, bacterial aggregation (see below) limited the analysis. Thus, saturable binding was determined by ELISA with M.tb adsorbed to the plastic wells to avoid the confounding variable of bacterial agglutination. The binding of SP-D to M.tb was found to be saturable in a range between 2–4 μg/ml (Fig. 2). A double reciprocal plot of these data gives an approximate dissociation constant of 7.15 × 10^{-10} M, assuming that the molecular mass of SP-D is 516,000 daltons and that the reaction represents a simple bimolecular interaction. These data provide strong evidence that SP-D binds to M.tb in a specific manner and that there is a finite number of binding sites available on the bacteria for interactions with SP-D.

The carbohydrate-rich outer surface of M.tb suggested that SP-D may bind to M.tb via its CRD. To examine this possibility, we determined whether SP-D binding was calcium dependent and carbohydrate inhibitable. [35S]SP-D binding to M.tb was negligible (<1 ng) in the absence of calcium ions or the presence of EDTA (data not shown). These results suggested that SP-D binding to M.tb is dependent on divalent cations. To examine whether the calcium requirements for the binding of SP-D to M.tb were specific for calcium ions, we determined whether other divalent cations could substitute for calcium (Fig. 3). By ELISA, SP-D binding was undetectable (<0.05 A405 nm) in the presence of 0.2 mM EDTA and 5 mM MgCl₂, MnCl₂, or SrCl₂. However, SP-D binding in the presence of 5 mM CaCl₂ and 0.2 mM EDTA was similar to SP-D binding in the presence of 5 mM CaCl₂ and the absence of EDTA. These data provide evidence that the binding of SP-D to M.tb is cation dependent and exhibits a specific requirement for calcium.

To assess the carbohydrate specificity of SP-D binding to M.tb, assays were performed in the presence of increasing concentrations of selected carbohydrates with a fixed concentration of [35S]SP-D (Fig. 4). Maltose, glucose, and mannose were strong inhibitors of SP-D binding. The concentrations of these carbohydrates required to reduce the binding of SP-D to M.tb by 50% were derived from nonlinear regression curves of the data shown in Fig. 3 and were found to be 0.97 mM for maltose, 1.21 mM for glucose,
and 4.61 mM for mannose. N-acetylgalactosamine did not inhibit SP-D binding at the concentrations tested. These data are consistent with the published carbohydrate specificity of the CRD of SP-D (25). These data provide evidence that the binding occurs between carbohydrate moieties on the surface of \(M. tb \) and the CRD of SP-D.

SP-D in BAL fluid binds to \(M. tb \)

Since SP-D is located in alveolar surfactant and \(M. tb \) gains entry to the human host via the airspace, we examined the ability of human SP-D in surfactant-containing pulmonary lavage fluid to bind to \(M. tb \). The binding of SP-D contained in BAL fluid, CBAL fluid, and WLL fluid from a patient with pulmonary alveolar proteinosis was assessed by ELISA (Table I). Significant binding of SP-D was detected from BAL, CBAL, and WLL compared with buffer control. There was no binding detected using a low m.w. filtrate of CBAL. These results support the concept that SP-D contained in alveolar lining fluids can bind to \(M. tb \).

![Graph](image.png)

FIGURE 4. SP-D binding to \(M. tb \) is carbohydrate inhibitable. \(M. tb \) \((5 \times 10^9) \) was incubated with 4 \(\mu g/ml \) \[^{35}S\]SP-D in the absence or presence of increasing concentrations of N-acetylgalactosamine, mannose, glucose, or maltose for 30 min at 37°C. After centrifugation, the washed pellets were transferred to scintillation fluid for liquid scintillation counting. The results are expressed as the mean percentage of control \[^{35}S\]SP-D binding \(\pm \) SEM of triplicate determinations from three independent experiments.

![Graph](image.png)

FIGURE 5. SP-D agglutinates \(M. tb \). \(M. tb \) \((1 \times 10^9/ml) \) in TBS-C containing 1 mg/ml HSA was incubated in the absence (A) or presence (B) of 10 \(\mu g/ml \) SP-D, and the presence of 10 \(\mu g/ml \) SP-D and 100 mM maltose (C), 10 mM EDTA (D), or 100 mM N-acetylgalactosamine (E). Aliquots were dried on glass coverslips, fixed with 10% formaldehyde, and stained with auramine-rhodamine; \(\geq 30 \) consecutive fields were visualized by fluorescence microscopy. Shown are representative fields (final magnification, \(\times 1100 \)) of one experiment (n = 3).

Table I. SP-D in BAL fluids binds to \(M. tb \)

<table>
<thead>
<tr>
<th>Lavage Fluid</th>
<th>Expt. 1</th>
<th>Expt. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.245 ± 0.080</td>
<td>0.131 ± 0.005</td>
</tr>
<tr>
<td>BAL</td>
<td>0.103 ± 0.009</td>
<td>0.132 ± 0.019</td>
</tr>
<tr>
<td>CBAL</td>
<td>0.513 ± 0.016</td>
<td>0.628 ± 0.031</td>
</tr>
<tr>
<td>CBAL filtrate</td>
<td>0.011 ± 0.016</td>
<td>0.006 ± 0.002</td>
</tr>
<tr>
<td>WLL</td>
<td>0.624 ± 0.050</td>
<td>0.510 ± 0.081</td>
</tr>
</tbody>
</table>

\(M. tb \) \((2.5 \times 10^7) \) was incubated with 1 \(\mu g/ml \) SP-D\(^{hyp} \) (control) or 170 \(\mu l \) of BAL, 10-fold CBAL, the low m.w. filtrate of the CBAL, or WLL from a patient with alveolar proteinosis in the presence of TBS, 1 mg/ml HSA, and 2 mM calcium for 60 min at 37°C (final reaction volume 200 \(\mu l \)). The pellets were then washed three times in ice-cold buffer, and 100-\(\mu l \) aliquots were allowed to evaporate to dryness in the wells of a 96-well microtiter plate \((8 \times 10^7 \) bacteria/well). After blocking, SP-D binding was detected by ELISA as in Fig. 2. Shown is the mean A\(^{405} \) \(\pm \) SD of triplicate groups in two experiments.

SP-D agglutinates \(M. tb \)

SP-D has been found to agglutinate certain strains of \(E. coli \) bacteria, influenza virus, \(C. neoformans \), and \(A. fumigatus \), and this is believed to be an important host defense property of the collectin (27, 29, 31, 33). We examined for SP-D-mediated agglutination of \(M. tb \) using a fluorescence microscopy assay (Fig. 5). Aggregation of some \(M. tb \) bacilli was seen under control conditions, consistent with the tendency of this microorganism to clump. However, at concentrations of SP-D \(\geq 5 \mu g/ml \), larger and more numerous aggregates were readily apparent in all fields visualized. EDTA and maltose but not N-acetylgalactosamine inhibited the agglutinating effect of SP-D. These results indicate that calcium-dependent lectin interactions of SP-D with \(M. tb \) lead to agglutination of the bacteria.
M. tb LAM serves as a major binding molecule for SP-D

We performed 35S SP-D lectin-blotting studies to identify specific molecules on M. tb that serve as binding molecules for the protein (Fig. 6A, panel a, lane 1). The 35S SP-D was incubated with reduced, SDS solubilized M. tb preparations separated by SDS-PAGE and immobilized on nitrocellulose. SP-D binding was predominantly to a region of the blot that corresponds with the known electrophoretic mobility and appearance of LAM (46), a major cell wall-associated lipoglycan of M. tb. There was also a small degree of SP-D binding to a lower molecular size M. tb component consistent with the location of lipomannan, another mannosylated lipoglycan (47). Based on these results, we next examined whether SP-D binds to purified M. tb LAM. SP-D bound to immobilized purified Erdman LAM in the presence of calcium (Fig. 6A, panel a, lane 2; and Fig. 6B, panel b, lane 1), but not in the presence of 10 mM EDTA (Fig. 6B, panel c).

Compared with M. tb LAM, 35S SP-D bound minimally to immobilized, purified AraLAM, the LAM type from the avirulent M. smegmatis (Fig. 6B, panel b, lane 2). These data indicate that M. tb LAM is a major SP-D-binding molecule on the surface of M. tb and suggest that SP-D binds specifically to LAM exposed on pathogenic but not avirulent mycobacteria.

SP-D binds to the terminal mannosyl units of M. tb LAM

M. tb LAM and AraLAM differ with respect to the terminal α-(1→2)-linked mannosyl oligosaccharides (“mannose caps”) that are present on M. tb LAM (46, 48). Based on the known affinity of SP-D for mannose and the observation that SP-D binds to M. tb LAM but not AraLAM, we hypothesized that SP-D binds to the mannose caps of M. tb LAM. To test this hypothesis, we used an ELISA to examine the binding of SP-D to immobilized, intact LAM in the absence and presence of various carbohydrates, and to M. tb LAM devoid of the mannose caps (Fig. 7). SP-D bound to immobilized Erdman LAM, consistent with the lectin-blotting studies. Maltose markedly inhibited SP-D binding to LAM, whereas the inhibition observed with N-acetylglucosamine was much less, consistent with the known carbohydrate-binding specificity of the CRD. The maltose-inhibitable SP-D binding was abolished by treatment of M. tb LAM with exomannosidase, an enzyme that removes α-(1→2)-linked oligomannosyl units. Binding of SP-D to AraLAM was minimal compared with Erdman LAM, and the small amount of maltose-inhibitable binding observed was not influenced by treatment of AraLAM with exomannosidase. These data provide evidence that SP-D binds to the terminal mannosyl oligosaccharides of M. tb LAM. The adsorption of Erdman LAM and AraLAM to the plates was comparable, based on the detection of carbohydrate by the Digoxigenin-Glycan Assay. The absorbance at 405 nm was 0.212 ± 0.038 for Erdman LAM and 0.217 ± 0.003 for AraLAM (mean ± SEM, triplicate wells, $n = 2$). Additional control experiments using a specific polyclonal Ab to LAM demonstrated that exomannosidase treatment did not reduce the amount of LAM bound to the microtiter plates (data not shown).

SP-D binds minimally to the avirulent M. smegmatis.

All mycobacteria have carbohydrates associated with their outer surface. However, it is likely that these complex carbohydrates differ with respect to the amount expressed on the surface and the
specific residues included in the overall structure of the complex carbohydrate. To determine whether SP-D binds to \(M. smegmatis \), an avirulent species of mycobacteria and the source for AraLAM, we used a bacterial ELISA. By comparison with binding to \(M. tb \), SP-D bound minimally to \(M. smegmatis \) (Table II). In like fashion, by lectin blotting using \([\text{35}^{S}] \)SP-D was observed (data not shown). These results suggest that the binding of SP-D to \(M. tb \) is dependent upon specific carbohydrate structures exposed on the surface of \(M. tb \) that are not present on the surface of \(M. smegmatis \). Inasmuch as these results resemble those obtained with \(M. tb \) LAM and AraLAM, they further support the concept that \(M. tb \) LAM serves as a major binding molecule for SP-D in the context of whole bacteria.

SP-D reduces the adherence of \(M. tb \) to human macrophages

SP-D has been reported to be an opsonin for \(A. fumigatus \) (31) and influenza virus (33). We have previously demonstrated that SP-A increases the phagocytosis of Erdman \(M. tb \) by human macrophages (14). Since we determined that SP-D binds to \(M. tb \) LAM, we hypothesized that this binding would interfere with the recognition of LAM by the macrophage mannose receptor and thereby reduce \(M. tb \) adherence to macrophages. Alternatively, SP-D binding to \(M. tb \) could provide an alternative route of entry for the bacterium by serving as an opsonin that is recognized by a collectin receptor on the macrophage (49). To examine these possibilities, we performed fluorescence microscopy experiments to assess the adherence of \(M. tb \) to MD in the presence and absence of SP-D (Fig. 8 and Table III). SP-D at a subagglutinating concentration (0.5 \(\mu \)g/ml) did not demonstrate opsonic activity. In fact, it reduced the number of bacteria that adhered to macrophages (Fig. 8). In experiments in which an SP-D/\(M. tb \) mixture was added to MD, SP-D caused a 37.3% \(\pm \) 3.3% (mean \(\pm \) SEM, \(n = 8, p < 0.001 \)) reduction in the adherence of bacteria compared with control. This effect was retained if the SP-D/MD mixture was washed before incubation with MDM (37.7% \(\pm \) 1.8% reduced adherence, mean \(\pm \) SEM, \(n = 4 \)), but lost if the MDM were incubated with SP-D and washed before adding bacteria (Table III). These results indicate that the reduced adherence is dependent on the SP-D/\(M. tb \) interaction (SP-D binding to \(M. tb \)), and not due to an SP-D/MDM interaction. In contrast, SP-A increased the adherence of \(M. tb \) with macrophages (Fig. 8). Washing away excess collectin from the monolayers before adding bacteria did not attenuate the increased \(M. tb \) adherence (Table III). These results provide evidence that an interaction between SP-A and the macrophage plays an important role in the increased adherence of \(M. tb \), consistent with our previous observations (14). To control for LPS contamination in our collectin preparations, LPS was included in some experiments at the concentration found in the collectin preparations. There was no effect by LPS alone on the adherence of \(M. tb \) to macrophages (Fig. 8).

Table II. SP-D binds minimally to \(M. smegmatis \) compared to \(M. tb \)

<table>
<thead>
<tr>
<th>Condition</th>
<th>(M. smegmatis)</th>
<th>(M. tb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP-D/(Ca^{2+})</td>
<td>0.160 (\pm) 0.009</td>
<td>0.993 (\pm) 0.020</td>
</tr>
<tr>
<td>SP-D/EDTA</td>
<td>0.085 (\pm) 0.009</td>
<td>0.121 (\pm) 0.033</td>
</tr>
<tr>
<td>SP-D/(Ca^{2+})/maltose</td>
<td>0.106 (\pm) 0.006</td>
<td>0.177 (\pm) 0.021</td>
</tr>
<tr>
<td>SP-D/(Ca^{2+})/GalNAc</td>
<td>0.132 (\pm) 0.019</td>
<td>0.659 (\pm) 0.009</td>
</tr>
</tbody>
</table>

* Bacteria (2.5 \(\times \) 10\(^7\)) were incubated with 4 \(\mu \)g/ml SP-D in the presence of 2 mM calcium, or 10 mM EDTA, or the presence of 2 mM calcium and 100 mM maltose or N-acetylgalactosamine (GalNAc) for 60 min at 37°C. The pellets were then washed three times in ice-cold buffer, and 100-\(\mu \)l aliquots were allowed to evaporate to dryness in the wells of a 96-well microtiter plate (8 \(\times \) 10\(^6\) bacteria/well). After blocking, SP-D binding was detected by ELISA as in Fig. 2. Shown is the mean absorbance \(\pm \) SD of triplicate wells in an experiment representative of two.

FIGURE 8. SP-D reduces the adherence of \(M. tb \) to macrophages, whereas SP-A enhances bacterial adherence. \(M. tb \) (1.5 \(\times \) 10\(^7\)) in RHH was incubated in the presence or absence of 0.5 \(\mu \)g/ml SP-D, 10 \(\mu \)g/ml SP-A, or 10 ng/ml LPS for 1 h at 4°C on a rotating platform. The mixture was allowed to return to room temperature and then was added to MD on triplicate glass coverslips for 2 h at 37°C in 5% CO\(_2\) and air. Nonadherent bacteria were then washed away, and the coverslips were fixed in 10% formaldehyde. The bacteria were stained with auramine-rhodamine and visualized using phase-contrast and fluorescence microscopy. The number of bacteria per MDM was enumerated by counting \(\pm \)100 consecutive MD per coverslip. The percentage of control adherence was calculated by dividing the mean number of bacteria/MDM in the presence of collectin or LPS by the control value (mean number of bacteria/MDM in the absence of collectin and LPS) \(\times \) 100. The control level of bacteria/MDM was 2.07 \(\pm \) 0.8 (mean \(\pm \) SEM, \(n = 8 \)). Shown is the mean \(\pm \) SEM of triplicate determinations for four to eight independent experiments. **, \(p < 0.05 \) vs control.

Since it is possible that the results obtained using MDM may differ from those seen with alveolar macrophages (50), we performed experiments to determine whether SP-D also reduces the adherence of \(M. tb \) to human AM. SP-D (0.5 \(\mu \)g/ml) was incubated with \(M. tb \) and then added to AM monolayers as described for MDM. SP-D reduced the adherence of \(M. tb \) to AM by 53.1% \(\pm \) 2.0% (mean \(\pm \) SEM, \(n = 2, p < 0.05 \)). The number of bacteria per AM in the control condition was 2.2 \(\pm \) 0.5 (mean \(\pm \) SEM, \(n = 2 \)).

Table III. The inhibition of \(M. tb \) adherence to macrophages by SP-D results from the SP-D-MDM interaction, whereas the enhancement of \(M. tb \) adherence to macrophages results from the SP-A-macrophage interaction

<table>
<thead>
<tr>
<th>Collectin</th>
<th>A (%)</th>
<th>B (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP-D</td>
<td>53.3 (\pm) 1.3*</td>
<td>94.5 (\pm) 4.5</td>
</tr>
<tr>
<td>SP-A</td>
<td>152.3 (\pm) 5.4*</td>
<td>170.2 (\pm) 13.1*</td>
</tr>
</tbody>
</table>

* Monolayers of MDM were incubated with the indicated collectins (SP-D: 0.5 \(\mu \)g/ml; SP-A: 10 \(\mu \)g/ml) for 1 h at 37°C in 5% CO\(_2\) and air. (A) \(M. tb \) (1 \(\times \) 10\(^7\)) was then added to the MDM, or (B) the MDM were washed prior to adding bacteria. After 2 h, the nonadherent bacteria were washed away, and the coverslips were then assessed for bacterial adherence by fluorescence microscopy. The number of bacteria per MDM for the control condition was 1.82 \(\pm \) 0.31 (mean \(\pm \) SEM, \(n = 3 \)). Shown is the percentage of control bacterial adherence ([number of bacteria per MDM in test group/number of bacteria per MDM in control group] \(\times \) 100) performed in the absence of collectin (mean \(\pm \) SEM) of triplicate determinations from three independent experiments. **, \(p < 0.05 \) versus control.
To determine whether the reduced bacterial adherence due to SP-D correlated with decreased phagocytosis, we performed a transmission electron microscopy experiment to distinguish attached from internalized bacteria. No attached bacteria were seen in the consecutive MDM sections examined in all groups. SP-D reduced the number of internalized bacteria per MDM cross-section (control: 1.64 and 2.24 bacteria/section on two coverslips; SP-D: 0.20 and 0.78 bacteria/section and two coverslips), and the percentage of MDM cross-sections on two coverslips with internalized bacteria (control: 34.0 and 28.6%; SP-D: 8.7 and 6.6%). These results combined with the fluorescence microscopy data demonstrate that SP-D reduces the phagocytosis of M.tb by MDM.

Discussion

The recent increase in tuberculosis cases in the United States and worldwide has triggered research efforts aimed at better defining the interactions between the causative bacterium M.tb and the host immune system. Tuberculosis is a respiratory infection and, as such, the critical early interaction between the inhaled organism and the host is with components of the alveolar compartment. The outcome of this interaction will determine infection vs resolution. Within this context, M.tb will encounter surfactant when inhaled on droplet nuclei into the alveolus. It is likely that the interaction between M.tb and surfactant components alters the ultimate fate of the bacterium. However, our understanding of the molecular details and the importance of this initial interaction is limited.

The surface of M.tb is composed primarily of carbohydrates and lipid (51). Since SP-D has been described to bind to other pathogens (27, 29–31, 52) and is felt to play an important role in the innate immune response in the lung, we investigated the potential for SP-D to bind to M.tb and the influence of this interaction on the adherence of M.tb to human macrophages. In this report, we show that the binding of SP-D to M.tb is specific, that SP-D in human BAL fluids binds to M.tb, that SP-D binds to LAM on the surface of Erdman M.tb via the mannose caps on Erdman LAM, and that the SP-D–M.tb interaction reduces the adherence of M.tb to human macrophages. Furthermore, we show that SP-D binds minimally to the avirulent mycobacterial species, M. smegmatis.

Our data provide evidence that the binding of SP-D to M.tb is specific. Saturable binding was demonstrated in a range of concentrations of SP-D that are likely to be below the actual concentration of SP-D in the normal airspace, estimated to be 50–90 μg/ml (53, 54). Saturable binding indicates that there is a finite number of binding sites available for SP-D on the surface of M.tb. We were unable to perform Scatchard analysis using radiolabeled protein and M.tb in a suspension system since higher concentrations of SP-D caused aggregation of SP-D and agglutination of M.tb. However, the estimated dissociation constant derived from our solid-phase assay (7.15 × 10⁻¹⁰ M) indicates that SP-D binds with high avidity to the surface of M.tb. This type of analysis is limited by the fact that SP-D is an oligomeric protein with the capability for multivalent binding.

We found that the binding of SP-D to M.tb is calcium dependent and carbohydrate inhibitable. These data indicate that SP-D binds to the surface of the bacteria via its CRD. However, it is possible that mycobacterial lectins may participate in some of the observed binding, presumably by binding to the N-linked sugar of SP-D (55–57). Although we cannot completely exclude that a mycobacterial lectin binds to SP-D, calcium-dependent mycobacterial lectins have not been described. Furthermore, the carbohydrate inhibition profile that we observed is consistent with the published carbohydrate specificity of SP-D (25). Thus, it is likely that the majority of the binding of SP-D to M.tb observed in our studies is via the CRD of the protein.

Our lectin-blotting studies indicate that LAM from the virulent Erdman strain of M.tb is a major binding molecule for SP-D. LAM is a complex lipoglycan from the cell wall of many mycobacteria and is believed to be an important virulence determinant for M.tb (58–63). LAM serves as a ligand for the mannose receptor on macrophages and mediates the phagocytosis of virulent M.tb strains (40, 42, 45). The fatty acid tail of LAM serves as an anchor, leaving the carbohydrate portion of the molecule exposed on the surface (51, 64, 65). This carbohydrate portion is composed of an α-(1→6)-linked mannose core with short branching α-(1→2)-linked mannose side chains, followed by a large branching arabino-furan segment. For the described M.tb LAMs, these arabino-furan branches are 40% to 70% “capped” with approximately one to three α-(1→2)-linked mannosyl units. The presence of these mannose caps on M.tb LAM contrasts sharply with AraLAM, which lacks mannose capping and is ~10% capped with inositol phosphate (48). This structural difference is believed to be responsible for the observation that M.tb LAM stimulates much less TNF-α production by macrophages than AraLAM (66). The mannose cap structure on M.tb LAM also mediates the binding of LAM to the mannose receptor (45).

Three lines of evidence indicate that SP-D binds to the mannose caps of M.tb LAM. First, removal of the caps with exomannosidase abolished maltose-inhibitable binding of SP-D to LAM. Exomannosidase cleaves mannose units that are joined in the α-(1→2) position, the structure of the mannose caps. Second, when compared with Erdman LAM, SP-D bound only minimally to AraLAM, which does not contain mannose caps. The small degree of maltose-inhibitable binding to AraLAM (Figs. 6B and 7) may be the result of SP-D binding to the inositol phosphate caps since SP-D can bind to inositol and phosphatidylinositol (38). Third, exomannosidase did not affect the binding of SP-D to AraLAM. This result suggests that the mannose core region and its branching mannose side chains are not involved in the interaction between SP-D and LAM.

Other carbohydrates present on the surface of M.tb may also participate in the binding of SP-D. We observed a small degree of binding to a region of the M.tb lectin blot consistent with lipomannan, another lipoglycan of M.tb. Free complex carbohydrates such as mannan, arabinomannan, and glucan, which have been described on the surface of M.tb (67), may potentially interact with SP-D. Our methods are less likely to detect these binding interactions, however, since some of these carbohydrates may not be resolved by SDS-PAGE.

We were unable to detect significant binding of SP-D to M. smegmatis, the source of AraLAM. There are at least three possibilities to account for this observation. First, it is possible that SP-D may bind only to the mannose-capped LAM of M.tb, which is lacking on the surface of M. smegmatis. Second, the avirulent M. smegmatis may have less surface-exposed carbohydrate for SP-D binding compared with M.tb (68). Along this line, we have observed much smaller amounts of LAM from solubilized M. smegmatis compared with Erdman M.tb by Western blotting (our unpublished observations). Third, there may be subtle differences in the spatial presentation of the exposed carbohydrates between the two species that result in reduced binding to M. smegmatis. The marked difference between SP-D binding to pathogenic and non-pathogenic mycobacteria invites speculation that the human host has developed a mechanism to identify virulent bacteria that possess unique carbohydrate surface structures. These possibilities warrant further study.
Agglutination of microorganisms is thought to be an important innate host defense mechanism. Agglutinated bacilli may be cleared more readily from the respiratory tract by the mucociliary system or may have altered interactions with host cells (13, 27). We were unable to assess macroscopic agglutination using spectrophotometry because of the self-aggregating property of Mtb, which did not allow us to observe additional macroscopic agglutinating effects of the collectin above control (our unpublished observations). Our data demonstrate, however, that SP-D causes macroscopic agglutination of Mtb. The effect of microscopic agglutination on the host response to pathogens has not been determined. For Mtb, it is possible that microscopic agglutination may lead to altered phagolysosomal fusion (69) or entry of the bacterium into the host cell.

The determinants of entry of Mtb into macrophages is an active area of investigation. These bacteria survive in the intracellular environment of the macrophage whereas many other pathogens are killed. Within this context, mechanisms that enhance entry of Mtb into macrophages may be detrimental to the host, whereas mechanisms that reduce entry may be protective, at least for the initial exposure of the host to the bacterium. Molecules that regulate innate immunologic responses play an important role in this interaction. We have previously reported that SP-A enhances the phagocytosis of Mtb by human MDM and alveolar macrophages via up-regulation of macrophage mannose receptor activity (14). Others have also reported a potential opsonin effect of SP-A for Mtb (22–24).

The studies on SP-A in this report are consistent with our prior report (14). In contrast, subagglutinating concentrations of SP-D reduce macrophage adherence and phagocytosis of Mtb. Thus, the functions of SP-A and SP-D appear to differ. One prior study demonstrated that SP-A mediated phagocytosis of Gram-negative bacteria by alveolar macrophages, but SP-D did not (13). SP-D has been shown to bind to AM (70, 71). A putative receptor on human macrophages has been described recently (49), raising the possibility that there is a pathway for SP-D-mediated uptake of microorganisms. However, microorganisms differ with respect to their predominant mechanism of entry into host cells. Altering these mechanisms by the addition of a collectin, Ab, or complement is likely to change these pathways in unique ways. Mtb is phagocytosed via complement receptors and the mannose receptor found on macrophages (72). On the basis of the results of our studies, we speculate that SP-D inhibits the LAM–mannose receptor interaction. This effect of SP-D may override any potential enhancing effect of a SP-D–macrophage interaction for Mtb uptake. Further studies are needed to examine this possibility.

In summary, we found that SP-D binds to Mtb in a specific manner. This binding is likely mediated by the terminal mannosyl oligosaccharides of LAM and the CRD of the protein. The presence of SP-D reduces the adherence of Mtb to human macrophages, whereas SP-A leads to enhanced adherence. These studies indicate that SP-D and SP-A influence the Mtb–mononuclear phagocyte interaction in the lung and are consistent with the hypothesis that these two collectins serve different roles in innate immunologic responses to respiratory pathogens. Ongoing studies are addressing the net effect of combinations of surfactant proteins in the presence and absence of lipid.

Acknowledgments

We thank Thomas Kaufman and Jennifer Ufnar for their expert technical assistance, and Dr. Stephen McGowan for assistance with the BAL.

References

protein D is less effective in agglutinating bacteria than the native structure and mediates organism adherence to alveolar macrophages. J. Clin. Invest. 95:2699.

