Expression of Functional Selectin Ligands on Th Cells Is Differentially Regulated by IL-12 and IL-4

Yaw-Chyn Lim, Lori Henault, Amy J. Wagers, Geoffrey S. Kansas, Francis W. Luscinskas and Andrew H. Lichtman

*J Immunol* 1999; 162:3193-3201;
http://www.jimmunol.org/content/162/6/3193

**References**
This article cites 46 articles, 26 of which you can access for free at:
http://www.jimmunol.org/content/162/6/3193.full#ref-list-1

**Subscription**
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

**Permissions**
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

**Email Alerts**
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Expression of Functional Selectin Ligands on Th Cells Is Differentially Regulated by IL-12 and IL-4

Yaw-Chyn Lim,* Lori Henault,* Amy J. Wagers, Geoffrey S. Kansas, Francis W. Luscinskas,* and Andrew H. Lichtman2*

Immune responses may be qualitatively distinct depending on whether Th1 or Th2 cells predominate at the site of Ag exposure. T cell subset-specific expression of ligands for vascular selectins may underlie the distinct patterns of recruitment of Th1 or Th2 cells to peripheral inflammatory sites. Here we examine the regulation of selectin ligand expression during murine T helper cell differentiation. Large numbers of Th1 cells interacted with E- and P-selectin under defined flow conditions, while few Th2 and no naïve T cells interacted. Th1 cells also expressed more fucosyltransferase VII mRNA than naïve or Th2 cells. IL-12 induced expression of P-selectin ligands on Ag-activated naïve T cells, even in the presence of IL-4, and on established Th2 cells restimulated in the presence of IL-12 and IFN-γ. In contrast, Ag stimulation alone induced only E-selectin ligand. Interestingly, re-stimulation of established Th2 cells in the presence of IL-12 and IFN-γ induced expression of P-selectin ligands but not E-selectin ligands; IFN-γ alone did not enhance expression of either selectin ligand. In summary, functional P- and E-selectin ligands are expressed on most Th1 cells, few Th2 cells, but not naïve T cells. Furthermore, selectin ligand expression is regulated by the cytokine milieu during T cell differentiation. IL-12 induces P-selectin ligand, while IL-4 plays a dominant role in down-regulating E-selectin ligand. The Journal of Immunology, 1999, 162: 3193–3201.

1 This work was supported by National Institutes of Health Grants HL53993 (F.W.L.) and HL36028 (A.H.L.) and a grant from the American Cancer Society (G.S.K.). G.S.K. is an Established Investigator of the American Heart Association. A.J.W. was supported by a National Science Foundation predoctoral fellowship. 2 Address correspondence and reprint requests to Dr. Andrew H. Lichtman, Department of Pathology, Brigham and Women’s Hospital, 221 Longwood Avenue, Boston, MA 02115; and *Department of Microbiology-Immunology, Northwestern Medical School, Chicago, IL 60611.

Received for publication June 4, 1998. Accepted for publication December 10, 1998.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
respective adhesion molecule expressed on the vascular endothelium. Previous studies have indicated that selectins are involved in T cell recruitment to peripheral inflammatory sites. For example, L-selectin appears to be involved in recruitment of allogeneic T cells into skin grafts in mice (22). We have shown that in contrast to naive T cells, previously activated or memory T cells express functional PSGL-1 (23). Recent studies in mice, in fact, suggest that adaptively transferred Th1 cells are preferentially recruited to cutaneous DTH reactions and to arthritis joints (24) compared with Th2 cells. In addition, in vitro differentiated Th1 but not Th2 cells have been shown to bind to a soluble P-selectin fusion protein (25). To date, however, there has been no assessment of selectin ligand expression on T cell subsets using physiologically relevant flow assays. Furthermore, the factors that determine expression of functional selectin ligands during the process of effector T cell differentiation are not known. Since exogenous cytokines such as IL-12 and IL-4 direct T helper subset differentiation, it is reasonable to hypothesize that these same cytokines influence selectin ligand expression. These cytokines may regulate the expression of enzymes such as fucosyltransferase VII (FucT-VII) required for the synthesis of selectin ligands by blood leukocytes (26–28).

In this study, we have used an in vitro flow chamber simulating flow conditions found in postcapillary venules and live time video microscopy to study the interactions of mouse Th1 and Th2 cells with E- and P-selectin. In addition, we examined the regulation of functional selectin ligand expression on these DO.11 TCR transgenic mouse T cell subsets following TCR Ag-specific stimulation (OVA), using defined in vitro cytokine-driven differentiation strategies.

Materials and Methods

Mice

The DO.11 TCR transgenic mice (29) were bred and maintained in approved animal housing facilities at the Longwood Medical Research Center, Boston, MA. The animals were used at 4 to 6 wk of age and were killed with carbon dioxide as approved by the panel on Euthanasia of the American Veterinary Association.

Preparation of T cells and APCs

DO.11 T cells express a transgenic Ag receptor specific for OVA peptide (323–339) plus I-Ad, and lymph node and spleen cells were removed from DO.11 mice after euthanasia, and cell suspensions were made by passing the tissues through wire mesh. CD4+ T cells were purified by positive selection as previously described (30) using CD4+–coated Dynal beads and Detachable bead reagent (Dynal, Lake Success, NY) according to manufacturer’s instructions. Greater than 95% of the cells were CD4+ as assessed by flow cytometry using FITC-conjugated anti-mouse CD4+ Abs. The CD4–negative fraction of the DO.11 spleen and lymph node suspensions or whole spleen cell suspensions from BALB/c mice were treated with mitomycin C for 30 min at 37°C and used as APCs for DO.11 T cells.

Reagents

Murine recombinant IL-12 was a gift from Genetics Institute (Cambridge, MA). Recombinant murine IL-4 was obtained from the culture supernatant of the 3X13L6 cell line, obtained from Dr. Abul Abbas (Brigham and Women’s Hospital, Boston, MA) which constitutively expresses a stably transfected murine IL-4 gene. The IL-4 concentration was determined by ELISA against a National Institutes of Health standard and used as a dilution of the supernatant. Alternatively, recombinant murine IL-4 was purchased from Genzyme (Cambridge, MA). Murine recombinant IFN-γ and IL-10 were purchased from PharMingen (San Diego, CA). The hybridoma cell lines producing anti-IL-4 (clone 1B11) was obtained from the American Type Culture Collection (Manassas, VA).

Dr. Raymond Camphausen (Genetics Institute, Cambridge, MA) generously provided human E- and P-selectin human IgG chimeric proteins (31, 32). Murine E- and P-selectin human IgM chimeric proteins contained the lectin, epidermal growth factor, and two complement-regulatory protein-like domains of mouse E- and P-selectin (27). The chimeras were purified by anti-IgM affinity chromatography from supernatants of COS cells transfected with expression constructs generously provided by Dr. John Lowe (Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI).

PMAs, ionomycin, brefeldin A, and saponin were all purchased from Sigma (St. Louis, MO).

In vitro differentiation of CD4+ naive cells

Freshly isolated CD4+ DO.11 T cells are mostly naive cells, which produce little detectable IL-4 or IFN-γ on Ag activation (5). These naive cells were differentiated into effector T cells as previously described (5). Briefly, the naïve T cells were suspended in RPMI 1640 medium supplemented with 10% FCS, 2 mM L-glutamine, 10 mM HEPES, 100 U/ml penicillin, and 100 U/ml streptomycin and plated out in 2 ml polystyrene culture wells at a cell density of $2 \times 10^5$/well. APCs (2.5 $\times 10^5$/well) and OVA peptide at a final concentration of 1 $\mu$g/ml were added to each well. For Th1 differentiation, recombinant murine IL-12 (10 ng/ml, final concentration) plus neutralizing anti-IL-4 mAb (1B11 hybridoma supernatant, 25% v/v) were added to individual wells. For Th2 differentiation, murine recombinant IL-4 (1000 U/ml) was added to individual wells. After 2 days, the cultures were split 1:2, and the cells were further diluted with fresh culture medium containing recombinant murine IL-2 (10 U/ml final concentration). After an additional 4 days in culture, the cells were harvested and centrifuged through a Ficoll density gradient to remove dead APCs and cell debris. Cells were tested immediately in flow assays. The phenotype of the differentiated cells was tested by assaying culture supernatants for IL-4 and IFN-γ in response to restimulation with OVA peptide and APCs as described (5). Briefly, T cells were cultured in microwells (2.5 $\times 10^4$/well) with OVA peptide (1 $\mu$g/ml) and APCs (5 $\times 10^3$/well). After 24 h, supernatants from each well were collected and assayed for IFN-γ and IL-4 by ELISA using reagents from PharMingen. Cytokine production by Th1 and Th2 populations was also assessed by intracytoplasmic staining, as described below. In some experiments, the primary cultures were supplemented with various combinations of murine recombinant cytokines, including: no added cytokines; IL-4 (1000 U/ml) plus IL-12 (10 ng/ml); IL-12 plus IL-10 (50 ng/ml); and IFN-γ (500 U/ml).

In other experiments, previously differentiated Th1 and Th2 populations were restimulated in bulk in the presence of exogenous cytokines and Ab reagents to modify the differentiated phenotype. Thus Th1 cells were restimulated with OVA peptide and APCs in the presence of IL-4, and Th2 cells were restimulated with OVA and APCs in the presence of IL-12, IFN-γ (30 U/ml), and anti-IL-4. These secondary differentiation cultures were conducted in the same manner as the primary cultures.

Indirect immunofluorescence and FACS analysis

For single-color analysis of selectin binding, CD4+ naive cells, Th1 cells, or Th2 cells (5 $\times 10^5$ cells/100 $\mu$l) were incubated with murine P- or E-selectin human IgM chimeras (1 $\mu$g/100 $\mu$l) for 20 min on ice, washed in RPMI containing 5% FCS, and then incubated with phycoerythrin (PE)-conjugated goat anti-human IgM for 20 min on ice. In parallel experiments, T cell populations were incubated with human P- or E-selectin-human IgG chimeras and stained with PE-labeled anti-human IgG.

Two-color analysis of simultaneous P- and E-selectin binding was performed using the murine E-selectin-human IgM chimera and human P-selectin-human IgG chimera, followed by a PE-anti-human IgM Ab (Southern Biotechnology Associates, Birmingham, AL) and FITC-anti-human IgG Ab (Caltag Laboratories, Burlingame, CA). Two-color analysis of selectin binding and CD25 or CD44 expression was performed using the murine E-selectin-human IgM or human P-selectin-human IgG chimeras followed by FITC-conjugated anti-human Ig and PE-conjugated anti-CD44 or anti-CD25 (PharMingen). The stained cells were subsequently washed, fixed in 1% formaldehyde, and analyzed with a FACS Calibur flow cytometer (Becton Dickinson, San Jose, CA). Analysis was performed on 104 cells for each condition.

For intracytoplasmic staining of IFN-γ and IL-4, we adapted a previously described method (34). Briefly, Th1 or Th2 cells were activated with PMA (20 ng/ml) and ionomycin (2.5 $\mu$m) for 2 h and then treated with brefeldin A (20 $\mu$g/ml) for an additional 3 h. The cells were then fixed in 4% paraformaldehyde and washed once in PBS/BSA followed by a second wash in PBS/BSA with 0.5% saponin and 0.1% sodium azide. The permeabilized cells were stained with FITC-conjugated anti-IFN-γ or PE-conjugated anti-IL-4, or their respective fluorochrome-conjugated isotype controls (all from PharMingen) in the presence of 0.5% saponin for 45 min. The cells were then washed with PBS/BSA with 0.5% saponin and 0.1% sodium azide followed by PBS/BSA to resolubilize the plasma membranes. These cytokine-stained cells were then stained for E- or P-selectin binding and analyzed by two-color flow cytometry as described above.
Table I. Cytokine expression by DO.11 Th1 and Th2 cells

<table>
<thead>
<tr>
<th></th>
<th>IFN-γ (U/ml)</th>
<th>IL-4 (U/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Th1</td>
<td>1190 ± 376</td>
<td>85 ± 134</td>
</tr>
<tr>
<td>Th2</td>
<td>159 ± 155</td>
<td>627 ± 429</td>
</tr>
</tbody>
</table>

*Th1 and Th2 populations were derived in vitro and restimulated with Ag, and 24-h culture supernatants were analyzed for IFN-γ and IL-4 by ELISA, as described in Materials and Methods. Data represent the mean ± SD of nine separate experiments using cells that were also used in flow chamber studies presented in this article. The differences in the mean values for each cytokine between Th1 and Th2 cells are statistically significant (p < 0.0001).

Measurement of Th cell interactions with P-selectin and E-selectin chimera under defined flow conditions

Th cell interactions with P-selectin- and E-selectin-coated slides under defined laminar flow were studied in a parallel plate flow chamber as previously described (35). After 6 days in culture, the Th cells were resuspended in Dulbecco's PBS containing 0.1% (v/v) human serum albumin and 20 mM HEPES, pH 7.4, at 37°C (5 × 10⁶/ml) and perfused over P-selectin- and E-selectin-coated coverslips. Human P-selectin-Ig or E-selectin-Ig fusion protein (10 μg/ml) was captured on glass coverslips using goat F(ab')₂ anti-human Fc Ab as previously described (35). This concentration was found to be saturating by performing dose-response adhesion assays. T cell interactions with selectins were recorded using a ×20 phase contrast objective and a videomicroscopy and VCR system. T cells were drawn through the chamber at decreasing flow rates for 2.5 min each, i.e., 1.3 ml/min (2.1 dynes/cm²), 0.94 ml/min (1.5 dynes/cm²), 0.78 ml/min (1.2 dynes/cm²), 0.52 ml/min (0.8 dyne/cm²), and 0.26 ml/min (0.4 dyne/cm²). T cell adhesion was determined after the initial minute of each flow rate by counting the number of cells in four different fields as previously described (35). The instantaneous rolling velocities of Th1 or Th2 subsets on the P-selectin and E-selectin substrates were measured every 0.2 s over a time period of 4 to 6 s using a customized image analysis program (OPTIMAS Bioscan, Edmonds, WA).

Semiquantitative RT-PCR analysis of glycosyltransferases

Determinations were made of the relative levels of RNA encoding core 2 N-acetylgalactosaminyltransferase (C2GnT), α-3-fucosyltransferase VII (FucT-VII), and dihydrofolate reductase (DHFR). Isolation of RNA, reverse transcriptase reactions (RT), and PCR reactions were performed as previously described for human cells (36). As a negative control, RT was omitted from otherwise identical RT reactions. Primers were as follows: murine FucT-VII sense 5'-acc cta cgg tct gta gga gct ttc-3', antisense 5'-caa gaa aag cca tga cca gta gga tct-3'; murine C2GnT sense 5'-ttc tew ggc agt gtc ttc tgt gtc-3', antisense 5'-atg ctc atc aca aca cta gat ggc gaa-3'; murine DHFR sense 5'-cca cca cct cct cag tgg aag gta gag aca aga-3', antisense 5'-ttc gca gaa aaa tga gta gtc cct gtc ggc-3'. PCR reactions were conducted for 32, 26, and 26 cycles for FucT-VII, C2GnT, and DHFR, respectively, which we previously established were below plateau phase for these genes. PCR reactions were run out on 1.2% gels, transferred to nitrocellulose, and Southern blotted with probes specific to these three genes.

Statistical analysis

All results were expressed as the mean ± SEM unless otherwise stated. Statistical analyses by ANOVA followed by paired t test were performed using Microsoft Excel 5.0 (Microsoft, Redmond, WA) and were considered statistically significant at p ≤ 0.05.

Results

Phenotype of in vitro differentiated DO.11 effector T cell populations

After naive T cells are stimulated with Ag in the presence of IL-12 and anti-IL-4 in primary cultures, they display a Th1 phenotype, producing abundant IFN-γ and little IL-4 after restimulation. Conversely, after Ag stimulation in the presence of IL-4 in primary cultures, the cells display a Th2 phenotype, producing abundant IL-4 and little IFN-γ after restimulation (Table I). These results are consistent with numerous reports on DO.11 T cell subset differentiation (37, 38, 39), and they establish the validity of correlating the adhesion properties of these bulk populations of T cells described below, with Th1 and Th2 phenotypes.

Interactions of Th1 and Th2 cells with E- and P-selectin under flow conditions

The capability of the in vitro differentiated Th1 and Th2 cells and freshly isolated naive DO.11 T cells to initially attach to vascular selectins and roll under defined flow conditions was assessed using a parallel plate flow chamber system as described in Materials and Methods. The cells were initially drawn into the chamber at a flow rate (1.3 ml/min) that maintained an estimated shear stress of 2.1 dynes/cm² for 3 min. The flow rate was subsequently decreased stepwise every 2.5 min. Significantly more Th1 than Th2 cells accumulated and rolled on the P-selectin-coated surface at each level of wall shear stress (Fig. 1A). Similarly, significantly more Th1 cells interacted with E-selectin than Th2 cells under identical conditions (Fig. 1B). Similar to our previous report with human naive CD4⁺ T cells (23), few if any naive mouse CD4⁺ T cells interact with either E- or P-selectin under defined flow conditions (Fig. 1). This observed difference in selectin-binding capabilities between in vitro differentiated Th1 and Th2 cells is highly reproducible as the results in Fig. 1 are based on 9–11 experiments for P-selectin and 6–8 experiments for E-selectin. Data for CD4⁺ naive T cells are representative of two different experiments. *, p ≤ 0.05 as compared with Th1 cells.
with blocking mAbs, HPDG 2/3 for P-selectin and 7A9 for E-selectin, completely abrogated T cell interactions (data not shown).

Interestingly, there was no significant difference in instantaneous rolling velocities between Th1 cells (6.11 \pm 0.59 \mu m/s; n = 79) and Th2 cells (5.79 \pm 0.64 \mu m/s; n = 39) on P-selectin at 0.8 dyne/cm². This suggests that the density of functional P-selectin ligands is approximately the same on rolling cells within Th1 and Th2 populations, but the frequency of T cells expressing the functional ligands is much higher in Th1 than in Th2 populations. This notion is supported by results obtained from flow cytometric analyses of P- and E-selectin binding (see Fig. 2, C and D, discussed below). In contrast, there was a significant difference in instantaneous rolling velocities on E-selectin at 0.8 dyne/cm² between Th1 cells (0.78 \pm 1.76 \mu m/s; n = 69; p < 0.05) and Th2 cells (9.19 \pm 9.31 \mu m/s; n = 74). This suggests that in comparison to Th1 cells, Th2 cells express lower density or lower avidity forms of E-selectin ligand(s).

Flow cytometric analysis of P- and E-selectin-binding by Th1 and Th2 cells

We performed flow cytometric studies using soluble murine selectin-IgM chimeras as ligands to determine whether the relative abilities of D0.11 Th1 and Th2 cells to roll on both P- and E-selectin in the flow adhesion assay correlates with binding of soluble ligand. This is a very relevant question because of a recent report that murine Th1 cells bind significantly more soluble P-selectin-Ig chimeric protein than do Th2 cells (25). We found that 50 \pm 5.5% (n = 2) of Th1 cells had the capability of binding murine P-selectin-IgM in suspension (Fig. 2Aa). In contrast to Th1 cells, 15 \pm 10% (n = 2) of Th2 cells bound murine P-selectin-IgM
chimera (Fig. 2Ae). Both the number of cells staining positive with the P-selectin reagents and the mean intensity of staining were higher for Th1 cells than for Th2 cells. Naive CD4\(^+\) cells did not bind murine P-selectin-IgM (Fig. 2A). DO.11 Th1 cells also bound murine E-selectin-IgM, albeit the number of positively labeled cells was lower than that seen with P-selectin (Fig. 2Ab). Th2 or naive cells did not bind E-selectin (Fig. 2A, f and j). In parallel experiments, the capability of these murine T cell subsets to bind human P-selectin-IgG chimera was also examined. About 73\% of the Th1 cells and 45\% of Th2 cells bound human P-selectin-IgG (Fig. 2A, c and g). Although the amount of human P-selectin-IgG binding to both Th1 and Th2 cells was higher than binding of murine P-selectin-IgM, the specificity of the human reagent was confirmed with blocking anti-human P-selectin Ab (Fig. 2A, d and h). In contrast, naive T cells showed negligible binding of human P-selectin (Fig. 2Ak). No T cell binding of human E-selectin could be detected by flow cytometry, even though human E-selectin-IgG chimera supported Th1 subset rolling interactions under flow conditions (Fig. 1). These findings confirm those reported by Borges et al. (25) indicating that immunofluorescence analyses of the binding of soluble ligands can distinguish Th1 and Th2 populations. Nonetheless, the relative amounts of human P-selectin binding by Th1 and Th2 cells, as assessed by immunofluorescence, may not accurately reflect the quantitative differences in functional P-selectin ligand expression as assessed by flow chamber studies.

Two-color staining of T cells with both P- and E-selectin reagents was performed to determine whether the same or different cells bound each of these selectins (Fig. 2B). We found that the great majority of E-selectin binding Th1 cells also bind P-selectin, but, as we knew from our single-color analysis, there are more cells that bind soluble P-selectin than soluble E-selectin. Thus, many Th1 cells bind P-selectin but not E-selectin, and very few Th1 cells bind E-selectin but not P-selectin.

We also performed intracytoplasmic staining for cytokines in combination with surface staining of the same cells with selectin ligands to determine the relative numbers of selectin-binding cells that produced IFN-\(\gamma\) or IL-4 (Fig. 2C). In the representative experiment shown, \(\sim 50\%\) of the Th1 population produced IFN-\(\gamma\) (Fig. 2C, a and b), and \(<1\%\) produced IL-4 (Fig. 2C, e and f). In contrast, \(\sim 1\%\) of the Th2 population produced IFN-\(\gamma\) (Fig. 2C, c and d), and 33\% produced IL-4 (Fig. 2C, g and h). About 72\% of Th1 cells bound murine P-selectin-IgM, and 50\% of these cells produced IFN-\(\gamma\) (Fig. 2Ca). About 8\% of Th1 cells bound murine E-selectin-IgM, and 60\% of these cells produced IFN-\(\gamma\) (Fig. 2Cb). Only 10\% of Th2 cells bound murine P-selectin-IgM, and 30\% of these cells produced IL-4 (Fig. 2Cg). As described above (Fig. 2A), very few Th2 cells bind E-selectin (Fig. 2Ch). Thus, the frequency of IFN-\(\gamma\)-producing, P-selectin binding cells in the Th1 population was about 12 times greater than the frequency of IL-4-producing, P-selectin-binding cells in the Th2 population. Similarly, there was a much higher frequency of IFN-\(\gamma\)-producing, E-selectin-binding cells in the Th1 population compared with a negligible percentage of IL-4-producing, E-selectin-binding cells in the Th2 population.

Further phenotypic analysis of selectin-binding Th1 and naive T cells was undertaken using the T cell activation markers CD25 and CD44 (Fig. 2D). The staining profiles indicate that the majority of P-selectin-binding Th1 cells (97\%) are CD25\(^+\) and Th1 cells express more CD44 than naive cells (mean channel fluorescence, 776 vs 253, respectively). These phenotypic features are typical of recently activated cells. Binding of soluble P- or E-selectin is largely limited to the CD25\(^+\) Th1 cells.

**IL-12 enhances expression of functional P-selectin ligand on T cells**

The ability of Th1 but not Th2 cells to initially attach and roll on P-selectin under flow conditions suggests that one or more of the cytokines that direct T cell subset differentiation influences the expression of P-selectin ligand(s). To determine which cytokines are involved, flow adhesion assays were performed with DO.11 cells after 6 days of Ag stimulation, in the absence or presence of different combinations of added cytokines. As seen in Fig. 3, DO.11 T cells that were differentiated in the presence of anti-IL-4 mAb but without exogenous cytokines demonstrate a very low but consistent level of rolling interactions with P-selectin at 0.8 dyne/cm\(^2\). These cells are Th1-like, producing little IL-4 and abundant IFN-\(\gamma\) (Table II and Fig. 2C). As described earlier, the presence of IL-12 significantly enhanced the differentiation toward a P-selectin-binding phenotype, while IL-4 had little effect (Fig. 3). Interestingly, T cells differentiated in the presence of both IL-4 and IL-12 exhibit an intermediate level of accumulation and rolling cells, significantly greater than the cells differentiated with anti-

---

**Table II. Cytokine production by DO.11 T cells after differentiated in the presence of various combinations of cytokines**

<table>
<thead>
<tr>
<th>Differentiation Conditions</th>
<th>Anti-IL-4</th>
<th>IL-12 + Anti-IL-4</th>
<th>IL-4</th>
<th>IL-4 + IL-12</th>
<th>IL-12 + Anti-IL-4 + IL-10</th>
<th>IFN-(\gamma) + Anti-IL-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFN-(\gamma)</td>
<td>707 ± 112</td>
<td>1002 ± 276</td>
<td>317 ± 112</td>
<td>472 ± 74</td>
<td>896 ± 51</td>
<td>182 ± 228</td>
</tr>
<tr>
<td>IL-4</td>
<td>37 ± 44</td>
<td>53 ± 84</td>
<td>445 ± 171</td>
<td>438 ± 186</td>
<td>87 ± 83</td>
<td>11 ± 5</td>
</tr>
</tbody>
</table>

* Freshly isolated DO.11 T cells were stimulated in vitro with Ag and APCs in the presence of the cytokine/Ab combinations indicated (Differentiation Conditions), as described in Materials and Methods. After 6 days of culture, the T cells were harvested, washed, and restimulated with Ag and 24-h supernatants were collected and analyzed for IL-4 and IFN-\(\gamma\), as described in Table 1. N = 2 for all conditions.
IL-4 and no added cytokines, hence implicating a role for IL-12 in inducing expression of functional P-selectin ligand (Fig. 3). The reduced number of interactions, as compared with IL-12-treated (Th1) cells, may be the result of the antagonizing effects of exogenous IL-4 on T cell responsiveness to IL-12. T cells differentiated in the presence of IL-4 plus IL-12 produced significant amounts of IL-4 and far less IFN-γ than Th1 cells (Table II). Similarly, the presence of exogenous IL-10 also can partially antagonize the inductive effects of IL-12 on P-selectin ligand expression and lead concomitantly to a moderate reduction in IFN-γ production by the differentiated cells.

In contrast to the observed effects of IL-12 on the induction of functional P-selectin ligand expression, exogenously added IFN-γ did not enhance P-selectin ligand expression. In fact, when IFN-γ alone was added to differentiation cultures, the resulting T cell population did not interact with P-selectin any more than Th2 cells (Fig. 3).

**Capability of Th1 cells to initially attach and roll on E-selectin is independently regulated from that for P-selectin**

In experiments performed in parallel to those described in Fig. 3, the capabilities of the different T-helper subsets to interact with E-selectin was also examined. Fig. 4 shows the number of T cells, differentiated in the presence of various cytokine combinations, that accumulate on E-selectin at 0.8 dyn/cm². Interestingly, cells differentiated in the presence of anti-IL-4 but in the absence of added cytokines, interacted in large numbers with E-selectin under flow. This is in contrast to their inability to interact with P-selectin under identical conditions (Fig. 3). However, the number of interacting cells after differentiation in the presence of IL-12 and IL-10, T cell interactions with E-selectin were no different from those of T cells differentiated in the presence of IL-12 alone. This suggests that IL-10 does not antagonize the effect of IL-12. This is in contrast to the decreased interactions with P-selectin caused by IL-10 (Fig. 3).

**IL-12 can induce polarized Th2 cells to interact with P-selectin but not E-selectin under flow**

To further examine whether T helper cell interactions with P-selectin and E-selectin can be modulated by the presence of IL-12, we investigated the effects of restimulating Th2-polarized cells in the presence of IL-12 (and IFN-γ). Fig. 5A shows the cytokine production profile of DO.11 cells at two different differentiation time points: at 6 days following initial stimulation of naive CD4⁺ T cells with Ag and IL-4 (Th2 cells); and at 6 days after secondary Ag stimulation of the Th2 cells in the presence of IL-12, IFN-γ plus anti-IL-4 mAb. IFN-γ was added to these cultures to ensure responsiveness to IL-12 by up-regulating the β₂ chain of the IL-12 receptor because Th2 cells do not constitutively express this receptor chain (39). As shown in Fig. 5, B and C, secondary restimulation of Th2 cells in the presence of IL-12 and IFN-γ (i.e.,...
Th1 polarizing conditions) resulted in a cell population with enhanced rolling/accumulation on P-selectin as compared with the parent Th2 population. This was accompanied by an enhanced capacity to secrete IFN-γ (Fig. 5A). In contrast, these same cells did not show enhanced ability to roll/accumulate on E-selectin (Fig. 5C). Furthermore, secondary restimulation of Th1 cells with IL-4 induced the capacity to produce IL-4 and reduced IFN-γ production (Fig. 6A).

**Expression of FucT-VII and C2GnT mRNA in naive, Th1, and Th2 cells**

Semiquantitative RT-PCR analysis was conducted to determine the changes in the levels of mRNA for FucT-VII and C2GnT, enzymes that have previously been shown to be essential to selectin ligand biosynthesis (40) (Fig. 7). A low level of both FucT-VII and C2GnT mRNA was detected in naive cells, possibly due to contamination of naive cell preparations with monocyte/macrophages, which express high levels of these gene products. Th1 cells expressed much higher levels of FucT-VII mRNA than naive cells, whereas Th2 cells showed only a modest increase (compare FucT-VII levels with DHFR). In contrast, C2GnT levels increase equally in both Th1 and Th2 cells. Thus, FucT-VII mRNA levels correspond to the levels of adhesion to endothelial selectins demonstrated above.

**Discussion**

The data presented here show that during Ag-specific differentiation from naive T cells, murine CD4+ Th1 cells acquire the ability to interact with selectins under levels of defined wall shear stress that approximate in vivo conditions in microvessels. In contrast, Th2 cells express much lower levels of functional selectin ligands. These findings establish that expression of physiologically functional selectin ligands is regulated in a T cell subset-specific manner. The acquisition of functional selectin ligands during transition from naive to effector phenotype is consistent with our previous studies of human CD4+ T cells in which CD45RA+ cells did not roll on E- or P-selectin but in vitro differentiated CD45RO+ T cells did (23). The Th1-restricted expression of functional selectin ligands that support rolling interactions with vascular selectins under flow is also consistent with previous reports that murine Th1, but not Th2, cells bind soluble P-selectin (25) as assessed by indirect immunofluorescence and flow cytometry.

Differentiation of naive CD4+ T cells to effector cells requires Ag stimulation by professional APCs. Furthermore, in vitro studies have established that cytokines added exogenously can drive effector T cell differentiation toward polar Th1 or Th2 phenotypes. In particular, IL-12 is required for Th1 differentiation, and IL-4 is required for Th2 differentiation. Hence, we stimulated naive DO.11 TCR transgenic CD4+ T cells in the presence of different
culture conditions to address the effects of cytokines on synthesis of E- and P-selectin ligands. We have found that the addition of IL-12 to naive T cell differentiation cultures, whether or not IL-4 is present, will induce functional P-selectin ligands. In contrast, adding IFN-γ without IL-12 does not. Furthermore, when Th2 cells are restimulated with Ag in the presence of IL-12, they gain expression of functional P-selectin ligands. These findings are consistent with a critical role of IL-12 in inducing functional P-selectin ligand expression. Interestingly, IL-12 has been previously implicated in the induction of the E-selectin ligand called cutaneous lymphocyte-associated Ag during bacterial superantigen stimulation of human T cell (41). In contrast, IFN-γ is not sufficient to induce expression of functional P-selectin ligands in this model. In addition, the current results indicate that the ability of effector T cells to make significant amounts of IFN-γ, a characteristic of Th1 cells, does not strictly correlate with enhanced expression of functional P-selectin ligands. This is most evident when DO.11 cells are differentiated in the presence of anti-IL-4 but no added cytokines (Fig. 3 and Table II).

Our data indicate that the regulation of selectin ligand expression is not tightly linked to regulation of cytokine gene expression. For example, although highly polarized Th1 populations interact with P-selectins under flow to a much greater extent than do polarized Th2 cells, we observed significant P-selectin interactions by Th0-like populations that produced both IFN-γ and IL-4, as long as those populations were differentiated from naive T cells in the presence of IL-12. These findings are consistent with a recent report describing the selectin binding and cytokine expression properties of lymph node T cells draining a skin DTH site (42). In that study, both IFN-γ-producing and nonproducing cells bound soluble P-selectin. Far fewer IL-4-producing cells were found in the lymph nodes, but again both IL-4-producing and nonproducing cells bound P-selectin. It is likely that in the skin DTH model, few highly polarized Th2 cells are generated, but IL-12-driven Th1 differentiation does occur. Those in vivo findings and the findings reported here support the notion that there is heterogeneity in both selectin binding and the T cell cytokine secretory responses among Ag-activated T cells. Furthermore, there is no obligate coexpression of both IFN-γ and functional selectin ligand. Nonetheless, both phenotypic characteristics are promoted by the presence of IL-12 during T cell differentiation from naive T cells, and therefore IL-12 will lead to the generation of IFN-γ-producing cells that are capable of binding to selectins on activated endothelium at inflammatory sites.

Other recent studies have found that regulation of the expression of functional P-selectin ligands differs from regulation of functional E-selectin ligands (43, 44). The results reported here support the hypothesis that E- and P-selectin ligand expression is distinctly regulated during effector CD4+ T cell differentiation. While ligands for E- and P-selectin are detected in both flow cytometry and in vitro flow adhesion assays on polarized Th1 cells (but not on Th2 cells), only E-selectin ligand expression (but not P-selectin ligand) is detected following Ag stimulation of naive T cells in the absence of exogenous IL-12 (Fig. 4). Furthermore, the loss or gain in adhesion to P-selectin under flow did not match that of E-selectin adhesion when differentiated Th1 and Th2 cells were redifferentiated by a second Ag challenge and cytokine stimulation (Figs. 5 and 6). Interestingly, although the expression of functional E-selectin ligand could be induced by Ag stimulation of naive T cells, it was rapidly down-regulated by IL-4 (Figs. 4 and 6C). Indeed, in all experimental conditions where IL-4 was present, whether exogenously added or endogenously produced, the resultant effector T cells minimally interacted with E-selectin. This is in contrast to the expression of functional P-selectin ligands, which were maintained in at least two experimental conditions where IL-4 was present: 1) when naive DO.11 T cells were differentiated in the presence of IL-4 and IL-12 (Fig. 3); and 2) when polarized Th2 cells were redifferentiated in the presence of IL-12 (Fig. 5B). This demonstrates that the expression of functional E-selectin ligand is sensitive to the presence of IL-4. This finding is consistent with results reported by Teraki et al. (45) that showed the expression of the skin-homing E-selectin ligand on T cells, cutaneous lymphocyte Ag, is rapidly down-regulated by exogenous IL-4. Taken together, we speculate that the expression of functional E-selectin ligands on effector T cells is regulated by a negative feedback mechanism triggered by the presence of IL-4 during T cell differentiation.

Several recent reports support the notion that the expression of functional selectin ligands correlates closely with elevated levels of fucosyltransferase enzymes, in particular FucT-VII (26, 27). A recent study by Knibbs et al. (46) has shown that T cells derived from FucT-VII knockout mice do not synthesize ligands for E- or P-selectin. Consistent with these reports, we have found that the level of mRNA for FucT-VII was 10-fold higher in Th1 cells than in Th2 and naive T cells (Fig. 7). A report published while this paper was in revision also indicates that Th1 cells express more FucT-VII mRNA than Th2 cells, and this correlates with more binding of soluble P-selectin to Th1 cells (42). Interestingly, Knibbs et al. also have reported that synthesis of P-selectin ligands required lower levels of FucT-VII activity than the level required for E-selectin ligand synthesis, and the authors did not observe T cell E-selectin ligand expression in the absence of P-selectin ligand. The latter finding contrasts with the data reported here indicating that E-selectin ligand can be induced without P-selectin ligand when DO.11 T cells are stimulated with Ag but no added cytokines. The culture conditions reported by Knibbs et al. were very different from those used here, and the activated T cell populations analyzed in that study were largely CD8+ T cells. Nonetheless, it is reasonable to infer that TCR activation without exogenous cytokines can induce the elevation in FucT-VII that is necessary to synthesize functional E-selectin ligands. Indeed, studies using T cell lines have shown that TCR activation of T cells alone can induce an increase in FucT-VII mRNA expression (26). It is also possible that FucT-IV, which in certain cells can generate E-selectin ligands (26), is induced by TCR stimulation in DO.11 T cells, and this may be sufficient to generate functional levels of E-selectin ligands but not P-selectin ligands. In contrast, for the expression of functional P-selectin ligands, other signals in addition to TCR activation, appear to be required. In fact, our data show that the presence of IL-12 during TCR activation of naive T cells or restimulation established Th2 cells is critical to generate P-selectin ligands. We infer from these new data that an elevated level of FucT-VII per se is not the sole requirement for generation of both E- and P-selectin ligands, but another level of control is likely involved. Other potential point(s) of control by cytokines include regulation of FucT-IV and/or core 2 expression and enzyme(s) that mediate posttranslational sulfation reactions that are critical for PSGL-1 function, the major P-selectin ligand (40).

In summary, this study establishes that the expression of physiologically relevant P- and E-selectin ligands differ in Th1 and Th2 populations and that this is a consequence of the regulatory influences by exogenous cytokines during effector T cell differentiation. These findings are consistent with the hypothesis that IL-12 is a key regulator of functional P-selectin ligand expression during Th1 differentiation, and IL-4 may be an important down-regulator of E-selectin ligand. Further investigations will be necessary to precisely define the signals involved in cytokine regulation of selectin
ligand expression and the possible direct effects of cytokines on the expression of glycosyltransferases involved in ligand production.

Acknowledgments

We thank Dr. John Lowe (University of Michigan, Ann Arbor, MI) for providing murine selectin-Ig chimera expression constructs; Dr. Ray Camp-hausen (Genetics Institute) for providing purified human selectin-Ig chimeras; Dr. L. Stoolman (University of Michigan) for preprints of manuscripts and helpful discussions; members of the Vascular Cell Division, Department of Pathology, Brigham and Women’s Hospital, for their support during this study; and Ms. Lisel James for excellent technical assistance.

References