Regulation of Monocyte Survival In Vitro by Deposited IgG: Role of Macrophage Colony-Stimulating Factor

Clay B. Marsh, Richard P. Pomerantz, Jennifer M. Parker, Alissa V. Winnard, Ernest L. Mazzaferri, Jr., Nicanor Moldovan, Todd W. Kelley, Eric Beck and Mark D. Wewers

J Immunol 1999; 162:6217-6225; http://www.jimmunol.org/content/162/10/6217

References

This article cites 36 articles, 17 of which you can access for free at: http://www.jimmunol.org/content/162/10/6217.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at: http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts
Regulation of Monocyte Survival In Vitro by Deposited IgG: Role of Macrophage Colony-Stimulating Factor

Clay B. Marsh,2*† Richard P. Pomerantz,* Jennifer M. Parker,* Alissa V. Winnard,* Ernest L. Mazzaferrari, Jr.,* Nicanor Moldovan,† Todd W. Kelley,* Eric Beck,‡ and Mark D. Wewers*‡

IgG deposition at tissue sites characteristically leads to macrophage accumulation and organ injury. Although the mechanism by which deposited IgG induces tissue injury is not known, we have recently demonstrated that deposited IgG stimulates the release of IL-8 and monocyte chemoattractant protein-1 from normal human monocytes, which may drive inflammation. Since IgG also induces macrophage accumulation in these diseases, we hypothesized that deposited IgG protects monocytes from apoptosis. As an in vitro model of the effect of deposited IgG on monocyte survival, monocyte apoptosis was studied after FcγR cross-linking. Monocytes cultured on immobilized IgG, which induces FcγR cross-linking, were protected from apoptosis, whereas monocytes cultured with equivalent concentrations of F(ab’)2 IgG or 50 times higher concentrations of soluble IgG, neither of which induces FcγR cross-linking, were not protected. Moreover, this protection was transferable, as supernatants from immobilized IgG-stimulated monocytes protected freshly isolated monocytes from apoptosis and contained functional M-CSF, a known monocyte survival factor. M-CSF mediated the monocyte survival induced by FcγR cross-linking, as neutralizing anti-human M-CSF Abs blocked the monocyte protection provided by either immobilized IgG or IgG-stimulated monocyte supernatants. These findings demonstrate a novel mechanism by which deposited IgG targets tissue macrophage accumulation through FcγR-mediated M-CSF release. This pathway may play an important role in promoting and potentiating IgG-mediated tissue injury. The Journal of Immunology, 1999, 162: 6217–6225.

Targeted organ injury in immune complex-associated diseases is associated with deposits of IgG and expanded numbers of young, activated macrophages (1–4). Macrophages derived from bone marrow produce monocytes, which have a half-life of 24–48 h (5, 6). However, at sites of inflammation, monocyte/macrophage populations are frequently expanded (7–10). Since monocyte/macrophage replication is limited, and the monocyte life span short, tissue macrophage expansion must be controlled by prevention of apoptosis. However, the mechanisms that protect monocytes from undergoing apoptosis are only recently becoming understood. In this regard, macrophage populations are often expanded at sites of immune complex deposition, like the joint in rheumatoid arthritis or the alveoli in idiopathic pulmonary fibrosis (7–10). These compartmentalized macrophages may potentiate the tissue injury through the elaboration of cytokines and chemokines (11–14). We have recently found that monocyte FcγR cross-linking on immobilized human IgG, mimicking the effects of immune complexes or deposited IgG on these cells, induces monocytes to release biologically active IL-8 and monocyte chemoattractant protein-1 (MCP-1)3 (15–17). These chemokines mediate the regulated recruitment of neutrophils and monocytes in the response to opsonized bacteria and the unregulated influx of these inflammatory leukocytes in immune complex-associated diseases.

Localized MCP-1 recruits monocytes to tissues targeted by IgG deposition (15). Regulated monocyte recruitment and survival in response to IgG-opsonized bacteria may be beneficial in resolving localized bacterial infection (18), but unregulated recruitment and survival of monocytes in immune complex-related diseases may lead to tissue injury (1, 10, 19, 20). However, MCP-1 does not promote monocyte survival (21), suggesting that additional monocyte survival factors must be present. Thus, the goal of this study was to characterize the mechanisms that relate IgG deposition to macrophage accumulation to provide new targets to reverse tissue injury in Ab-mediated diseases.

Materials and Methods

Reagents

RPMI 1640 was obtained from BioWhittaker (Walkersville, MD). FCS was obtained from HyClone (Logan, UT). Polymyxin B was obtained from Rohrer Pharmaceuticals (New York, NY). Pooled human IgG (Sandoglobulin) was purchased from Sandoz (Basel, Switzerland). Human serum albumin was obtained from Sigma (St. Louis, MO). Immunol IV tissue culture plates were obtained from Dynatech (Chantilly, VA). Recombinant human M-CSF, murine anti-M-CSF mAbs (IgG2a isotype), and M-CSF ELISAs were obtained from R&D Systems (Minneapolis, MN). F(ab’)2 of IgG (Fc domains removed by the manufacturer) and monoclonal IgG2a isotype Abs were obtained from The Jackson Laboratory (Bar Harbor, ME). Papain used to generate Fab of IgG Abs was obtained from Pierce (Rockford, IL). Wizard Miniprep DNA binding columns were obtained from Promega (Madison, WI). Charged membranes used to transfer DNA

1 Abbreviation used in this paper: MCP-1, monocyte chemoattractant protein-1.

2 Address correspondence and reprint requests to Dr. Clay B. Marsh, Division of Pulmonary and Critical Care Medicine, N-325 Means Hall, 1654 Upham Dr., Ohio State University Medical Center, Columbus, OH 43210. E-mail address: marsh.2@osu.edu

3 Division of Pulmonary and Critical Care Medicine and †The Heart and Lung Institute, Ohio State University College of Medicine and Public Health, Columbus, OH 43210; and ‡Progenitor, Inc., Columbus, OH 43210

Received for publication November 24, 1998. Accepted for publication February 19, 1999.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

This work was supported by National Institutes of Health Grants HL40871, AL/HL40150, and J01BR00034; by the American Lung Association of Ohio; the Ohio State University College of Medicine and School of Public Health Bremer Foundation; and by a Parker B. Francis Families Fellowship in Pulmonary Research (to C.B.M.).

Copyright © 1999 by The American Association of Immunologists 0022-1767/99/$02.00
IgG INDUCES MONOCYTE SURVIVAL THROUGH M-CSF PRODUCTION

Cellular preparation and cell culture

Monocytes (66 ± 2.1% CD14+) were isolated from the heparinized blood of normal human volunteers as previously described (16) and resuspended in the initial volume at which it was plated (0.2 ml). Bound IgG concentrations were determined by PAGE (0.02 ml/lane) and immune cytometry content as described above.

The monocytes were enriched by first diluting whole blood 1/1 with PBS and layering the blood/saline mixture onto 20 ml of Histopaque. The mixture was centrifuged at 2000 rpm at 18°C for 20 min without breaking. The mononuclear layer was pooled and washed once with RPMI at 14,000 rpm for 10 min at 4°C with the brake on and an additional two times at 1,050 rpm. The cells were counted on a hemocytometer, resuspended to 5 × 10^6 cells/ml with RPMI containing 10% FBS in a polypropylene tube, and rotated for 1 h at 4°C. The cells were layered onto cold FBS at a 1:1 ratio for 20 min to allow the monocytes to fall to the bottom of the tube. The mononuclear layer was then removed, washed twice with RPMI at 4°C, counted, and resuspended.

The monocytes were suspended in RPMI/5% FBS (2 × 10^5 cells/ml) for the conditions. These monocytes were cultured with endotoxin-free pooled human IgG that had been either (i) immobilized to tissue culture plates overnight followed by washing of the plates twice with sterile PBS/polymyxin B the following day, or (ii) added solubly to monocytes over 24 h. The monocytes were washed twice with RPMI at 4°C, counted, and recounted. The monocytes were suspended in RPMI/5% FBS (2 × 10^5 cells/ml) for the conditions. These monocytes were cultured with endotoxin-free pooled human IgG that had been either (i) immobilized to tissue culture plates overnight followed by washing of the plates twice with sterile PBS/polymyxin B the following day, or (ii) added solubly to monocytes over 24 h. The monocytes were washed twice with RPMI at 4°C, counted, and recounted.

Apoptosis

Cytosolic DNA fragmentation assay.

To quantify and identify individual cells that were apoptotic during the culture, the cells were plated on glass chamber slides that had been previously coated with immobilized IgG, F(ab')2 or IgG, or human serum albumin all at 0.1 mg/ml. After 24 h, the cell-free supernatants were recovered, and the cells were fixed. Apoptotic cells were identified using a TdT detection kit (TdT DNA fragmentation detection kit) to add biotinylated nucleotides onto 3′-hydroxy DNA fragments, as instructed by the manufacturer (Oncogene Research Products). Diaminobenzidine was used to generate an insoluble brown substrate at the site of DNA fragmentation. The sample was counterstained with methyl green to aid in the morphological examination and characterization of normal and apoptotic cells.

M-CSF antigenic quantification

After 24 h, cell-free supernatants from monocytes that had been incubated on immobilized or soluble IgG were recovered, and M-CSF was assayed using a commercially available ELISA. Samples were measured in duplicate at four dilutions.

M-CSF biologic function assay

To determine whether the antigenic M-CSF was also biologically active, a methylcellulose CFU assay was performed. This assay measured monocyte-inducing activity from blasts using freshly isolated human bone marrow (through Division of Bone Marrow Transplantation, Ohio State University). To determine CFU activity, supernatants from monocytes incubated on immobilized IgG, F(ab')2 or IgG, or human serum albumin all at 0.1 mg/ml. After 24 h, the cell-free supernatants were recovered, and the cells were fixed. Apoptotic cells were identified using a TdT detection kit (TdT DNA fragmentation detection kit) to add biotinylated nucleotides onto 3′-hydroxy DNA fragments, as instructed by the manufacturer (Oncogene Research Products). Diaminobenzidine was used to generate an insoluble brown substrate at the site of DNA fragmentation. The sample was counterstained with methyl green to aid in the morphological examination and characterization of normal and apoptotic cells.

Statistical analysis

For ELISA measurements and M-CSF biological assays, ANOVA with post-hoc testing was performed using MINITAB software (State College, PA). To quantitate apoptosis, DNA fragments were assessed by densitometry, and statistical comparisons were performed between experimental conditions using ANOVA with post-hoc testing. Similarly, quantification of annexin V staining of apoptotic cells was evaluated by flow cytometry, and statistical analysis was determined by ANOVA with post-hoc testing. All results are reported as the mean ± SEM, and statistical significance was defined as p < 0.05.

Results

Deposited IgG induces monocyte survival through FcγR cross-linking

To determine whether FcγR cross-linking induced by immobilized IgG prevents monocyte apoptosis, we plated equivalent concentrations of monocytes on immobilized IgG or equivalent concentrations of F(ab')2, fragments on IgG, human serum albumin, or
plastic. After 24-h incubations, monocytes incubated on immobilized IgG were morphologically different from those incubated on equivalent concentrations of immobilized F(ab9)\textsubscript{2} of IgG, human serum albumin, or plastic plates as assessed by light microscopy (Fig. 1A). Moreover, there was no difference in the total numbers of cells present in the different experimental conditions (IgG, 296 ± 13 cells/high powered field; F(ab9)\textsubscript{2}, 287 ± 20 cells/high powered field; human serum albumin, 296 ± 19 cells/high powered field; plastic, 260 ± 18 cells/high powered field; p = 0.52). However, IgG stimulated monocyte adherence significantly better than the other conditions (p < 0.0001 vs all other conditions; Fig. 1B). The immobilized IgG-treated monocytes were protected from apoptosis as measured by the lack of cytosolic DNA fragmentation (p < 0.01 vs other conditions; Fig. 2) and the lack of TdT staining (Fig. 9). In contrast, cells incubated on immobilized F(ab9)\textsubscript{2} of IgG or on uncoated plastic culture plates, which do not induce FcγR cross-linking, underwent apoptosis as demonstrated by cytosolic DNA oligonucleosomal fragmentation (Fig. 2). Immobilized IgG protected monocytes from apoptosis in a dose-dependent manner (Fig. 3). By densitometry, only the 100 μg/ml plating dose of IgG suppressed oligonucleosomal DNA fragmentation statistically more than that in unstimulated cells (control; p = 0.025). To exclude the possibility that small numbers of lymphocytes contaminating enriched monocyte preparations were responsible for the DNA fragmentation, purified lymphocyte preparations demonstrated only minimal evidence of DNA fragmentation at 24 h regardless of incubation on IgG or plastic alone (p = 0.68; Fig. 4).

IgG presentation determines monocyte protection and M-CSF production

Immobilizing IgG to culture plates reduced IgG concentrations 50-fold (from 100 to 2 μg/ml; Fig. 5A). Despite the clear reduction in IgG concentration after immobilization, only immobilized IgG

FIGURE 1. Immobilized IgG protects monocytes from apoptosis. A. Light microscope view of monocytes incubated for 24 h on equivalent concentrations of immobilized human IgG (IgG), immobilized F(ab9)\textsubscript{2} of IgG (Fab), immobilized human serum albumin (HSA), or adherence to plastic (0). This is representative of three separate experiments. B. Graph of total number of monocytes in each condition and the number of monocytes adherent to IgG, F(ab9)\textsubscript{2} IgG, human serum albumin, or plastic after 24-h incubation. Immobilized IgG induced the adherence of more cells vs other conditions (*, p < 0.0001). These results represent a mean of adherent vs total cells per three high-powered fields for two separate experiments ± SEM.

FIGURE 2. Monocyte FcγR cross-linking induces monocyte survival. Shown is a representative cytosolic DNA fragmentation gel of monocytes incubated on equivalent concentrations of immobilized IgG, F(ab9)\textsubscript{2} of IgG, human serum albumin, or adherence to plastic for 24 h. Immobilized IgG protected cells from apoptotic changes, while other conditions did not (*, p < 0.01). These data represent the mean ± SEM for four experiments.
protected monocytes from apoptosis, assayed by the lack of oligonucleosomal DNA fragmentation (Fig. 5B).

IgG stimulation induces biologically active M-CSF release from monocytes

Immobilized IgG induced the release of 7.3 ± 1.6 ng/ml of M-CSF (Fig. 6A). In contrast, immobilized F(ab’2) of IgG, immobilized human serum albumin, or plastic plates, which do not stimulate FcγR cross-linking, induced <0.03, 0.4 ± 0.3, or 0.2 ± 0.2 ng/ml, respectively (p < 0.0001 compared with immobilized IgG; Fig. 6A). Moreover, deposited IgG was approximately 10,000-fold more potent than soluble IgG in inducing M-CSF (Fig. 6B). FcγR-mediated M-CSF was biologically active, as evidenced by the ability to induce CFU activity in cells from human bone marrow. This effect was inhibited by a neutralizing monoclonal anti-human M-CSF Ab, but was not inhibited by an isotype control Ab (Fig. 6C). Importantly, in the absence of IgG, recombinant human M-CSF was able to protect monocytes from cytosolic DNA fragmentation in a dose-dependent manner (Fig. 7). M-CSF concentrations of 1 and 10 ng/ml induced monocyte survival more than unstimulated cells (p < 0.05; Fig. 7).

FcγR-stimulated monocyte survival is mediated by M-CSF

To determine whether M-CSF was the mediator of the FcγR-mediated survival, monocytes were incubated on 1) immobilized IgG alone, 2) immobilized IgG with Fab of a neutralizing anti-human M-CSF Ab, 3) immobilized IgG with Fab fragments of an isotype control Ab, or 4) plastic culture plates alone. Only the neutralizing anti-human M-CSF Ab reversed the protection against monocyte

FIGURE 3. Immobilized IgG induces monocyte survival by preventing apoptosis. Monocytes (1 × 10⁶/m) were incubated on immobilized human IgG (0, 0.01, 1, and 100 μg/ml plating concentrations) for 24 h at 37°C in 5% CO₂. Shown is a representative DNA fragmentation assay showing IgG protects monocytes from apoptosis. In comparing plating IgG concentrations, only the 100 μg/ml coating dose of IgG protected monocytes from apoptosis (*, p = 0.025 vs unstimulated control). The results represent the mean ± SEM for five experiments.

FIGURE 4. Lymphocyte apoptosis is not affected by immobilized IgG. Lymphocytes (5 × 10⁶/condition) were incubated on immobilized IgG (plating concentration, 100 μg/ml) or plastic wells for 24 h. Shown is a representative DNA fragmentation assay. Lymphocyte apoptosis was unaffected by the presence of immobilized IgG (p = 0.68). The results represent the mean ± SEM for four experiments.
apoptosis afforded by the immobilized IgG as gauged by densitometry of cytosolic DNA fragments \((p < 0.025 \text{ for IgG and IgG plus isotype control vs unstimulated cells (control) or IgG plus } \alpha M-\text{CSF; Fig. 8) and TdT immunohistochemical analysis (Fig. 9).}

Since M-CSF exists as both a biologically active soluble and a cell-associated protein (22), we asked whether soluble M-CSF released by immobilized IgG-stimulated monocytes could transfer antiapoptotic properties to freshly isolated monocytes in a paracrine manner. Cell-free supernatants from immobilized IgG-stimulated monocytes protected freshly isolated monocytes from DNA fragmentation, while supernatants from monocytes incubated on plastic plates did not. We found that immunodepletion of supernatants with an anti-M-CSF, but not with an isotype control, IgG reversed this protection, suggesting that this soluble activity was M-CSF (Fig. 10; \(p < 0.05 \text{ for IgG and IgG plus isotype IgG vs unstimulated cells (control) or IgG plus } \alpha M-\text{CSF).}

Discussion

In this report we demonstrate that deposited IgG promotes monocyte survival via FcγR-mediated activation and M-CSF release. Deposited IgG protects monocytes by inducing M-CSF in both an autocrine and a paracrine manner, which may amplify monocyte survival at the site of immobilized IgG. M-CSF induction and monocyte survival are specifically mediated by IgG-induced FcγR cross-linking, as deposited IgG promotes monocyte survival while 50-fold higher concentrations of soluble IgG or equivalent concentrations of immobilized F(ab\(^\prime\))\(_2\) of IgG, which do not induce monocyte FcγR cross-linking, do not. Moreover, immobilized IgG is at least 10,000-fold more potent at inducing M-CSF release by monocytes than soluble IgG. The released M-CSF is biologically active as measured by monocyte CFU activity. As evidence of M-CSF’s role in the IgG-induced monocyte survival, neutralizing anti-M-CSF IgG, but not isotype control IgG, reverse the autocrine protection induced by deposited IgG. Furthermore, in the absence of IgG, recombinant human M-CSF prevents the monocyte apoptosis. M-CSF released by the monocytes also acts in a paracrine manner, as cell-free supernatants from monocytes incubated on immobilized IgG transfer protection to freshly isolated monocytes. Moreover, this protection can be removed with anti-M-CSF, but not isotype control, Abs.

The novel finding that deposits of IgG induce monocyte FcγR cross-linking to protect monocytes from apoptosis has relevance to human disease. This relevance is underscored by finding that tissue compartments injured in response to IgG deposition, like joints in rheumatoid arthritis or lungs in pulmonary fibrosis, have expanded numbers of macrophages (4, 7, 8, 10). We have previously demonstrated that monocyte FcγR cross-linking induces monocytes to produce MCP-1 production (15), a powerful monocyte chemotactant. In host defense, regulated monocyte recruitment and MCP-1 production are critical to clearing opsonized bacteria from target organs and promoting host survival in compartmentalized infection (18). However, MCP-1 does not protect monocytes from apoptosis; thus, newly recruited monocytes could not survive under the influence of MCP-1 alone (21). In contrast to the benefit of macrophage targeting in infectious diseases, unregulated macrophage-directed chemokine production and macrophage accumulation are hallmarks of joint injury in rheumatoid arthritis (2, 7, 13), renal injury in glomerulonephritis (1, 3, 14), and lung injury in pulmonary fibrosis (4, 10–12). Thus, the factors that affect monocyte recruitment and survival are important to host homeostasis. Since MCP-1 does not protect newly recruited monocytes from apoptosis (21), we hypothesized that a separate FcγR-mediated pathway was responsible for directing newly recruited monocytes to become macrophages.

We found that FcγR-stimulated M-CSF release controlled monocyte survival. These observations have in vivo relevance, as homozygous M-CSF-deficient osteopetrosis (op\(^{−/−}\)) mice are deficient in absolute numbers of circulating monocytes and tissue macrophages, including a deficiency in the number of osteoclasts resulting in dysfunctional bone remodeling (23, 24). M-CSF is responsible for this absolute macrophage and osteoclast deficiency, as injections of recombinant M-CSF reverse the problem (25–27). Studies involving op\(^{−/−}\) mice demonstrate that M-CSF and macrophages are important determinants of IgG-associated human diseases, including models of rheumatoid arthritis and glomerulonephritis (3, 20, 28–30). Similarly, FcγR-deficient mice are protected from targeted organ injury induced by localized deposits of IgG (29), suggesting a critical role for FcγR in immune complex-mediated inflammation. We bridge these independent observations by finding that monocyte FcγR cross-linking by deposited IgG induces biologically active M-CSF production. We speculate that once monocytes are recruited to the tissue compartment via FcγR-stimulated MCP-1 production (15), FcγR-stimulated M-CSF release induces their survival. This pathway focuses on a new target to reduce targeted tissue inflammation in human immune complex-mediated diseases and supports the concept that M-CSF is a critical monocyte survival factor that allows macrophage accumulation (31). This concept is supported by the observation that enforced expression of the antiapoptotic protein Bcl-2 in monocytes of op\(^{−/−}\) animals corrects much of the underlying bone pathology.

FIGURE 5. The presentation of IgG is critical to M-CSF-mediated protection of monocytes from apoptosis. A. Quantitation of immobilized IgG. To measure the amount of immobilized IgG, bound IgG was removed in Laemmli sample buffer and was quantitated by PAGE with Western blotting (14). IgG (100 μg/ml (100) or 1 μg/ml (1)) that remained immobilized was compared with soluble forms after plating to tissue culture plates overnight and then washing. The IgG left bound to the plate and that washed from the plate are referred to as Immob IgG and Eluate, respectively; that IgG added solubly is referred to as Soluble IgG (14). These data are representative of two separate experiments. B. Monocyte apoptosis. Monocytes (1 × 10^6/ condition) were incubated with IgG (100 or 1 μg/ml) that was either 1) immobilized to tissue culture plates (Immob IgG) or 2) added solubly (Soluble IgG) for 24 h. Apoptosis was detected by cytosolic DNA oligonucleosomal fragmentation.
FIGURE 6. Immobilized IgG induces biologically active M-CSF release, which is capable of protecting monocytes from apoptosis. A, Antigenic M-CSF detection. Immobilized human IgG (IgG) induced more M-CSF release from monocytes than did equivalent concentrations of immobilized F(ab')2 of IgG (F(ab')2), immobilized human serum albumin (HSA), or plastic (p < 0.0001). Results are the mean ± SEM for six experiments. B, Effect of IgG presentation on M-CSF release. M-CSF release by monocytes incubated on either immobilized or soluble IgG was measured by ELISA and expressed as a percentage of maximal M-CSF production for two separate experiments. C, Functional M-CSF detection. Monocyte CFU activity from cell-free supernatants from monocytes incubated on immobilized IgG (0.5 μg/well) or with recombinant human M-CSF (10 ng/ml) for 24 h is shown. As a control, supernatants from monocytes stimulated with F(ab')2 of IgG were also assessed for monocyte CFU activity. A neutralizing anti-M-CSF (hatched bar) or an isotype control Ab (open bar) was used to determine the specificity of the M-CFU as M-CSF. Results are the mean ± SEM for three experiments.

FIGURE 7. Recombinant M-CSF induces monocyte survival. Recombinant human M-CSF (10, 0.01, and 0.0001 ng/ml) induces monocyte survival in the absence of IgG in a dose-dependent manner. The 10 and 1 ng/ml doses of M-CSF protected monocyte from apoptosis (*, p < 0.05 vs unstimulated control). These data represent the mean ± SEM of five experiments.
problems and macrophage deficiency, suggesting that accelerated apoptosis of monocyte precursors is a fundamental problem in this M-CSF-deficient animal (31).

Of interest, other CSFs, including GM-CSF and G-CSF, are powerful survival factors for neutrophils (32, 33). However, GM-CSF does not augment monocyte survival in the

- FIGURE 8. Immobilized IgG protects monocytes from apoptosis through M-CSF release. Monocytes (3 × 10^6/ml) were incubated on immobilized human IgG alone (100 µg/ml plating dose; IgG), on equivalent concentrations of IgG in the presence of Fab of neutralizing anti-human M-CSF IgG (1 µg/ml; M-CSF), on IgG in the presence of a neutralizing isotype control Ab (1 µg/ml; isotype), or on tissue culture plates in the absence of IgG (control) for 24 h. Shown is a representative DNA fragmentation gel and cumulative densitometry measurements demonstrating that αM-CSF, but not isotype IgG, removes IgG-stimulated cell survival (†, p < 0.025 for IgG or IgG plus isotype vs IgG plus αM-CSF). The results represent the mean ± SEM for three experiments.

- FIGURE 9. Immunohistochemical detection of IgG-induced monocyte protection and blockade with anti-M-CSF Abs. TdT immunohistochemical localization of DNA fragments (brown color) in monocytes incubated on equivalent concentrations of immobilized human IgG, immobilized F(ab')2 of IgG (Fab'), immobilized human serum albumin (HSA), or plastic (0) for 24 h. Of note, anti-M-CSF Abs, but not isotype control Abs, removed IgG’s protective effects. These data are representative of two separate experiments.

(34), suggesting that the specificity of these growth factors does not include monocyte survival. While other authors have shown that M-CSF augments monocyte survival (35), the seminal observations in this paper are that monocyte FcγR cross-linking protects monocytes from apoptosis and that this protection is mediated through the production and release of M-CSF.
Previous investigators determined that inflammatory cytokines, including IL-1β, TNF-α, IFN-γ, and GM-CSF, can promote monocyte survival (21). In addition, LPS can induce monocyte survival (36). Although these studies added important insights into the regulation of monocyte survival, they did not address the role of deposited IgG as a potential mediator of monocyte survival. This paper extends their findings to make the observation that deposition of deposited IgG as a potential mediator of monocyte survival.

In summary, we show that immobilized IgG protects monocytes from apoptosis through FcγR cross-linking, as assayed by cell morphology, cytosolic DNA fragmentation, annexin V staining, and TdT immunohistochemical analysis. The ability of IgG to mediate monocyte protection appears dependent on cross-linking monocyte FcγR. This property is illustrated by the finding that immobilized IgG prevents monocyte apoptosis, while soluble IgG or F(ab')2 IgG, do not. Moreover, immobilized IgG is 10,000-fold more potent in stimulating monocyte M-CSF release than is soluble IgG. Interestingly, apoptosis prevention conferred by monocyte FcγR cross-linking is mediated through the production and secretion of FcγR-mediated M-CSF, suggesting that immobilized IgG may regulate monocyte survival through both autocrine and paracrine effects. These novel observations provide a potential mechanism to explain targeted organ injury caused by macrophages in immune complex diseases.

Acknowledgments

We thank Drs. Pascal J. Goldschmidt and Michael Caliguiri for helpful suggestions and review of the manuscript and Dr. Clark L. Anderson for helpful suggestions for the Fcγ receptor studies.

References

