TCR Activation Inhibits Chemotaxis Toward Stromal Cell-Derived Factor-1: Evidence for Reciprocal Regulation Between CXCR4 and the TCR

James W. Peacock and Frank R. Jirik

J Immunol 1999; 162:215-223; http://www.jimmunol.org/content/162/1/215

References

This article cites 62 articles, 35 of which you can access for free at:
http://www.jimmunol.org/content/162/1/215.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
TCR Activation Inhibits Chemotaxis Toward Stromal Cell-Derived Factor-1: Evidence for Reciprocal Regulation Between CXCR4 and the TCR

James W. Peacock* and Frank R. Jirik*†

Stromal cell-derived factor-1 (SDF-1), a C-X-C family chemokine, is a potent T lymphocyte chemoattractant. We investigated the effects of T cell activation on the chemotactic response to SDF-1. Anti-CD3 Ab stimulation of either Jurkat T cells or murine peripheral CD4+ T lymphocytes produced a dramatic inhibition of SDF-1-induced chemotaxis. In contrast, the SDF-1 responses of Jurkat clones with deficiencies in key TCR signaling components (Lck, CD45, and TCR-β), were only marginally reduced by anti-CD3 stimulation. Similar to PMA treatment, which abolished both CXCR4 receptor expression and the chemotactic response of Jurkat cells to SDF-1, anti-CD3 Ab treatment reduced cell surface expression of CXCR4 to 65% of the control value, an effect that was blocked by protein kinase C inhibitors. Our data suggest that initial T cell activation events inhibit the response of Jurkat T cells to CXCR4 stimulation. In contrast, SDF-1 treatment resulted in a reduction of tyrosine phosphorylation of the TCR downstream effectors, ZAP-70, SLP-76, and LAT (linker for activation of T cells), suggesting that this chemokine potentially regulates the threshold for T cell activation. The Journal of Immunology, 1999, 162: 215–223.

The trafficking of lymphocytes to sites of inflammation is thought to be mediated by the local production of chemotactic cytokines (1). In vitro, T lymphocytes migrate in response to concentration gradients of both α (or C-X-C) chemokines (IL-8, IFN-γ-inducible protein-10, and stromal cell-derived factor-1 [SDF-1]α) (2–7) and β (or C-C) chemokines (RANTES, macrophage inhibitory protein [MIP-1α], and MIP-1β) (8, 9). Although stimulation of T cells with anti-CD3 Ab enhances cell migration toward MIP-1α, MIP-1β (9), and IFN-γ-inducible protein-10 (3), anti-CD3 Ab treatment of T cells can also inhibit chemotactic responses. For example, stimulation of CD45RO+ memory T cells induced a rapid down-regulation of CCR1 and CCR2 receptor expression, associated with an inhibition of cell migration in response to RANTES or monocyte chemotactic protein-1 (10, 11). Also, vasoactive intestinal peptide, a T lymphocyte chemotactrant, induced migration of unstimulated T lymphocytes, and the response to vasoactive intestinal peptide was decreased by anti-CD3 activation (12). Pretreatment with MIP-1α, was shown to inhibit the anti-CD3 Ab-induced proliferation of murine splenic T lymphocytes (13) Therefore, the response to a specific chemokine appears to be determined by both the differentiation and the activation state of the responding T cell population.

SDF-1 mRNA is expressed constitutively in a wide variety of tissues (14, 15), and this chemokine has been identified as a lymphocyte chemoattractant (16). In keeping with this activity, SDF-1 induces actin polymerization in lymphocytes, a process thought to be a prerequisite for cell motility (16). CXCR4, a seven-transmembrane domain, G protein-coupled receptor predominantly expressed on the unactivated naïve subset of T cells (17) is the only known receptor for SDF-1 (16, 18) and has also been shown to serve as an accessory factor for cell entry by T cell-tropic HIV isolates (19–22). Interestingly, there is evidence that the HIV-1 envelope protein, gp120, makes contact with both the CD4 molecule and the CXCR4 receptor (23), and soluble gp120 has been shown to alter anti-CD3-driven proliferation of CD4+ T cells (24, 25). These results suggest that TCR and CXCR4 signaling may be regulated by T cell contact with gp120, and that this association potentially regulates the responses of these cells to SDF-1.

To gain a greater understanding of the biological responses of T cells to SDF-1, we investigated the effect of SDF-1 pretreatment on T cell activation as well as the effect of TCR activation on SDF-1-induced cellular migration. We demonstrate that anti-CD3 Ab stimulation markedly inhibits the migration of T cells toward SDF-1. This inhibitory effect is much weaker in cell lines lacking essential components of the TCR signaling complex, namely, Lck, CD45, and the TCR β-chain. TCR activation also led to a down-regulation of CXCR4 surface expression. The preincubation of T cells with SDF-1 reduced the anti-CD3-stimulated phosphorylation of critical downstream effectors of TCR signaling, including ZAP-70, SLP-76, and pp36, providing evidence for cross-talk between CXCR4 and the TCR.

Materials and Methods

Chemokines and Abs and chemicals

SDF-1 (residues 1–67), generated using an ABI peptide synthesizer (Applied Biosystems, Foster City, CA), was provided by I. Clark-Lewis (16, 18). The following Abs were used: OKT3 (American Type Culture Collection, Manassas, VA), the ascites containing the C305 monoclonal with specificity against the Jurkat T β-chain (a gift from A. Weiss), 2C11 purified hamster anti-mouse CD3ε mAb (PharMingen Canada, Mississauga, Canada), anti-phosphotyrosine monoclonal 4G10 and anti-LAT

*Center for Molecular Medicine and Therapeutics and †Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada

Received for publication June 8, 1998. Accepted for publication September 21, 1998.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 This work was supported by Merck-Frosst Canada, the Canadian Arthritis Society, and a Canadian Arthritis Society Research Scientist Award (to F.R.J.).

2 Address correspondence and reprint requests to Dr. Frank R. Jirik, Center for Molecular Medicine and Therapeutics, 950 West 28th Ave., Vancouver, British Columbia, Canada V5Z 4H4. E-mail address: jirik@cmmt.ubc.ca

3 Abbreviations used in this paper: SDF-1, stromal cell-derived factor-1; MIP-1α, macrophage inhibitory protein-1α; LAT, linker for activation of T cells; MAPK, mitogen-activated protein kinase; R-PE, R-phycocerythrin; PKC, protein kinase C; PLC/β3, phospholipase Cβ3.

Copyright © 1999 by The American Association of Immunologists

0022-1767/99/$02.00
TCR ACTIVATION INHIBITS SDF-1-MEDIATED CHEMOTAXIS

Results

Assessment of cellular phosphotyrosine content

Cells were washed in PBS and pelleted by centrifugation. Cells (1.0 \times 10^7) were incubated in serum-free RPMI 1640 medium containing 20 \muM HEPES for 30 min in 5\% CO2 to restore basal levels of protein phosphorylation. Cells were treated with SDF-1 at 50 \mug/ml as indicated. In addition, cells were stimulated with Abs at a 1/100 dilution of ascites (C305) or 10 \mug/ml OKT3. At the indicated times, stimulated cells were rapidly lysed in 1.0\% Nonidet P-40 lysis buffer and flash-frozen in liquid nitrogen.

Immunoprecipitation and immunoblotting

Cells (1.0 \times 10^7) were lysed in Nonidet P-40 lysis buffer (1\% Nonidet P-40, 150 mM NaCl, 50 mM Tris (pH 7.5), and 10\% glycerol) in the presence of protease inhibitors (100 \mug/ml PMSF, 1.0 \mug/ml aprotinin, 0.7 \mug/ml pepstatin, 0.5 \mug/ml leupeptin, 40 \mug/ml benzamidin, 10 \mug/ml soybean trypsin inhibitor (Boehringer Mannheim, Indianapolis, IN), 10 mM sodium fluoride, 1 mM sodium vanadate, and 1 mM sodium molybdate (BDH, Toronto, Canada)). After 30 min on ice, lysates were centrifuged for 30 min at 13,000 rpm, then preclorced with 10 \mug/ml of protein A-Sepharose 4 Fast Flow, (Pharmacia Canada) for 1 h. Lysates were then centrifuged at 8000 rpm for 1 min. Total protein (300–500 \mug) was incubated with 1.0 \mug/ml of the indicated immunoprecipitatin Ab for 2 h. Immunoprecipitates were collected by centrifugation as described above and were washed three times in 1\% Nonidet P-40 buffer containing PMSF and sodium vanadate. Washed immunoprecipitates were resuspended in 100 mM HEPES buffer (4\% SDS, 5.7 \mug/ml 2-ME, 20\% glycerol, and 20\% bromophenol blue). Alternatively, lystate volume corresponding to 15 \mug of total protein was diluted 3/1 with Laemmli sample buffer. Samples were boiled for 10 min before electrophoresis. Immune complexes or total protein lysates were separated by SDS-PAGE at 150 V and transferred to nitrocellulose paper by electrophotobbing at 100 V for 1 h (stirred) at 4\%C in a solution containing 192 mM glycine, 25 mM Tris, and 20% methanol. Filters were incubated overnight in TBST (10 mM Tris (pH 8.0), 150 mM NaCl, and 0.05% Tween-20) containing 5\% BSA. Filters were subsequently incubated for 60 min at room temperature in TBST containing 1.0\% BSA supplemented with primary Ab at a 1/10,000 (4G10), 1/250 (anti-ZAP-70), 1/500 (SLP-76), or 1/1000 (anti-LAT) dilution. After three additional washes in TBST, filters were incubated for 1 h in the appropriate horseradish peroxidase-conjugated secondary Ab and washed again as described, and proteins were detected using enhanced chemiluminescence (Amersham, Arlington Heights, IL) and exposure to Eastman Kodak Biomax MR film (Eastman Kodak, Rochester, NY).

Densitometry

Densitometry was performed using a GS 300 densitometer (Hoefer Scientific Instruments, San Francisco, CA), and results were analyzed using the GS370 1-D Data System, version 2.0 for Macintosh.

Statistical methods

We applied Student’s t test (Microsoft Excel) when analyzing the results. p < 0.05 was considered significant.

Results

OKT3 stimulation of Jurkat cells blocks SDF-1-induced chemotaxis and requires an intact TCR signaling mechanism

To assess the effect of T cell activation on migration in response to SDF-1, chemotaxis assays were performed on Jurkat T cell leukemia cells and a Jurkat clone (JE6.1) that were competent for TCR signaling and on Jurkat mutant clones (J.CaM1.6, J45.01, and J.RT3.T3.5) (American Type Culture Collection) that lack the 1.3-kb anti-CD3 Ab stimulation (29). J45.01, which is deficient in CD45 expression, was incubated for 30 min on ice with R-PE-conjugated rat anti-mouse CD4 (L3T4) mAb and FITC-conjugated rat anti-mouse CD8a (Ly-2) mAb (PharMingen, Santa Clara, CA). Cells were washed and analyzed on a FACScan as described above. The CD4+ cells used in the chemotaxis assay were 98% pure.

Flow cytometry

Cells (1.0 \times 10^7) were washed once in PBS and pelleted, and viable cells were resuspended in FACS buffer (PBS containing 2\% FBS). To assess CXCR4 surface expression, 20 \muM of anti-CXCR4-PE was added to 1.0 \times 10^7 cells in a volume of 200 \muL. For CD3 levels, OKT3 was added at 1.0 \mug/ml for 1 h and following three washes in FACS buffer was incubated with goat F(\alpha) anti-mouse IgG FITC. All incubations were conducted on ice to prevent receptor internalization. After 1 h on ice, cells were washed once with FACS buffer, pelleted by centrifugation, and finally suspended in 500 \muL of FACS buffer before analysis on a FACScan (Becton Dickinson) flow cytometer equipped with the LYSIS II software program. For cell surface receptor regulation experiments, cells were washed and counted as described above. However, cells at a density of 1.0 \times 10^7/ml were first precincubated in medium with or without 5 \mug/mo RO 31-8220 for 30 min. Cells were then incubated in the presence or the absence of 10 \mug/ml OKT3 or 100 ng/ml PMA for the indicated times. Cells were stained and analyzed as described above on a FACScan flow cytometer. For assessment of murine CD4+ lymphocyte purity, 1.0 \times 10^6 cells were incubated for 30 min on ice with R-PE-conjugated rat anti-mouse CD4 (L3T4) mAb and FITC-conjugated rat anti-mouse CD8a (Ly-2) mAb (PharMingen, Canada). Cells were washed and analyzed on a FACScan as described above. The CD4+ cells used in the chemotaxis assay were 98% pure.
μg/ml SDF-1 was introduced to the upper well with a concentration of 1.5 μg/ml in the bottom well.

Table I shows the migratory responses of Jurkat cells (Jurkat, JE6.1) and Jurkat mutant clones (J.CaM1.6, J45.01, and J.RT3.T3.5) either treated with OKT3 (10 μg/ml) or untreated. The number of Jurkat and JE6.1 cells that migrated after treatment with OKT3 was greatly reduced compared with that of untreated controls. Thus, incubation of Jurkat or JE6.1 cells with OKT3 before addition of cells to the upper chamber reduced transmigration to 18 and 14% of the control value, respectively. The observed inhibition of cell migration was statistically significant (p < 0.0001). In comparison to the chemotaxis response observed in treated parental cells, OKT3 treatment of Jurkat clones defective for TCR signaling reduced migration to 63 (J.CaM1.6), 64 (J45.01), and 78% (J.RT3.T3.5) of that of untreated cells (Table I).

The contribution of spontaneous migration of control and OKT3-treated Jurkat or JE6.1 cells represented <10% of the response to SDF-1 (Table I). Interestingly, OKT3 treatment reduced the level of spontaneous transmigration occurring in the absence of an SDF-1 gradient, consistent with OKT3 treatment exerting an inhibitory effect on T cell motility. Background transmigration of clones with limited capacity for TCR signaling, as expected, was not significantly reduced by OKT3 treatment. Differences in transmigration might simply be due to variation in CXCR4 levels, however, as shown in Fig. 1, similar levels of CXCR4 were detected in all clones. We also examined cell surface expression of CD3 by flow cytometry. Whereas Jurkat and JE6.1 expressed similar levels of CD3 on the cell surface, CD3 expression of J.CaM1.6 and J45.01 was three- to eightfold lower, and the TCR-defective clone J.RT3.T3.5 showed only minimal staining (Fig. 1). Although the transmigration response of all clones was inhibited to varying degrees by OKT3 treatment, the decreased response to SDF-1 was most evident in clones expressing the highest levels of CD3. This inhibition was much less apparent in the Lck2/2 and CD452/2 clones (Table I). Although the lack of OKT3-mediated inhibition in these clones may in part have been due to lower CD3 levels, it most likely reflected the loss of key signaling molecules, such as Lck and CD45. In summary, the data demonstrate that the inhibition of SDF-1 activity by anti-CD3 Ab treatment requires a functional TCR signaling complex.

Anti-CD3 stimulation of mouse peripheral T cells blocks SDF-1-induced chemotaxis

To establish whether anti-CD3 stimulation would inhibit the migration of normal cells toward SDF-1, the response of murine splenocytes and CD4+ cells was evaluated. As shown in Fig. 2, the

FIGURE 1. CD3 and CXCR4 surface expression of Jurkat clones. Cells (1.0 × 10^7) were stained with OKT3 or PE-conjugated anti-CXCR4 Ab (12G5). FACScan profiles yielded the mean fluorescence intensity (MFI) values as follows: for CD3 cell surface expression: Jurkat, 581.6; JE6.1, 915.0; J.CaM1.6, 165.6; J45.01, 117.7; and J.RT3.T3.5, 15.5; and CXCR4 cell surface expression: Jurkat, 565.6; JE6.1, 818.5; J.CaM1.6, 813.7; J45.01, 990.8; and J.RT3.T3.5, 988.1.
SDF-1-induced migratory responses of both unfractionated splenocytes and purified CD4+ T lymphocytes were inhibited by treatment of the cells with the anti-CD3 Ab, 2C11. The response of unfractionated splenocytes pretreated with anti-CD3 was 15% of the migration of cells in response to SDF-1 alone (p < 0.00005), and the migration of anti-CD3-treated CD4+ cells was 30% that of untreated controls (p < 0.00003; Fig. 2). These results indicate that anti-CD3-mediated TCR activation of normal murine T cells inhibits transmigration in response to SDF-1.

PMA blocks chemotaxis of Jurkat cells and down-regulates expression of CXCR4

Phorbol esters are known to mimic many of the effects of CD3 stimulation of the TCR complex, involving the activation of protein kinase C (PKC) (32, 33). To investigate whether PKC activation would mimic the OKT3-mediated inhibition of chemotaxis to SDF-1, we stimulated JE6.1 cells with PMA (100 ng/ml) and measured cell transmigration as described above. Treatment with PMA inhibited SDF-1-induced transmigration >300-fold compared with that in untreated controls, whereas we observed a 13-fold inhibition of transmigration in OKT3-treated cells. In addition, the level of spontaneous migration of JE6.1 cells following PMA treatment was reduced 30-fold compared with 5.6-fold in OKT3-treated cells (data not shown). These data demonstrated that OKT3-mediated inhibition of T cell migration could be simulated by PMA treatment. However, PMA was a much more effective inhibitor of chemotaxis.

We next investigated whether PMA stimulation would down-modulate CXCR4 surface receptor expression in Jurkat cells, perhaps accounting for the observed inhibition of chemotaxis. Jurkat cells were treated with 100 ng/ml PMA and subsequently stained at various points over a 24-h time course with anti-CXCR4-PE-conjugated Ab. We observed a marked down-regulation of CXCR4 surface staining within 4 h of PMA treatment. Cell surface expression was reduced to 22 and 14% of the control value after 1 and 2 h of incubation, respectively. After 4 h of PMA treatment, most (94%) CXCR4 cell surface staining was abolished (Fig. 3 and data not shown). Our observations agree with those of Signoret et al., who reported similar results with phorbol ester-treated SupT1 T cells (34).

Treatmet of Jurkat cells with OKT3 down-regulates CXCR4 surface expression

One potential mechanism that could account for the decreased migration of OKT3-activated Jurkat cells would be the down-modulation of CXCR4. We thus treated JE6.1 cells with OKT3 (10 μg/ml) and assessed cell surface staining of CXCR4. A representative experiment is shown in Fig. 4. Total fluorescence staining of CXCR4 was reduced to 65% of the control value by 1 h (p < 0.0002), with no further change observed over a 2-h time course (data not shown). Our data demonstrate an OKT3-induced down-regulation of CXCR4.

OKT3-mediated down-regulation of CXCR4 requires PKC

To establish whether the decreased cell surface expression of CXCR4 in OKT3-treated cells was dependent on PKC activation, we pretreated JE6.1 cells with 0.50 μM staurosporine or 1.0 μM RO 31-8220 (a staurosporine analogue) to block PKC activation (35). Both agents were able to inhibit CXCR4 down-regulation induced by OKT3 (p > 0.10), indicating that the effect of this Ab was at least in part a consequence of PKC activation (Fig. 4 and data not shown). Interestingly, an increase in cell surface expression of CXCR4 was seen in JE6.1 cells treated with RO 31-8220, with peak fluorescence increasing twofold (Fig. 4), suggesting that PKC may regulate basal levels of CXCR4 in Jurkat cells. Staurosporine, a nonspecific kinase inhibitor, failed to modulate basal CXCR4 surface staining (data not shown), indicating that the two agents probably inhibit overlapping, but nonidentical, molecules.

In summary, our results strongly suggest that the OKT3-induced down-regulation of CXCR4 is in part mediated via PKC activation.
SDF-1 inhibits the OKT3-stimulated phosphorylation of TCR signaling molecules ZAP-70, SLP-76, and pp36

We demonstrated that OKT3 treatment blocked the chemotactic response of Jurkat cells. It was therefore of interest to determine whether SDF-1 was capable of regulating TCR signaling. Thus, we examined early TCR signaling events triggered by treatment with OKT3 or C305 in the presence or the absence of SDF-1. Fig. 5 shows the effects of SDF-1 treatment on Jurkat cells stimulated in combination with C305 Ab over 15–120 s. Results obtained in separate experiments using OKT3 stimulation were identical with those using C305 (data not shown). Cells were lysed, processed, and blotted with anti-phosphotyrosine as described above. Interestingly, in the presence of SDF-1, tyrosine phosphorylation of a 70-kDa protein was attenuated at time points up to 30 s. Even at 1–2 min, when phosphorylation due to C305 stimulation was maximal, the level of tyrosine phosphorylation of the pp70 band was reduced compared to that of control C305-stimulated cells (Fig. 5a). We did not detect any significant change in C305-induced p70 phosphorylation when SDF-1 preincubations of 15 and 30 min were compared (compare Fig. 5, b and d).

A prominent phosphoprotein of 36 kDa was also observed to be markedly underphosphorylated in C305-stimulated cells preincubated with SDF-1 compared with that in cells stimulated with C305 alone. In the absence of SDF-1, there was a time-dependent increase in tyrosine phosphorylation of the 36-kDa protein, which reached a maximum at 60 s poststimulation. In a parallel time course, this protein remained at least twofold underphosphorylated in cells pretreated with SDF-1 following C305 stimulation (Fig. 5, b and d, compare time course on the left to that on the right). The kinetics of the 36-kDa protein phosphorylation were consistent with previous reports (36, 37).

There was a concomitant increase in the tyrosine phosphorylation of the MAP kinases ERK-1 and ERK-2, which reached a maximum at 120 s, as demonstrated by reprobing the blot in Fig. 5b with a phoso-specific MAPK Ab (Fig. 5c). Preincubation of these cells with SDF-1 resulted in immediate phosphorylation of p42 and p44 MAP kinases at time points as early as 15 s, which remained constant for up to 1 min and further increased at 2 min. As the 36-kDa protein remained underphosphorylated at a time when MAPK phosphorylation was increasing, it suggested that the latter was primarily the result of SDF-1-stimulated CXCR4 signaling (compare Fig. 5, b to c). Thus, SDF-1 exposure attenuated the C305- and OKT3-induced tyrosine phosphorylation of proteins of 70 and 36 kDa, which appeared to represent downstream targets of TCR activation. These results were consistent with the temporal kinetics of C305-mediated activation of ZAP-70 and pp36 (38).

SLP-76, which is phosphorylated on tyrosine as a result of TCR activation, appears to be a substrate of ZAP-70 (37). Equal amounts of total protein were immunoprecipitated with 4G10 Ab, resolved by SDS-PAGE, and blotted with either ZAP-70 or SLP-76 Abs. Fig. 6, a and b, shows a temporally dependent inhibition of ZAP-70 and SLP-76 tyrosine phosphorylation as a result of SDF-1 treatment. Densitometric analysis was performed on the autoradiograph represented in Fig. 6, a and b. The results represent the ratio of the peak band intensities of SLP-76 and ZAP-70 (normalized to the peak band intensity of the lower band shown in Fig. 6, a and b). There was up to a 50% reduction in the SLP-76 phosphotyrosine signal by 60 s. While there was no significant difference in ZAP-70 at early time points, there was a 30% reduction in phosphotyrosine signal by 60 s following stimulation with anti-C3 (data not shown). These observations suggest that the 4G10-detectable phosphotyrosine levels of a number of different TCR signaling molecules were reduced by SDF-1 treatment. To further characterize the 36-kDa protein that we observed to be underphosphorylated in C305-stimulated Jurkat cells treated with SDF-1, total protein lysates from the 2 min point in Fig. 5d were blotted with anti-LAT Ab (Fig. 7b), then stripped and reprobed with anti-phosphotyrosine Ab (4G10; Fig. 7a). As shown in Fig. 7 there was a significant reduction (60% of the control value) in the phosphotyrosine content of the 36-kDa protein in SDF-1-treated cells. The attenuation of pp36 phosphorylation was much greater than that of ZAP-70 and SLP-76, suggesting that the effects of SDF-1 on TCR signaling have a greater impact on events downstream of ZAP-70 and SLP-76 activation.

To determine whether the 70-kDa protein observed to be underphosphorylated as a result of SDF-1 treatment was ZAP-70, equal amounts of total protein (Fig. 8, lanes 1 and 2) from pre-cleared lysates were incubated (lanes 3 and 4) with polyclonal anti-ZAP-70 Ab (Fig. 8). Total lysates or immunoprecipitations were resolved by SDS-PAGE followed by immunoblotting with 4G10 Ab (Fig. 8, upper panel). The filter was then stripped and reprobed with rabbit polyclonal ZAP-70 Ab (Fig. 8, lower panel). Our results suggest that the pp70 protein that is underphosphorylated as a result of SDF-1 treatment is ZAP-70.
were stimulated in serum-free RPMI containing 20 mM HEPES with 10% FCS. Cells were preincubated with 50 μg/ml SDF-1 and 10 μg/ml C305 (left panel) or were costimulated with 50 μg/ml SDF-1 and 10 μg/ml C305 (right panel) for the indicated times (15–120 s) before lysis. b and d. Cells were preincubated in serum-free medium (control panel) or in medium containing 50 μg/ml SDF-1 for either 15 min (b) or 30 min (d), then stimulated with C305 for the indicated times. Equal concentrations of total protein from each sample were resolved by SDS-PAGE and immunoblotted with anti-phosphotyrosine Ab (4G10; a, b, c, and d). Arrows indicate phosphoproteins of 70 and 36 kDa, respectively. Molecular mass markers are indicated on the left. c. The blot indicated in b was stripped and reprobed with anti-SLP-76. By densitometry the ratios of the peak band intensity of ZAP-70 (normalized to the lower band in b) of control and SDF-1-treated panels were: 15 s, 1.0; 30 s, 0.66; and 60 s, 0.55. b. Overlay of the immunoblots confirmed two distinct proteins of different mobilities. Arrows indicate phosphoproteins ZAP-70 and SLP-76, respectively.

Discussion

Stimulation of lymphocytes with SDF-1 or PMA results in mobilization of calcium (33, 39, 40), internalization, and subsequent desensitization of the CXCR4 receptor (7, 16, 18, 39, 41). p70 phosphotyrosine content remained unchanged (Fig. 9b). Furthermore, baseline phosphorylation of the 70- and 36-kDa proteins was markedly reduced when cells were preincubated with SDF-1 for 6 h (data not shown). Taken together, our results demonstrate that SDF-1 is capable of inhibiting the tyrosine phosphorylation of proteins downstream of the TCR/CD3/ZAP-70 complex.
activation of PKC induces phosphorylation of CXCR4 (41), followed by receptor internalization (40–42). As PKC activation follows TCR activation (33), the TCR-dependent block of SDF-1-induced migration that we observed may have been a consequence of PKC activation, an event leading to SDF-1 unresponsiveness. There appears to be at least two mechanisms that down-regulate signal transduction through CXCR4: one at the level of receptor phosphorylation and the other, independent of receptor phosphorylation, at the level of PKC-dependent phosphorylation of phospholipase Cβ3 (PLCβ3) (41). In support of the former, Signoret et al. have shown that PKC activation is not essential for SDF-1-induced CXCR4 down-modulation, indicating that SDF-1 and phorbol esters probably operate through different intracellular signaling pathways to induce their effects (34).

It is possible that the TCR activation of PKC leads to PLCβ3 activation, which, in turn, mediates the inhibition of CXCR4 activity, an effect that represents an agonist nonspecific heterologous desensitization pathway (43). Although there is evidence in the literature that demonstrates that SDF-1 induces CXCR4 coupling desensitization pathway (43). Although there is evidence in the literature that demonstrates that SDF-1 induces CXCR4 coupling desensitization pathway (43), we have observed a marginal increase in the chemotactic response of anti-CD3-stimulated, unfractionated murine splenocytes or CD4⁺-enriched T cells. As with Jurkat cells, the SDF-1-induced migratory response of normal T cells was also inhibited by anti-CD3 treatment. Interestingly, there was some variation in the response of the striking inhibition of chemotaxis. It may be hypothesized that CD3-mediated activation of PKC leads to the phosphorylation PLCβ3, which inhibits the activation of G_αζ (46) and thereby produces heterologous desensitization of CXCR4. Our results are in agreement with such a model and also provide evidence for crosstalk between the TCR complex and CXCR4. The response of T cells to TCR activation is probably complex, first involving a migration stop signal, followed by the down-regulation of CXCR4 activity and cell surface expression.

Another possibility is that the TCR and CXCR4 signaling pathways share the same G_αζ subunit. TCR signaling also mediates GTP exchange within G_αζ and leads to its association with CD3ζ in Jurkat cells (46). G protein activation was tyrosine kinase dependent and mediated activation of PLCβ. Stanners et al. demonstrated a Gaζ11-dependent modulation of CD3 ε and ζ-chain phosphorylation and that a functionally deficient Gαζ11 mutant was associated with diminished tyrosine phosphorylation of CD3 ζ and ε and of ZAP-70 upon anti-CD3 Ab stimulation (46). Thus, TCR-CD3 activation could sequester G_αζ from CXCR4, thereby preventing SDF-1-induced effects. SDF-1, on the other hand, might produce a rapid up-regulation of CXCR4 activity (40), leading to G_αζ recruitment. Such a mechanism agrees with a model proposed by Dustin (47) suggesting that the TCR-induced stop signal would be dominant in resting T cells when CXCR4 levels are low, but the signal from SDF-1 may gain dominance once CXCR4 levels on the T cell blasts are up-regulated. Moreover, a further consequence of a shift in G_αζ usage induced by SDF-1 might be the inhibition of signaling molecules, such as ZAP-70 and pp36, that lie downstream of the TCR.

Whereas we observed an inhibition of SDF-1-induced chemotaxis and a reduction in CXCR4 cell surface expression during initial activation of lymphocytes, in Jurkat cells others have reported that CXCR4 receptor levels and chemotaxis were up-regulated after either PHA stimulation or IL-2 priming, reaching a peak at 3–6 days. These effects were associated with an increased chemotactic response (17). Moreover, Hesselgesser et al. (39) observed a marginal increase in the chemotactic response of anti-CD3-stimulated Jurkat cells. The discrepancy between these observations and those reported herein probably reflects differences in the TCR stimulation protocols. Thus, treatment of cells for 3–6 h with anti-CD3 Abs before the chemotaxis assay would probably lead to the activation of a number of genes, including those encoding cytokines (32), that might modulate the response to SDF-1. Our experiments, in contrast, examined the effect of initial T cell activation events on the migratory response to SDF-1.

To establish whether the inhibition of chemotaxis seen in C305-stimulated Jurkat cells would also be a feature of normal T cells, we assessed the migratory response to SDF-1 of anti-CD3-stimulated, unfractionated murine splenocytes or CD4⁺-enriched T cells. As with Jurkat cells, the SDF-1-induced migratory response of normal T cells was also inhibited by anti-CD3 treatment. Interestingly, there was some variation in the response of
unfractionated splenocytes compared with purified CD4\(^+\) T cells (Fig. 2), suggesting either that a non-CD4\(^+\) T cell population made up a large fraction of the migratory population in the unfractionated splenocytes or perhaps that the CD4 selection procedure altered the chemotactic response of the purified T cells. In any event, our data clearly demonstrate that the block of cell migration in response to T cell activation is probably a mechanism common to both human and murine species.

There was no significant difference in the cell surface expression of CXCR4 among the various Jurkat clones used in our study (Fig. 1). There was, however, some variability in SDF-1-induced transmigration among these clones (Table I). While the reason(s) for this is probably complex, the finding of reduced chemotaxis in the lines deficient in Lck and CD45 raises the possibility that these molecules play some facilitatory role in either SDF-1 signaling or cell motility. Taken together with the inhibitory effect of T cell activation on SDF-1-induced chemotaxis, these observations raise the possibility that reciprocal regulation of TCR activation by SDF-1 might also occur. We therefore examined the effect of SDF-1 treatment on the signaling events subsequent to TCR activation. These events have been well characterized (for review, see Refs. 48 and 49). Thus, engagement of the TCR results in the activation of Lck/Fyn, members of the Src family of protein tyrosine kinases. Phosphorylation of TCR-ζ leads to the recruitment, phosphorylation, and activation of ZAP-70 protein tyrosine kinase (50–52) and subsequent phosphorylation of other key molecules, such as SLP-76 (26, 27) and LAT (38). Events downstream and parallel with the activation of SLP-76 and LAT eventually culminate in T cell activation, proliferation, and cytokine production (49, 53, 54). The uncoupling of this cascade at initial phosphorylation events would be predicted to have a great impact on the magnitude of the downstream responses. For example, a reduction in ZAP-70 activity could greatly alter the character of the activation response. In keeping with this hypothesis, we demonstrate a reduction in the phosphotyrosine content of ZAP-70 and SLP-76 following SDF-1 treatment. This effect is, in turn, associated with a pronounced inhibition of pp36 phosphorylation. The 36- to 38-kDa protein LAT was shown to be a substrate for ZAP-70 (38). Moreover, pp36–38 has been shown to associate with Grb2 and PLCγ1 in C305-stimulated Jurkat cells (38). Our results further demonstrate that the 36-kDa protein that is underphosphorylated in Jurkat cells treated with SDF-1 represents LAT, a molecule that appears to be critical to T cell activation (38). Our results suggest that SDF-1 is capable of inhibiting critical components of the TCR signaling cascade. The precise level at which SDF-1 exerts its inhibitory effect on TCR signaling remains to be determined. Interestingly, the naïve, CD26\(^{low}\), CD45RA\(^+\) T cells express high levels of CXCR4 protein and mRNA (17, 55). Given the ability of SDF-1 to suppress phosphorylation of ZAP-70, pp36, and SLP-76, there is a possibility that this chemokine may regulate the activation of naïve cells in vivo.

In addition to having a role in lymphocyte chemotaxis, CXCR4 is a coreceptor for T cell tropic HIV-1 strains (56). Although CXCR4 signaling does not appear to be required for viral entry into the cell (57), it is not clear whether gp120 binding induces CXCR4 signaling. HIV-1 gp120 is known to contact both CD4 and CXCR4, probably forming a complex (23), which, in turn, may modulate both T cell activation (58) and migration (59). Several studies have indicated that gp120 is able to inhibit TCR signaling, an effect that is accompanied by a reduction in downstream and subsequent phosphorylation events (25, 58, 60, 61). Moreover, T cells obtained from early asymptomatic and symptomatic/AIDS patients demonstrated a reduction in the tyrosine kinase activity of Lck, Fyn, and ZAP-70 associated with a decrease in ζ-chain phosphorylation (62). In view of our results suggesting that CXCR4 signaling may regulate TCR signaling, it would be important to establish whether the effects of gp120 on T cells might be due at least in part to binding of this molecule to CXCR4.

In conclusion, we have demonstrated in Jurkat and normal murine T cells that anti-CD3 stimulation of the TCR complex inhibits SDF-1 function. Jurkat clones deficient in TCR signaling were much less sensitive to the effects of anti-CD3 treatment, confirming the role of TCR components in this process. Anti-CD3 Ab stimulation of Jurkat cells also reduced CXCR4 cell surface expression, a process that was inhibited by staurosporine and RO 31-8220. These results suggest that TCR complex-mediated activation of PKC is involved in CXCR4 receptor down-modulation. We have also shown that SDF-1 treatment of C305-stimulated cells is associated with reduced phosphorylation of critical TCR downstream effectors, ZAP-70, SLP-76, and pp36. Taken together, these observations are suggestive of reciprocal regulation between TCR and CXCR4. The latter finding suggests that the SDF-1 chemokine is potentially capable of regulating the threshold of T cell activation.

Acknowledgments
We thank K. Harder for many useful discussions, C. Wong for assistance in the isolation and purification of murine lymphocytes, and I. Clark-Lewis for his critical review of the manuscript and for the generous gift of synthetic SDF-1. We are grateful to A. Weiss and G. Koretzky for providing Abs. We dedicate this paper to the memory of B. Federspiel.

References