The Chemokine Monocyte Chemotactic Protein 1 Triggers Janus Kinase 2 Activation and Tyrosine Phosphorylation of the CCR2B Receptor

M. Mellado, J. M. Rodríguez-Frade, A. Aragay, G. del Real, A. M. Martín, A. J. Vila-Coro, A. Serrano, F. Mayor, Jr. and C. Martínez-A.

J Immunol 1998; 161:805-813; ;
http://www.jimmunol.org/content/161/2/805

References
This article *cites 41 articles*, 25 of which you can access for free at:
http://www.jimmunol.org/content/161/2/805.full#ref-list-1

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
The Chemokine Monocyte Chemotactic Protein 1 Triggers Janus Kinase 2 Activation and Tyrosine Phosphorylation of the CCR2B Receptor

M. Mellado, J. M. Rodríguez-Frame, A. Aragay, G. del Real, A. M. Martín, A. J. Vila-Coro, A. Serrano, F. Mayor, Jr. and C. Martínez-A.

The chemokines are a growing family of low m.w., 70- to 80-residue proinflammatory cytokines that operate by interacting with G protein-coupled receptors. Chemokines are involved in cell migration and in the activation of specific leukocyte subsets. Using the Mono Mac 1 monocytic cell line, we show that monocyte chemotactic protein 1 (MCP-1) triggers activation of the Janus kinase 2 (JAK2) and STAT3 pathway and CCR2 receptor tyrosine phosphorylation. Both Ca²⁺ mobilization and cell migration are blocked in Mono Mac 1 cells by tyrphostin B42, a specific JAK2 kinase inhibitor. Within seconds of MCP-1 activation, JAK2 phosphorylates CCR2 at the Tyr139 position and promotes JAK2/STAT3 complex association to the receptor. This MCP-1-initiated phosphorylation and association to JAK2 is also observed in CCR2B-transfected HEK293 cells. In contrast, when a CCR2B Tyr¹³⁹Phe mutant is expressed in HEK293 cells, it is not phosphorylated in tyrosine and triggers neither JAK2/STAT3 activation nor Ca²⁺ mobilization in response to MCP-1. These results implicate the tyrosine kinase pathway in early chemokine signaling, suggesting a key role for this kinase in later events. The Journal of Immunology, 1998, 161: 805–813.

The CC chemokine monocyte chemoattractant protein 1 (MCP-1) was originally described as a potent chemoattractant for monocytes (10), produced by different cell types in response to a variety of mediators including PDGF (platelet-derived growth factor), TNF-α, LPS, and oxidized low density lipoproteins (11, 12). Since then, many other activities have been assigned to MCP-1, including induction of T cell migration (13), suppression of tumor growth in animal models (14), and neutralization of HIV-1 (15). MCP-1 has also been associated with several disease states in which monocyte infiltration plays a role, such as granulomatous disease, host responses to bacteria, rheumatoid arthritis, inflammatory heart disease, bone trauma, asthma, and sepsis (16, 17).

Chemokines activate their functions through interaction with single-chain, seven-helix membrane-spanning receptors coupled to G proteins (GPCR) (3). To date, nine receptors have been defined for the CC chemokines (18) and four for the CXC family, together with several putative CC or CXC receptors for which the ligands remain to be determined. They have an N terminus and three extracellular loops that act in concert to bind the chemokine ligand (19, 20), while the three intracellular loops and the C terminus are involved in transduction of the chemokine signal. The activation signals following chemokine stimulation are not well defined, and various signal transduction pathways have been implicated through the association of the chemokine receptors with guanine nucleotide-binding protein (G proteins) (21). In all cases, a pertussis toxin (PTX)-sensitive G protein was found, although there are also examples of PTX-insensitive G proteins, as is the case for the C5a receptor, which also couples to Go16 (22). The biochemical signaling pathways include changes in intracellular cAMP levels (23), phospholipase activation (24), increases in tyrosine phosphorylation including the Src substrates focal adhesion kinase (p125FaK) and ZAP-70 (25), increased association of Src family proteins with the tyrosine kinase domain of the receptors, and activation of the Janus kinase (JAK) and signal transducer and activator of transcription (STAT) pathways.

Abbreviations used in this paper: MCP-1, monocyte chemoattractant protein 1; CTX, cholera toxin; EGF, epidermal growth factor; GPCR, G protein-coupled receptor; JAK, Janus kinase; PTX, pertussis toxin; PTyr, phosphoryrosine.
kinases with p21ras (26), and activation of the MAPK (mitogen-
activating protein kinase) cascade (27).

The cellular response resulting from the activation of a given
chemokine receptor can vary depending on the cell in which it is
expressed. This is presumably due to the availability of specific G
protein subunits and other downstream effector molecules. It has
recently been demonstrated that the association of chemokine re-
ceptors to different G proteins depends on the receptor and the cell
line studied (28).

Biochemical analysis of chemokine signaling has been ham-
pered by the low levels of receptor expression and by the promis-
cuity of individual receptors with various ligands. Using the CCR2
chemokine receptor as a model, we have analyzed early signaling
events activated by MCP-1 binding in a human monocytic cell line
(Mono Mac 1). MCP-1 triggers tyrosine phosphorylation and ac-
tivation of the JAK2/STAT3 pathway in a PTX-independent man-
ner. This MCP-1-initiated phosphorylation and association to
JAK2 is also observed in CCR2B-transfected HEK293 cells. In
contrast, when a CCR2B Tyr139 Phe mutant is expressed in
HEK293 cells, it is not phosphorylated in tyrosine and triggers
neither JAK2/STAT3 activation nor Ca2+ mobilization in re-
response to MCP-1. Altogether, these data indicate that within sec-
onds of activation, JAK2 phosphorylates CCR2 at the Tyr139 po-
sition and promotes JAK2/STAT3 complex association to the
receptor. The blockage of MCP-1-induced Ca2+ mobilization and
cell migration in Mono Mac 1 cells treated with the specific JAK2
kinase inhibitor, tyrphostin B42 (29), demonstrates that JAK2 ac-
tivation is one of the first events following ligand binding and
assigns JAK2 a critical upstream role for all other signaling events,
including the association between the receptor and the G proteins.

Materials and Methods

Biologic materials

Mono Mac 1 (DSM ACC252) and HEK293 cells (ATCC TIB202) were
obtained from the German Collection of Microorganisms and Cell Cultures
(Braunschweig, Germany) and the American Type Culture Collection
(ATCC, Manassas, VA), respectively. Abs used include monoclonal anti-
PTyr (4G10) and rabbit anti-JAK2 (Upstate Biotechnology, Lake Placid,
NY); anti-Goα, anti-STAT3, and anti-STAT5 (Santa Cruz Biotechnology,
Santa Cruz, CA); anti-PTyr (PY20) (Transduction Laboratories, Lexington,
KY); anti-CD4 (HP2.6; kindly donated by Dr. A. C. Carrera), and anti-
MRC class I (W6/32, ATCC). Anti-CCR2 mAb MCP-1R03 and MCP-
IR05 were generated in our laboratory (15, 30). Epidermal growth factor
(EGF)-stimulated A-431 cell lysates were from Upstate Biotechnology and

Flow cytometry analysis

Cells were centrifuged (250 × g, 10 min, room temperature), plated in
V-bottom 96-well plates (2.5 × 105 cells/well) and incubated with 50 μl
well biotin-labeled mAb (5 μg/ml, 60 min, 4°C). Cells were washed twice
in PBS with 2% BSA and 2% FCS and centrifuged (250 × g, 5 min, 4°C),
FITC-labeled streptavidin (Southern Biotechnologies, Birmingham, AL)
was added, cells incubated (30 min, 4°C), and plates washed twice. Cell-
bound fluorescence was determined in a Profile XL flow cytometer at 525
nm (Coulter Electronics, Miami, FL).

Calcium determination

Changes in intracellular calcium concentration were monitored using the
fluorescent probe Fluo-3, AM (Calbiochem, La Jolla, CA). Cells (2.5 ×
105 cells/ml), untreated or treated for 16 h with either cholera toxin (CTX,
0.4 μg/ml) or PTX (0.1 μg/ml), were resuspended in RPMI containing
10% FCS and 10 mM HEPES and incubated with 10 μM/106 cells of Fluo-3,
AM (300 μM in DMSO) for 15 min at 37°C. After incubation, cells were
washed and resuspended in complete medium containing 2 mM CaCl2 and
maintained at 4°C until just before MCP-1 addition, to minimize mem-
brane trafficking and to eliminate spontaneous Ca2+ entry. Calcium mo-
bilization in response to 5 nM MCP-1 (Peprotech) was determined at
37°C in an EPICS XL flow cytometer at 525 nm (Coulter), and included
background level stabilization and determination of the level of probe

FIGURE 1. MCP-1 induction of Ca2+ mobilization and Goa association
to CCR2 receptor in Mono Mac 1 cells. A, 5 nM MCP-1-induced Ca2+
mobilization in Mono Mac 1 cells, untreated or preincubated with CTX or
PTX, was determined at 525 nm in a flow cytometer. The result of one of
three experiments performed is shown. Results are expressed as percentage
of the maximum chemokine response. Equivalent Fluo-3, AM loading was
determined as indicated in Materials and Methods. B, 5 nM MCP-1-in-
duced Mono Mac 1 cell lysates were immunoprecipitated with anti-CCR2
(MCP-1R03), or anti-CD4 (HP2.6) Abs as control, and the Western blot
developed with anti-Goα Ab. As a control for the presence of equal
amounts of CCR2 in the different lanes, the blot was stripped and devel-
oped with the anti-CCR2 Ab MCP-1R05. The arrow indicates the position of
Goα.
FIGURE 2. MCP-1-induced tyrosine phosphorylation and CCR2 receptor. MCP-1-induced (5 nM) Mono Mac 1 cell lysates were immunoprecipitated with anti-PY20 and developed in Western blot with anti-CCR2 (MCP-1R05) (upper panel) or immunoprecipitated with anti-CCR2 (MCP-1R03) and developed with anti-PY20 (4G10) Abs (lower panel). As controls, an unstimulated, unprecipitated Mono Mac 1 cell lysate and an MCP-1-induced Mono Mac 1 cell lysate immunoprecipitated with anti-CD4 were analyzed in Western blot with anti-CCR2 (MCP-1R05) Ab. CCR2 protein loading was controlled by stripping and reprobing membranes with mAb MCP-1R05 (lower panel).

RESULTS

The CCR2 receptor regulates calcium mobilization and couples to the Gi protein

The human monocytic cell line Mono Mac 1 expresses the MCP-1 chemokine receptor CCR2B (33). In response to MCP-1, these cells mobilize calcium (Fig. 1A), become desensitized to a second MCP-1 stimulus, and undergo cell migration (not shown). PTX treatment abrogates both calcium release and migration in response to MCP-1, whereas no effect was observed following incubation with CTX (Fig. 1A). This is consistent with other studies showing that some MCP-1 downstream signals in other monocyte lines and T cells are coupled to PTX-sensitive G proteins (28).

Using a CCR2-specific mAb, MCP-1R03 (15, 30), we analyzed the physical association between the CCR2 receptor and the Go subunit of the heterotrimeric G protein. A CCR2 receptor-associated protein, therefore, regulates calcium release and couples to the Gi protein in Mono Mac 1 cells.

MCP-1 induces tyrosine phosphorylation of the CCR2 receptor

In MCP-1-activated Mono Mac 1 cells, a 38-kDa protein phosphorylated in tyrosine residues was initially identified as the CCR2 receptor (not shown). Cell lysates were immunoprecipitated with anti-PY20 and Western blots developed with anti-CCR2 receptor Abs (Fig. 2, upper panel) or precipitated with anti-CCR2 and Sepharose (60 min, 4°C) were centrifuged (15,000 × g, 1 min), immunoprecipitated with the appropriate Ab (5 μg/sample, 120 min, 4°C), followed by anti-mouse IgG-agarose or protein A-Sepharose if the first Ab was derived from rabbit serum. Immunoprecipitates or protein extracts were separated in 12.5% SDS-PAGE and transferred to nitrocellulose membranes. Western blot analysis was performed as described (32), using 2% BSA in Tris-buffered saline (TBS) as blocking agent for the anti-PY20 analyses. When stripping was required, membranes were incubated for 60 min at 50°C with 62.5 mM Tris-HCl, pH 7.8, containing 2% SDS and 0.5% β-mercaptoethanol. After washing with 0.1% Tween 20 in TBS for 2 h, membranes were reblocked, reprobed with the appropriate Ab, and developed as described above. In all cases, protein loading was carefully controlled by using a protein detection kit (Pierce, Rockford, IL) and, when necessary, by reprobing the membrane with the immunoprecipitating Ab.
developed with anti-PTyr Ab (Fig. 2, lower panel), while no differences were observed in the amount of CCR2 in each lane (Fig. 2, lower panel) when the same membrane was stripped and reprobed with anti-CCR2 Ab. The same phosphorylated 38-kDa band was observed in both cases, confirming phosphorylation of the CCR2 upon MCP-1 stimulation. An increase in CCR2 receptor phosphorylation is seen as early as 30 s after MCP-1 stimulation, and phosphorylation persists for 20 to 30 min, decreasing thereafter. We have observed residual phosphorylation of CCR2 in untreated cells (Fig. 2), the significance of which is discussed below.

MCP-1 induces rapid JAK-2 activation and association to the CCR2 in a PTX-independent manner

To ascertain which kinase is responsible for the rapid CCR2 chemokine receptor phosphorylation, Mono Mac 1 cells were stimulated with MCP-1, and cell lysates were immunoprecipitated with anti-CCR2 or anti-CD4 and analyzed with anti-JAK2. As a positive control, EGFR-stimulated A431 cell lysates were tested in Western blot with the same anti-PTyr Ab. CCR2 protein loading was controlled as described in Figure 2 (lower panel). B, PTX-treated Mono Mac 1 cells were MCP-1-stimulated as in A, lysates immunoprecipitated with anti-PTyr (PY20) and analyzed in Western blot with anti-CCR2 mAb. C, PTX-treated Mono Mac 1 cells were stimulated with MCP-1, lysed, and analyzed in Western blot as described for A.

FIGURE 3. MCP-1-induced receptor association of JAK2 kinase. A, Mono Mac 1 cells were MCP-1-stimulated (5 nM), and lysates were immunoprecipitated with anti-CCR2 mAb and analyzed in Western blot with anti-JAK2 Ab. Control MCP-1-stimulated (5 nM) Mono Mac 1 cell lysates immunoprecipitated with anti-CD4 and analyzed with anti-JAK2 are shown. As a positive control, EGF-stimulated A431 cell lysates were tested in Western blot with the same anti-JAK2 Ab. CCR2 protein loading was controlled as described in Figure 2 (lower panel). B, PTX-treated Mono Mac 1 cells were MCP-1-stimulated as in A, lysates immunoprecipitated with anti-PTyr (PY20) and analyzed in Western blot with anti-CCR2 mAb. C, PTX-treated Mono Mac 1 cells were stimulated with MCP-1, lysed, and analyzed in Western blot as described for A.
levels are unchanged (Fig. 4A) as determined by stripping and reblotting the same membrane with anti-JAK2 Ab. JAK2 association to the CCR2 receptor takes place as early as 30 s after MCP-1 stimulation (Fig. 3A); small amounts of JAK2 were also found associated to the CCR2 receptor in the absence of added MCP-1, consistent with receptor phosphorylation in the absence of exogenous ligand in Mono Mac 1 cells. Immunoprecipitation of cell lysates with isotype-matched control Abs to CD4 or to other membrane proteins, such as MHC class I, did not reveal the presence of JAK2 (Fig. 3A), ruling out nonspecific protein association to membrane components under our experimental conditions. The rapid association of JAK2 to the CCR2 receptor suggests a role for this tyrosine kinase in early receptor phosphorylation following ligand stimulation. Anti-JAK1 and -JAK3 Abs were used to test for the presence of other JAK family members associated to the CCR2 receptor with negative results (data not shown).

To confirm JAK pathway involvement in the signaling response through the CCR2 chemokine receptor, we analyzed JAK2 kinase-activated STAT transcription factors in anti-CCR2 immunoprecipitates. STAT3, but not STAT5, associates to the receptor complex in response to MCP-1 (Fig. 3A); the association of STAT3 correlates in time with JAK2 phosphorylation and binding. Furthermore, this STAT3 is tyrosine phosphorylated, indicating its activation (Fig. 4C). It thus appears that CCR2 receptor activation induces receptor and JAK2 phosphorylation and STAT3 binding. The MCP-1-triggered tyrosine phosphorylation of the CCR2 receptor is independent of PTX-sensitive G proteins (Fig. 3B); PTX also had no effect on JAK2 kinase binding to the receptor (Fig. 3C). Whereas MCP-1-induced association of JAK2 to the CCR2 receptor is not impeded by this toxin, PTX blocked JAK2 kinase dissociation from the receptor (Fig. 3C), implying that PTX-sensitive G protein activation is important in the recycling of the JAK2/STAT3 receptor complex.

MCP-1-promoted Ca2+ influx and cell mobilization were blocked when cells were pretreated with the specific JAK2 kinase inhibitor, tyrphostin B42 (29) (Fig. 5, A and B), indicating the importance of this kinase in early signaling events. As expected, B42 treatment inhibits Go\textsubscript{i} association to the receptor, in accordance with the role of this G protein in GPCR-mediated effects (Fig. 5C). Tyrphostin treatment was not toxic to Mono Mac 1 cells, as shown by cell cycle analysis using propidium iodide incorporation (not shown).

Despite the rapid and transient JAK2-mediated CCR2 tyrosine phosphorylation, phosphorylated CCR2 can be observed long after maximum JAK2 association, thus implicating other tyrosine kinases, as described for RANTES activation of human T cells (25).
The Tyr139 residue of CCR2 is critical in MCP-1-activated signaling

To further investigate the significance of MCP-1-induced CCR2 receptor tyrosine phosphorylation, the CCR2B receptor Tyr 139 Phe mutant CCR2BY139F was constructed, expressed in HEK293 cells, and its response to MCP-1 analyzed. Tyr139 is located in the second intracellular loop and forms part of the DRY sequence, a highly conserved motif in GPCR that is essential for agonist-mediated receptor activation (35); it is the only intracellular tyrosine conserved in the functionally homologous CCR2A receptor (33). Wild-type and CCR2BY139F mutant receptor expression were identical in stably transfected HEK293 cells as assessed by flow cytometry (Fig. 6A), and both receptor forms bind MCP-1 equally well (not shown). MCP-1 induces Ca2+ mobilization in CCR2B wild-type HEK293 cells, but not in CCR2BY139F mutant or in mock-transfected HEK293 cells (Fig. 6B). Phosphorylation of the mutant receptors was analyzed; in contrast to the wild-type receptor, the CCR2BY139F mutant is unphosphorylated in tyrosine residues following MCP-1 binding (Fig. 7, upper panel) and cannot trigger JAK2 phosphorylation or association to the receptor (Fig. 7, middle panel). Finally, MCP-1 promotes G\textsubscript{ai} association to the CCR2B receptor, but not to the mutant CCR2BY139F receptor (Fig. 7, lower panel). These results clearly demonstrate the relevance of JAK2 phosphorylation, as well as of JAK2 and G\textsubscript{ai} association in the functional response to MCP-1.

Discussion

Transendothelial leukocyte migration into inflammation sites is a complex process in which several cell surface molecules, including the selectin family of adhesion molecules, integrins, and their ligands, act in concert to regulate cell migration. Soluble mediators, mainly chemokines, are also central both in activating and directing specific leukocyte subsets to target tissues. It is known that chemokines bind to GPCR and induce changes in intracellular cAMP levels, activate phospholipases, and increase tyrosine phosphorylation. The initial steps in receptor activation that lead to the wide variety of chemokine-triggered cellular responses are still, however, not known.

MCP-1 was first described as a potent chemotactrant for monocytes and binds the CCR2 and the CCR4 chemokine receptors (36). In CCR2-expressing cells, MCP-1 binding promotes Ca2+ mobilization and transmigration, processes that are blocked by PTX treatment but not by CTX (21). Using a human monocytic cell line, Mono Mac 1, which also responds to MCP-1 and CCR2-specific mAb (15, 30), we have demonstrated that G\textsubscript{ai}
associates rapidly (within 30 s) to CCR2 after MCP-1 activation. This confirms previous data indicating that other chemokine receptors, such as IL-8R, bind G\(_{ai}\) in response to IL-8 (37) and extends the observation to members of the CC family of chemokine receptors.

Despite G\(_{ai}\) binding to the CCR2 receptor and its implications in signaling events subsequent to MCP-1 binding, we cannot exclude the participation of other G proteins in the signaling activated by this chemokine. It is reasonable to consider that the cellular response of a given chemokine receptor varies depending on the cell in which it is expressed. This is presumably due to the availability of specific G protein subunits and other downstream effector molecules. It has thus recently been demonstrated that the association of chemokine receptors to different G proteins depends on the receptor and the cell line studied (28).

Chemokines also promote an increase in tyrosine kinase activity; it has recently been shown that RANTES induces activation and assembly of macromolecular focal adhesion complexes and provokes T lymphocyte homotypic adhesion by phosphorylation and association of p125\(_{FAK}\) and ZAP-70 (25).

Even more interesting is the identification of the phosphorylated CCR2 receptor itself. Several assays performed to identify the kinase responsible for CCR2 receptor phosphorylation led to the conclusion that JAK2 causes early receptor activation. Both JAK2 association and CCR2 tyrosine phosphorylation occur even in the presence of PTX, indicating no G\(_{i}\) participation in this process; JAK2 dissociation was not observed under these conditions, suggesting an active participation of Gi pathways in uncoupling JAK2 from the receptor. In response to MCP-1, this kinase is phosphorylated as soon as 30 s after binding, indicating that JAK2 activation is simultaneous with its association to CCR2.

Furthermore, STAT3, but not STAT5, is associated to the CCR2 following MCP-1 activation in accordance with the role assigned to the JAK tyrosine kinases in transducing signals from hematopoietic growth factor receptors (38). In these receptors, the activation and association of JAK kinase to the receptor creates docking sites for SH2-containing proteins such as STAT, leading to their phosphorylation and activation of gene transcription.

Neither MCP-1-induced, PTX-sensitive G protein-mediated physiologic effects nor G\(_{ai}\) association to CCR2 were observed after treatment of Mono Mac 1 cells with the JAK2-specific inhibitor tyrphostin B42. This is not the case when cells are treated with other tyrphostins, indicating that inhibition of JAK2 kinase activity abolishes the association and activation of the G proteins responsible for this response. This result and the JAK2 association to the CCR2 receptor in PTX-treated cells imply that the first event after MCP-1 binding to the CCR2 in Mono Mac 1 cells is association of the JAK2 kinase. The conformational changes promoted by both ligand interaction and tyrosine kinase association induce Gi protein association to its binding site, probably located in the second intracellular loop, as is the case for the IL-8R (37).

To determine which CCR2B receptor Tyr residue is involved in JAK2 kinase association, and as Tyr\(^{139}\) is the only intracellular tyrosine conserved in the functionally homologous CCR2A receptor (33), we generated a CCR2BY139F receptor by point mutation. Although this mutated receptor binds MCP-1 as well as does the wild-type receptor, it does not elicit MCP-1-triggered functional responses such as Ca\(^{2+}\) mobilization, cell migration, or CCR2B tyrosine phosphorylation. This lack of response is due to abolition of the association to the receptor by the JAK2 kinase and then of the Gi protein. The tyrosine at position 139 is part of the conserved DRY motif present in most chemokine receptors. Earlier studies characterized the critical roles of arginine and aspartic acid in the DRY motif, implicated in G protein-mediated signaling in other...
FIGURE 7. CCR2B tyrosine phosphorylation and JAK2 and Gα association in HEK293 cells. A. Representative CCR2B or CCR2BY139F clones, unstimulated or MCP-1 stimulated for 30 s, were lysed and immunoprecipitated with anti-PTyr PY20 mAb and tested in Western blot with anti-CCR2 Ab. Equivalence in immunoprecipitate protein amounts was controlled by reprobing Western blots with anti-MHC class I Ab. The arrow shows the position of Gα1. B. CCR2B or CCR2BY139F clones as described above were immunoprecipitated with anti-CCR2 and blotted with anti-JAK2 Ab. C. Clones as described above were immunoprecipitated with anti-CCR2 and tested in Western blot with anti-Gαi Ab. The protein loading control is the same as described for B. The arrow shows the position of Gαi.

Gαi (35). The importance of the tyrosine in G protein activation is demonstrated here, as the Tyr139Phe mutation also impaired Ca2+ mobilization triggered by MCP-1 binding and Gαi association to the CCR2B receptor.

These data fit a model in which Gαi association to the chemokine is a consequence of conformational changes promoted by both ligand interaction and JAK2 activation. If this is the case, a mutant form with a constitutively associated Gα protein should activate signaling in response to the chemokine. This occurs, in fact, in another chemotactic peptide receptor belonging to the GPCR family, the C5α receptor (39), in which phenylalanine replaces the tyrosine in the DRY motif, while its capacity to activate Gαi signaling remains intact.

Phosphorylation of the DRY motif tyrosine in a β2-adrenergic receptor has also recently been suggested as linking this receptor to the insulin-like growth factor (IGF)-1 receptor pathway (40). In accordance with recent reports suggesting JAK pathway modulation by other GPCR (41), as well as agonist-induced β-adrenergic receptor dimerization (42), we suggest that receptor dimerization may be a primary event following agonist binding to G protein-coupled receptors. We thus amplify earlier interpretations by suggesting that the inability of CCR2BY139F to promote Gα protein association results from the failure of the receptor to dimerize. Since signaling by G protein-coupled receptors leads to calcium mobilization within seconds, we postulate that the ligand promotes a conformational change that stabilizes the receptor dimers.

Finally, the dimerization hypothesis may also be helpful in understanding how chemokines prevent HIV-1 infection, as we conjecture that receptor dimerization prevents HIV-1 interaction with the chemokine receptor. Recent reports indicate that heterodimerization between CCR5 and its mutant CCR5Δ32 is a molecular explanation for the delayed onset of AIDS in heterozygous CCR5/CCR5Δ32 individuals (43). Our results also extend the model of cytokine receptor signaling to the chemokines, which are functionally related molecules although they use structurally unrelated receptors.

Acknowledgments

We thank L. R.-Borlado for helpful advice and discussions; M. Barradas, for skillful help in establishing stably transfected cell lines; Drs. J. Paz-Ares and E. Montoya for critical reading of the manuscript; and C. Bastos and C. Mark for secretarial and editorial assistance, respectively.

References

